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a b s t r a c t

In this work, a plasticity based composite interface model is proposed for failure analysis of unreinforced

masonry. The hyperbolic composite interface model consists of a single surface yield criterion, which is a

direct extension of Mohr-Coulomb criteria with cut in tension region and a cap in compression region.

The inelastic behaviour includes potential crack, slip, and crushing of the masonry joints. A micro

mechanical based approach is adopted for failure modelling of the masonry. The model is developed

by using a fully implicit backward-Euler integration strategy. It is combined with a local/global Newton

solver, based on a consistent tangent operator compatible with an adaptive sub stepping strategy. The

model is implemented in standard finite element software (ABAQUS) by using user defined subroutine

and verification is conducted in all its basic modes. Finally, the model is validated by comparing with

experimental results available in the literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Masonry is a heterogeneous anisotropic continuum; made up of
the brick and mortar arranged in a periodic or non periodic man-
ner. In particular, the inhomogeneity is due to the different
mechanical properties of its constituents, and the anisotropy is
due to the different masonry patterns, that can be obtained by var-
iation of geometry, nature and arrangement of mortar and brick.
The behaviour of masonry is very complex and highly non-linear
due to the behaviour of its constituents, which are quasi-brittle
in nature and have a large difference in their stiffness. It represents
a very particular mechanical behaviour, which is primarily due to
the lack of homogeneity and standardization (see [1,2]). The
structural response of such a composite material derives from
the complex interaction between its constituents. Under the in-
plane loading, masonry is subjected to a biaxial state of stress
and thus masonry constituents may fail in individual or combined
mechanisms (see [3–6]). These failure mechanism are used in
micro modelling of masonry to understand its behaviour.

Many computational studies have been carried out at various
scales to understand and simulate the behaviour of masonry. The
modelling of masonry at different scales depends up on the level
of accuracy and simplicity desired. This includes micro-
modelling and macro-modelling. In micro-modelling, the unit
and mortar are represented by continuum elements and

unit-mortar interface is represented by a discontinuous interface
element. This detailed micro-modelling procedure leads to very
accurate results, but requires an intensive computational effort.
This drawback can be partially overcome in simplified micro-
modelling, by making an assumption that mortar and two
unit-mortar interface is lumped into a joint between expended
units. The units are expended in order to keep the geometry of
structure unchanged. The computational cost of simplified
micro-model can be further reduced, by replacing expanded
units by the rigid element. Using rigid elements decreases the
number of degrees of freedom, which consequently reduces the
computational time. In macro-modelling, masonry is considered
as a composite, which does not make any distinction between
units and joints. The material is regarded as a fictitious homoge-
neous anisotropic continuum.

2. Literature review

There has been several experimental studies reported in litera-
ture for understanding behaviour of the masonry for instance (see
[7–12]). Masonry exhibits a quasi-brittle behaviour due to its con-
stituents, thus failure analysis of a masonry structure abides in the
realistic modelling of the fractures and associated softening
behaviour. Therefore modelling techniques of masonry are analo-
gous to that developed in concrete and rock mechanics. Many
plasticity based constitutive models have been proposed in the
recent years that can simulate initiation and propagation of crack
under combined normal and shear stresses [13–18].
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Aryan and Hegemier [19], Page [20] made early attempts to
study the masonry failure using simplified micro modelling. Stan-
kowski et al. [21,22] proposed a plasticity based constitutive model
to describe the fracture and slip of the interface in cementitious
materials. This model uses a curvilinear Mohr-Coulomb yield func-
tion with a tension cut-off and the yield function has a smooth
transition between shear and tension region. They considered the
tensile strength softening without changing shape of yield function
(i.e. degradation of tensile strength is considered whereas cohesion
and friction angle are considered to be unchanged). Lotfi et al.
[23,24] have developed an interface model that incorporates addi-
tional softening mechanisms i.e. the degradation of cohesion and
friction angle with additional attention being paid to include the
dilatancy. The models presented there can simulate initiation and
propagation of crack under combined normal and shear stresses
in tension-shear and compression-shear region. However, it fails
to simulate masonry under high compression stress. Lourenço
[25–27] introduced multi-surface interface model for analysis of
masonry structures. The constitutive model is illustrated by three
yield functions: a tension cut-off for mode-I failure, a Mohr-
Coulomb failure envelope for mode-II failure and a cap model for
compressive failure. The model is capable of simulating masonry
under tension-shear, compression-shear and even under high com-
pression stress. Due to presence of three yield criteria, singularity
problem arises at the non-smooth corner in transition zone from
tension to shear and shear to compression. Many other plasticity
based constitutive model have also been proposed in recent years.
Giambanco et al. [28] presented an interface model suitable to sim-
ulate the behaviour of mortar joint in the masonry, using the
Mohr-Coulomb bilinear limit surface with tension-cut off. The
model considers the softening response that occurs, along with
decohesion process in the presence of shear and tension. Oliveira
and Lourenco [29,30] extended the Lourenco and Rots model to
damage formulation for simulating the cyclic behaviour of inter-
face element. Dolatshahi et al. [31] used the Lourenco and Rots
model and have shown that in a computational scheme, the use
of rigid elements along with non-linear line interfaces leads to a
reduced number of degrees-of-freedom, which consequently
reduces the computational time. Dhanasekar et al. [32] carried
out explicit finite element analysis of wide spaced reinforced
masonry shear wall. The wall is modelled using macroscopic mate-
rial characteristics for the unreinforced masonry panels and dam-
aged concrete plasticity for the grouted cores containing
reinforcement. Anand et al. [33] did a finite element failure analy-
sis of composite masonry walls subjected to both vertical and hor-
izontal loads. It is shown that cracking in the collar joint is initiated
at a much smaller magnitude of the horizontal inplane load com-
pared to the vertical load.

There has been interesting works on understanding the failure
modes of solid brick masonry under in-plane loading (see [34])
and numerical modelling of masonry using finite element method
[20] for understanding the behaviour of columns under horizontal
loads [35], and under cyclic loads [36]. There has also been some
other works on 3D analysis of masonry columns under cyclic load-
ing [37], 3D analysis of masonry columns with grouted reinforce-
ment under cyclic loading [38]. The study on masonry wall under
inplane loading [39,40], masonry wall under monotonic loading
[41], and masonry wall subjected to seismic loading [42,4] are
notable.

There has been very recent works on nonlinear analysis of
masonry structures [43]. An equilibrated macro element for non-
linear analysis of masonry structures [44] has been developed for
understanding the in plane structural response of masonry panels
under lateral loading [45]. Understanding nonlinear behaviour of
masonry has been attempted at various scales. A coarse scale
model in the context of assumed stress formulation has been

implemented in [46] with non associative plasticity. Several meso-
scale modelling approaches [47] has been developed for modelling
nonlinear behaviour of masonry [48]. A mesoscale cohesive crack
model to simulate cyclic behaviour of concrete and masonry struc-
tures was presented in [49]. A nonlinear finite element modelling
of reinforced masonry shear walls for bidirectional loading
response was made in [50]. Similar nonlinear finite element anal-
ysis was made to understand the out of plane behaviour of
masonry walls with and without CFRP reinforcement in [51]. Ref.
[52] have studied the influence of boundary conditions and size
effects on the drift capacity of unreinforced masonry walls. Numer-
ical investigation on the influence of FRP retrofit layout and geom-
etry on the inplane behaviour of masonry walls was done by Gian
et al. [53]. A new discrete element model for the evaluation of the
seismic behaviour of unreinforced masonry buildings has been
made by Ivo et al. [54]. Amaryllis et al. [55] have proposed meth-
odology for identification of suitable limit states from nonlinear
dynamic analyses of masonry structures.

There has been very recent works to understand the inplane
and out of plane behaviour of masonry walls subjected to cyclic
loading. A three dimensional cyclic meso-scale numerical proce-
dure for simulation of unreinforced masonry structures is devel-
oped in [56]. Nebojsa et al. have undertook a study on modelling
the behaviour of seismically strengthened masonry walls subjected
to cyclic in-plane shear [57]. Medeiros et al. [58] developed a
numerical modelling of non- confined and confined masonry walls.
An explicit finite element analysis for the in-plane cyclic behaviour
of unreinforced masonry structures was made in [59]. Manos et al.
studied the behaviour of masonry assemblages and masonry
infilled reinforced concrete frames subjected to combined vertical
and cyclic horizontal seismic type loading [60]. Analytical models
for cyclic compressive behaviour of brick masonry have also been
proposed [61]. In plane cyclic behaviour of masonry walls jacketed
with fibre reinforced mortar and fibre grids was made by Viorel
et al. [62]. There has also been some recent works on behaviour
of masonry walls under combined loadings [63].

The recent advances in computational modelling of masonry
structures has been towards understanding their behaviour under
cyclic or seismic loads. A comparative analysis on the seismic
behaviour of unreinforced masonry buildings with flexible dia-
phragms was made in [64]. Unreinforced and confined masonry
buildings in seismic regions: Validation of macro element models
and cost analysis was done in [65]. An equivalent frame model
for the nonlinear seismic analysis of masonry buildings was devel-
oped in [66]. A seismic vulnerability index for confined masonry
shear wall buildings and a relationship with the damage has
recently been studied in [67]. Modelling and analysis of time
dependent behaviour of historical masonry under high stress loads
is presented in [68]. A new discrete element model for the evalua-
tion of seismic behaviour of unreinforced masonry buildings is pre-
sented in [69]. Parametrical study of unreinforced flayed masonry
walls subjected to horizontal loading through numerical modelling
is made in [70].

Structural analysis of a multi-span railway masonry bridge
combining in-situ observations, laboratory tests and damage mod-
elling was done in [71]. Effect of in-plane damage on out of plane
strength of unreinforced masonry walls was presented in [72].
Modelling of masonry of infilled frames with respect to cracking
and damage is presented in [73]. Performance evaluation of
masonry in-filled frames under cyclic loading based on damage
method has been presented in [74]. A simplified homogenisation
based discrete element model for the non-linear static analysis of
masonry walls subjected to out-of-plane loaded has been pre-
sented in [75].

There has been several other recent works on numerical model-
ling of masonry structures with structural strengthening using
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Fibre Reinforced Polymers (FRP) [76]. Numerical analysis of fibre
reinforced polymer retrofitted masonry panels is made in [77]. A
combined finite discrete element analysis of dry stone masonry
structures was made in [78]. An equilibrated macro-element for
non-linear analysis of masonry structures was developed in [79].
Evaluation of different computational modelling strategies for the
analysis of low strength masonry structures was made in [80].
Modelling the failure of thin layered mortar joints in masonry
was done in [81].

The objective of the paper is to propose plasticity based com-
posite interface model by using a single surface yield criteria, to
overcome singularity at the corner region. The composite interface
model has been written using the user defined subroutine in com-
mercial software ABAQUS to perform a numerical analysis. In the
following section, after demonstrating prominent failure mecha-
nism of masonry, elastic and plastic behaviour of model is
described. Then, numerical algorithm is prepared and verified by
using basic examples. Finally, the robustness of the proposed
model has been assessed by using the results of well-documented
experimental work, and the conclusions are made.

3. Masonry failure mechanism

In the present study, simplified micro-modelling is adopted to
model the masonry. In this approach, the mortar and two adjacent
unit-mortar interface is lumped into a joint between expanded
units. The units are expanded in order to keep the geometry of
structure unchanged, see Fig. 1. The joint is represented by discon-
tinuous interface element, which includes all the inelastic property
of the masonry. The inelastic behaviour is due to a potential crack,
potential slip and crushing plane. Thus masonry is represented as
set of elastic blocks bounded by the potential crack, slip and crush-
ing planes. It is important to develop an accurate model, that must
consider all the failure mechanisms that characterise the masonry
behaviour.

Many failure mechanism are possible, amongst which the
prominent ones are [26,27,4–6] (a) cracking of unit in direct ten-
sion, (b) cracking of mortar joint, (c) bed or head joint failure at
low value of normal stress, (d) diagonal tension cracking of the
unit, (e) masonry crushing. The failure mechanism are shown in
Fig. 2. where (a) is unit mechanism, (b) and (c) are the joint mech-
anism and (d) and (e) are the combine mechanism. An accurate
masonry model must include all these failure mechanisms.

4. The composite interface model

The composite interface model is used to represent the mechan-
ical behaviour of discontinuous interface element for joint inter-
face in the masonry modelling, which includes potential crack,
slip, and crushing planes. In the following section, a complete
description of numerical implementation of a plasticity based com-
posite interface model is explained.

4.1. Elastic behaviour

The interface elements allows the discontinuity in the displace-
ment field and their behaviour is described by relation between
traction force and relative displacement of the interface element.
The generalised stress-strain relation can be written in standard
form as

r ¼ K� ð1Þ

In a 2D framework, r ¼ frnn;rttg
T ;� ¼ f�nn; �ttg

T and
K ¼ diagfknn; kttg

T where nn and tt designate normal and tangential
components. For simplifying the model, the effect of Poisson’s ratio
is assumed to be negligible. The Poisson’s ratio of the brick is con-
siderably lower than mortar, and most of the behaviour of the
masonry is governed by joint mechanics, mortar mechanism and
splitting of the brick, thus this assumption seems to be valid.
Due to lager difference in the thickness of the mortar and unit,
the units are assumed to be linear-elastic. The component of elastic
stiffness matrix K can be written as

1

knn
¼

1

hm

1

Eu

þ
1

Em

� �

ð2Þ

1

ktt
¼

1

hm

1

Gu

þ
1

Gm

� �

ð3Þ

where Eu; Em;Gu and Gm are the elastic Young’s moduli and the elas-
tic shear moduli for unit and mortar. hm is the actual thickness of
mortar joint.

4.2. Plastic behaviour

In the present study a rate independent composite interface
model, defined by hyperbolic function (Eq. (4)) has been proposed
(see Fig. 3). The proposed model is a simple extension of the
Mohr-Coulomb criteria with cut-off in tension and cap-off in com-
pression, which result in the single surface yield criteria capable of
representing pressure-dependent friction shear failure and crack-
ing by cut-off in-tension and crushing by cap-off in compression
under combined normal and tangential stresses. The model
includes all the mechanisms of the masonry failure and also over-
comes the problem of the singularity that occurs in multi-surfaces
yield criteria.

Fðr;qÞ :¼ �½ðC � rnn tanð/ÞÞ�
2f cðr; qÞf tðr;qÞ þ r2

tt ð4Þ

f cðr;qÞ :¼
2

p
arctan

rnn � f

ac

� �

ð5Þ

f tðr;qÞ :¼
2

p
arctan

n� rnn

at

� �

ð6Þ

where the vector q ¼ qðC;Cq;/;w; n; fÞ is a function of six internal
hardening parameters, which implicate the apparent cohesion
ðC;CQ Þ, friction angle ð/Þ, dilation angle ðwÞ, tension strength ðnÞ

and compression strength ðfÞ. In the yield function, n denotes ten-
sion cut-off and f denotes compression cap. The function f cðr;qÞ

Fig. 1. Simplified micro-modelling.
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and f tðr; qÞ are the compression cap and tension cut-off functions
respectively. The function f cðr;qÞ has the zero value at the cap
and the function f tðr;qÞ has zero value at tension-cut. For all other
stress-states both the function have value approximately equal to
one. The parameters ac and at control the curvature of the compres-
sion cap and tension cut-off at transition region.

A non-associated formulation is used because friction and dilat-
ancy angles are considerably different [82,83]. Therefore, the plas-
tic potential is described in terms of another hyperbolic function
with different values of apparent cohesion ðCQ Þ and frictional angle
(dilation angle ðwÞ), with same tensile ðnÞ and compressive
strength ðfÞ. The expression of potential function reads

Qðr;qÞ :¼ �½CQ � rnn tanðwÞ�
2f cðr;qÞf tðr;qÞ þ r2

tt ð7Þ

4.3. Evolution laws

Evolution laws for hardening or softening behaviour for the
composite interface model is defined by the rate of plastic work
per unit of volume. During plastic loading internal variables can
be express as

_Wp :¼ r
T
�
p ð8Þ

where _Wp is the rate of plastic work hardening per unit of volume.
In the present study, evolution of yield surface in tension-shear and
compression-shear region has been assumed such that during plas-
tic loading in tension-shear region, tensile strength ðnÞ decreases
exponentially while friction angle ð/Þ remain unchanged, and in
compression-shear region both friction and tensile strength both
degrades exponentially. In addition, the compression strength
changes when plastic loading path intersects with the compression
cap. The above assumptions can be expressed by four internal vari-
ables i.e. _Wp : _Wpð _wp

1; _wp
2; _wp

3; _wp
4Þwhere _wp

1 and _wp
2 represent degra-

dation in tensile strength, _wp
2 and _wp

3 govern the frictional strength
degradation and _wp

4 gives change in the compression strength.

_wp
1 :¼ hrnni _up

nn ð9Þ

_wp
2 :¼ ðrtt � rttr1signðrttÞÞ _up

tt ð10Þ

_wp
3 :¼ ðrttr1 � rttr2 ÞsignðrttÞ _up

tt ð11Þ

_wp
4 :¼ hhrnnii _up

nn for rnn < fc ð12Þ

where the symbol hi denotes for Macaulay bracket and
hxi ¼ ðxþ jxjÞ=2 and hhxii ¼ ðx� jxjÞ=2. fc denotes the transient
point from compression cap to Mohr-Coulomb friction envelope.
rttr1 is the tangential strength when tensile strength is completely
exhausted; rttr2 is minimum tangential strength for the final con-
tracted yield surface. In tension-shear region, rttr1 and rttr2 are
assumed to be zero and in compression-shear region they can be
express as

r2
ttr1

¼ �2Cr tan/ f cf t ð13Þ

r2
ttr2

¼ �2Cr tanwr f cf t ð14Þ

In tension-shear region, during plastic loading the yield surface
will contract until the tensile strength is exhausted and cohesion
reaches a minimum value see Fig. 4(a) i.e. yield surface contracts
from F0 to F1. While in compression-shear region, plastic loading
reduces the tensile strength, cohesion as well as friction angle to
its residual value (i.e. yield surface contracts to F2). If the plastic
loading path intersects the compression cap region, yield surface
will evolve due to hardening in compression see Fig. 4(b) i.e. yield

(a) (b) (c)

(d) (e)

Fig. 2. Prominent masonry failure mechanisms: (a) unit direct tensile cracking; (b) joint tensile cracking; (c) joint slipping; (d) unit diagonal tensile cracking; (e) masonry

crushing.

Fig. 3. Trace of yield function Fðr;qÞ and potential function Qðr; qÞ; red, green, blue

lines represents the tension-cut, shear and compression-cap region respectively.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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surface evolves from F0 to F1. After the compression-strength
reaches its maximum value, there is a subsequent softening and
compression strength reduces to minimum value due to contrac-
tion of yield surface i.e. yield surface contracts from F1 to F2.

The hardening parameter q can be related to the internal vari-
ables as follows

C :¼ Cr þ ðC0 � CrÞexp
�bC

w
p

1
GI
f

þ
w
p

2
GII
f

� �

ð15Þ

CQ :¼ CQ r
þ ðCQ0

� CQ r
Þexp

�bCQ

w
p

1
GI
f

þ
w
p

2
GII
f

� �

ð16Þ

/ :¼ /r þ ð/0 � /rÞexp
�b/w

p

3 ð17Þ

w :¼ wr þ ðw0 � wrÞexp
�bww

p

3 ð18Þ

n :¼ n0exp
�bn

w
p

1
GI
f

þ
w
p

2
GII
f

� �

ð19Þ

f ¼

f0 þ ðfp � f0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2wp

4
wp

� �

�
w

p

4
wp

� �2
r

if wp
4 6 wp

f0 þ ðfp � fpÞ
w

p

4
�wp

wm�wp

� �2

if wp 6 wp
4 6 wm

fr þ ðfm � frÞexp
bf

w
p

4
�wp

fm�fr

� �

if wp
4 > wm

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð20Þ

where GI
f and GII

f are the mode I and mode II fracture energy and bi is
a parameter that controls the softening of the internal variable. The
subscript 0 stands for initial value and r for residual value whereas
subscript p andm indicate intermediate values. The preceding hard-
ening equation can be written in a compact form as follows

_Wp ¼ H _�p ð21Þ

4.4. Elastic–plastic tangent modulus

The total strain can be decomposed into sum of elastic strain
and plastic strain i.e.

� ¼ �
e þ �

p ð22Þ

where �
e and �

p are the elastic strain and plastic strain or
irreversible strain respectively and the notion of irreversibility of

plastic flow can be introduced by non-associated flow rule. It can
be written in rate form as

_�p ¼ _km ð23Þ

where _k is the constant slip rate or plastic multiplier. The plastic
multiplier can be found by checking the consistency condition
(persistency condition) together with Kuhn-Tucker condition
ðF � 0; _kP 0; _kF ¼ 0Þ. The consistency condition can be written as
_k _F ¼ 0 for yield condition _k > 0 and _F ¼ 0 and we can be written
it as

_F ¼
@F

@r
_rþ

@F

@q
_q ¼ 0 ð24Þ

_k ¼
nK�

nTKmþ pT-
ð25Þ

In which m :¼ @Q=@r, n :¼ @F=@r, p :¼ @Q=@k;- :¼ ð@q=@WpÞ

ð@Wp=@�pÞð@�p=@kÞ ¼ ð@q=@WpÞHm. Now we can define hardening
parameter in its rate form as q ¼ _k-. Putting the plastic multiplier
ð _kÞ in the rate form of stress-strain relationship to get elasto-plastic
tangent modulus K

ep, i.e.

_r ¼ Kð _�� _kmÞ ¼ K
ep _� ð26Þ

Kep ¼ K �
Km� nK

nTKmþ pT-
ð27Þ

4.5. Algorithmic aspect of local and global solver

In the present section, the composite interface model is
implemented into a finite element framework with elastic-plastic
continuum elements, which gives rise to a set of non-linear
algebraic-differential equations, and are to be solved. The
Newton–Raphson scheme is used to solve non-linear system of
equations, which leads to combined local and global approach.
Local solver provides the new internal state variable for a given
relative displacement, subsequently global solver provides the
solution for the unbalanced force to accommodate stress distribu-
tion within the finite load increments. In this section, numerical
strategy is presented at both local (Constitutive level) and global
level (Structural level).

4.5.1. Elastic predictor–plastic corrector strategy

The implicit backward Euler integration method is used to inte-
grate the differential constitutive equations. The backward Euler
method is a first order (i.e. local truncation error is Oðh2

Þ for a sin-
gle step) method and is unconditionally stable. The integration
procedure leads to a set of algebraic-incremental equations, which
can be split in to elastic predictor, followed by plastic corrector if
and only if the trial stress-state violates the current yield condition.

The time discretization of an interval of interest as
½0; T� ¼

SN
n¼1½tn; tnþ1�. The relevant problem can be seen with in

time interval ½tn; tnþ1�. It is assumed that the stress-state ðrn;qnÞ

at current time t ¼ tn should satisfy the equilibrium conditions
and be admissible. For prescribed increment in strain _�, at the next
time step tnþ1 ¼ tn þ Dt the strain is given by �nþ1 ¼ �n þ D�, and
this can be split into two part i.e. D� ¼ D�e þ D�p. According to
the elastic predictor-plastic correct strategy, the stress and internal
variables can be written in their incremental form as

rnþ1 ¼ rn þ KD�
e ¼ rn þ KðD�� D�

pÞ ð28Þ

rnþ1 ¼ r
trial
nþ1 þ Dknþ1Kmnþ1 ð29Þ

qnþ1 ¼ qn þ Dknþ1-nþ1 ð30Þ

wherertrial
nþ1 ¼ rn þ KD� is the trial stress. During the elastic predictor

step (say point A), if the trial stress goes outside the yield surfaces at
the point B (see Fig. 5) after cutting the yield surface at the contact

Fig. 4. Evolution of yield surfaces: (a) tension shear region; (b) compression region.
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point o; Fðrtrial
nþ1; qnþ1Þ > 0, then plastic corrector step projects the

stress-state at the point D after the evolution or contraction of the
yield surface due to the change in internal variable. In the Fig. 5 point
C represents the final converged stress-state for an elastic-perfectly
plastic model. In the present study plastic step mobilises the plastic
work which changes the internal hardening parameter ðqÞ that
expands or contracts the yield surface. It should be noted that the
solution of the plastic corrector stepmust satisfy the full consistency
at point D, rather than differential consistency ð _F ¼ 0Þ.

Fðrnþ1;qnþ1Þ ¼ 0 ð31Þ

4.5.2. Contact point

The plastic corrector step only produces the change in the stress
and internal variable ðrn;qnÞ. Therefore, it is very important to find
the contact point for the present elastic predictor step. Mathemat-
ically, it can be express as

Fðrn þ cDr;qnÞ ¼ 0 ð32Þ

where rn;qn are the variables from the last converged elastic or
plastic step, and c is unknown integer within the range ½0 1�, which
converges the stress to the contact point.

4.5.3. Local iteration strategy

The backward Euler method gives rise to non-linear system of
equations, which has to be solved to get actual stress state. In
the present study full Newton–Raphson method is used to solve
non-linear system of equations. It provides quadratic convergence
with initial root sufficiently close, and also ensures the asymptotic
quadratic convergence at the global level for structural equilib-
rium. Newton–Raphson strategy is used for the solution of non-lin-
ear equation in monolithic format, as illustrated in the [84–86] for
the J2 plasticity. The strategy is highly influenced by the choice of
the independent variables and sequence of the numerical opera-
tions. It requires the determination of residual for the set non-lin-
ear Eqs. (29)–(31). It can be written as

rðrnþ1;qnþ1;Dknþ1Þ ¼

rnþ1 � r
trial
nþ1 þ Dknþ1Kmnþ1 ¼ 0

qnþ1 � qn þ Dknþ1-nþ1 ¼ 0

Fðrnþ1; qnþ1Þ ¼ 0

8

>

<

>

:

ð33Þ

Linearization of the residual, and expanding the residual. we
can write

rðrþ dr;qþ dq;Dkþ dkÞ ¼ rðr;q;DkÞ þ
rðr;q;DkÞ

@ðr;q; kÞ

dr

dq

dk
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5
þ Oðd2Þ

ð34Þ

where the truncation after first order term is zero ðOðd2Þ ffi 0Þ and
rðr;q;DkÞ
@ðr;q;kÞ

is the gradient of residual with respect to its dependent var-

iable i.e. r;q; k commonly known as Jacobian. The Jacobian for
residual at time step n + 1 can be express as

Jðrnþ1;qnþ1;Dknþ1Þ ¼

I þ DkK @m
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The actual solution is achieved by letting the residual go to zero
for that current time step during plastic loading. This can be
achieved by performing iterations cycles. The iteration will end
when residual will become smaller then prescribed tolerance
value.

0 ¼ rðrk
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k
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For starting the iteration a sufficiently close initial solution is
required, as the convergence of local iteration cycle depends up
on the initial root. Thus initial solution is chosen to be the elastic
solution at the contact point.

r
0
nþ1 ¼ r

trial
nþ1 þ ð1� cÞDr; q0

nþ1 ¼ qn; Dk0nþ1 ¼ 0 ð39Þ

Note that the variable Dk0nþ1 is taken equal to zero at first itera-
tion of every new load step, as plastic multiplier captures the plas-
tic process incrementally. The initial hardening parameter values
q0
nþ1 are the last converge hardening parameter values.

4.5.4. Global iteration strategy

The converged solution form local iteration strategy can be used
for the determination of consistent tangent operator Dr

D�
for the cur-

rent time step. Thus, in order to compute the tangent operator
using the Jacobian, we have to differentiate the residual with
respect to the strain and then using the chain rule we will get

@
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The consistent tangent operator can extracted from the preced-
ing expression, and we can defined the consistent tangent operator
as:

Fig. 5. Plot of the integration process, initial converged stress at point AðrnÞ, contact

point at oðr0
nþ1Þ, trial stress Bðr

trial
nþ1Þ, final stress for elastic-perfectly plastic model at

point C, final converged stress for evolved or shrunk yield surface at point Dðrnþ1Þ.
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4.6. Algorithmic implementation

The plasticity based composite interface model is implemented
in commercial finite element software ABAQUS [87] by writing the
user defined subroutine UMAT, which allows to define a user
defined mechanical constitutive model for a material. During the
analysis, the UMAT is called at the all integration points of the ele-
ments. At end of the increment UMAT updates the stress, internal
state variables and elasto-plastic tangent operator. The proposed
numerical integration algorithm implemented in the UMAT is pre-
sented in Algorithm 1.

Algorithm 1. Monolithic numerical integration algorithm

4.7. Verification examples

In order to verify the proposed composite interface model var-
ious verification examples have been considered in this section.
The formulated constitutive model is verified by implementing a
single zero-thickness interface, which is a 4-node two dimensional
cohesive element with two integration point. The material param-
eter used for verification are tabulated in Tables 1 and 2 obtained
from the calibration process. Specifically, to find the values of
mode I and mode II fracture energy, it is assumed that
GI

f ¼ 5GI
f ;min and GII

f ¼ 10GI
f , where GI

f ;min ¼ n20=2knn corresponding
to the perfectly brittle tensile fracture. The verification examples
include interface in tension, compression and shear mode condi-
tion. The implementation is done in ABAQUS, by using the user
defined subroutine (UMAT).

4.7.1. Direct tension test

In this test the interface is subjected to direct tension. A normal
relative displacement is applied to the nodes on the top face of the

interface element while all the degrees of freedom on the bottom
face are fixed. Fig. 6 shows the variation of tensile strength n with

mix mode fracture energy
w

p

1

GI
f

þ
w

p

2

GII
f

. The response exhibits a expo-

nential degradation of the tensile strength and matches well with
the analytical values.

4.7.2. Direct compression test

In this test the interface is subjected to direct compression. The
test is performed to check the functionality of the compression cap.
A normal relative displacement is applied to produce the pure
compression state in the interface and variation of compression
strength ðfÞ with work hardening parameter wp

4 is traced and com-
pared with the analytical values by solving Eq. (20) It can be
observed from Fig. 7, that the internal hardening variable ðfÞ coin-
cides well with the analytical values.

4.7.3. Direct shear test under compressive stress

In this test the interface is subjected to direct shear test under
different normal compressive stress. The interface element is
loaded with normal compressive stress. Then, a relative shear dis-
placement is applied at the top surface, while all degrees of free-
dom on the bottom face are kept fixed. This load sequence is
repeated for various levels of constant normal compressive stress.
The results of this test are shown in Fig. 8(a). A plot of distribution
of tangential stress with relative tangential displacement are plot-
ted for different compressive stress (0.1, 1, 10 Mpa). A shear soften-
ing behaviour is observed. The result shows that the shear capacity
of the interface increases with increase in compressive stress. After
the initial elastic response, all response curves show a similar post-
peak behaviour, with a steeper part given by the decrease of all
softening parameters ðqÞ. After that, n remains zero, and the shear
traction diminishes. Finally, all softening curves tend to the resid-
ual shear value that corresponds to the residual cohesion ðCrÞ and
friction angle ð/rÞ.

In Fig. 8(b), the distribution of normal displacements with rela-
tive tangential displacements is plotted. It can be observed that the
dilatancy decreases with increase in compressive stress, and
approaches a limiting value when the interface degrades to the
residual dilation angle ðwrÞ.

4.8. Sub stepping

The algorithm requires sub-stepping not only to ensure conver-
gence of the solution but also to ensure the accuracy of the final
solution at both local and global level. Fortunately it is possible
to integrate the constitutive equations by sub-dividing the load
at the constitutive level [88–90]. Based on these considerations,
an adaptive sub-stepping scheme has been developed for the pres-
ent composite interface model. This technique starts with the pre-
vious system of Eq. (33). The algebraic problem is modified
significantly in order to obtain consistent tangent operator in the
case of sub-stepping. It is assumed that any increment can be sub-
divided into N sub-increments, which could be of different sizes
but the sum of all sub-increments always equals to the total dis-
placement at the end of the increment

D� ¼
X

N

i¼0

D�i ¼ D� gi
	 


ð46Þ

Table 1

Elastic material property for the brick and joints.

Brick Joint

E (N/mm2) m knn (N/mm3) ktt (N/mm3)

16,700 0.15 82; 110; 82 36; 50; 36

46 N. Kumar et al. / Engineering Structures 80 (2014) 40–52



where 0 < gi < 1 and
X

N

i¼0

gi ¼ 1

Hence rewriting the Eq. (33), for sub-increment

rðri;qi;DkiÞ ¼

r
i � ðrtrialÞ

i
þ DkiKm

i ¼ 0

qi � qi�1 þ Dki-i ¼ 0

Fðri; qiÞ ¼ 0

8

>

<

>

:

ð47Þ

Note that, now the independent variable of the system of equa-
tion are ri;qi;Dki and the methodology for solving the equation is
same as the one in previous section. For consistent tangent

operator, taking the derivative of the equation with respect to D�
and then apply the chain rule
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The consistent tangent operator of a sub-increment can
extracted from the preceding expression. The consistent tangent
operator of the load step is obtained by linear combination of all
sub-increments and can be written as

@r
@�

� �

¼
X

N

i¼0

@ri

@�i

� �

ð49Þ

Table 2

Inelastic material property for the joints.

Tension Shear Cap

n0 (N/mm2) GI
f (Nmm/mm2) C0nCr (N/mm2) CQ0nCQr (N/mm2) /0n/r (radian) w (radian) GII

f (Nmm/mm2) fp (N/mm2)

2 5n20=2knn 1:4n0n0:1C0 1:1n0n0:1CQ0 0:65n0:50 0.078 10GI
f
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Fig. 8. Plot for direct shear test under different constant compressive stress: (a)

distribution of tangential stress with relative tangential displacement; (b) distri-

bution of normal displacements with relative tangential displacements.
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Algorithm 2. Monolithic numerical integration algorithm with
sub-stepping

5. Validation example

5.1. Response of masonry bed joints in direct shear [83]

In this section, the capability of the proposed composite inter-
face model is validated by comparing the finite element results
with experimental results obtained by Atkinson et al. [83], in rep-
resenting the shear behaviour of masonry mortar joints under dif-
ferent load conditions. In [83] the authors conducted direct shear
tests using a servo-controlled loading apparatus to examine the
response of brick masonry bed joints under monotonic and cyclic
loadings, see Fig. 9. In each of these tests, first a uniformly distrib-
uted normal stress was applied ranging from 0.34 to 4.31 Mpa, and
then four cycles of shear reversals were imposed under displace-
ment control. The authors used old and new bricks with low-
and high-strength mortars. In the present study, new bricks spec-
imens with high-strength mortar has been considered for the val-
idation, under three different levels of compressive stress (0.49,
1.34, 4.31 Mpa). The specimens consist of modern clay bricks
[193 � 55 � 92 mm3] and mortar joints [7 mm], prepared with a
volumetric cement: lime : sand ratio (1:1.5:4.5). The bed joint area
is equal to 92 � 398 mm2 (0.037 m2). The values of the material
parameters used in the simulations are summarised in Tables 3
and 4. The stiffness of the brick is assumed to be 20 times the elas-
tic normal stiffness of the mortar joint.

The comparison between numerical and experimental load-dis-
placement curves is shown in Fig. 10, which shows that the pro-
posed model is able to reproduce the shear behaviour of brick
masonry bed joints not only in monotonic but also in cyclic load-
ing. The experimental and numerical dilatancy curves show that,
higher the compressive stress, smaller is the dilatancy and it is
observed that the correlation of numerical and experimental
results is good. The significant influence of dilatancy on the de-
formability and strength of an interface can be demonstrated by
this numerical example. When the interface between the elastic
region (elastic brick) is subjected to shear deformations under a
normal confinement, Initially the normal stress on the interface
is zero. However, since the elastic boundary prevents the interface
from dilating freely, a significant compressive stress develops on
the interface during the application of relative tangential displace-
ment. Depending on the amount of dilatancy, controlled by the
dilatancy parameter, the shear response can change from softening
to hardening, and the shear strength of the interface can change by
an order of magnitude.

5.2. Masonry shear wall (Vermeltfoort and Raijmakers)

A test was carried out on masonry shear wall by the author Ver-
meltfoort and Raijmakers [12,91]. The authors conducted the tests
on two type of wall i.e. one without the opening and another with
the opening. The authors used a set-up that consisted of a pier with
a width to height ratio of one and with dimensions
990 � 1000 [mm2]. It was built-up with 18 courses of which two
courses were clamped in steel beam and only 16 courses were
active. The wall was made up of wire cut solid clay
[210 � 52 � 100 mm3] and mortar [10 mm], prepared with a volu-
metric cement: lime: sand ratio (1:2:9). The test involves a

Fig. 9. Direct shear test set-up as per Atkinson et al. [83].

Table 3

Elastic material property for the brick and joints.

Brick Joint

E (N/mm2) m knn (N/mm3) ktt (N/mm3)

220 0.15 3.8 11.5

Table 4

Inelastic material property for the joints.

Tension Shear Cap

n0 (N/mm2) GI
f (Nmm/mm2) C0nCr (N/mm2) CQ0nCQr (N/mm2) /0n/r (radian) w0nwr (radian) GII

f (Nmm/mm2) fp (N/mm2)

0.65 5n20=2knn 1:2n0:12 1:2n0:12 0:67n0:57 0:35n0 10GI
f

�16
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monotonically increasing horizontal load under different levels of
uniformly distributed normal stress, keeping the bottom and top
boundaries horizontally fixed. The material data is obtained from
existing experimental results on tension, shear and compression
from the sample collected for each wall. A four-noded bilinear
plane stress quadrilateral, reduced integration, hourglass control
(CPS4R) element with 4-degrees of freedom at each node were
used to model the brick units, and four-noded two dimensional
cohesive (COH2D4) element with two integration point were used
to model the interface between the brick units. Total 2332 element
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Fig. 10. Comparison between experimental results from direct shear test [83] and Numerical results obtained from the present model: (a) P = 0.49 MPa; (b) P = 1.34 MPa; (c)

P = 4.31 MPa; (d) distribution of normal displacements with relative tangential displacements for different pressure.

Table 5

elastic material property for the brick and joints.

Brick Joint

E (N/mm2) m Knn (N/mm3) Ktt (N/mm3)

16,700 0.15 82; 110; 82 36; 50; 36

Table 6

Inelastic material property for the joints.

Tension Shear Cap

n0 (N/mm2) GI
f (Nmm/mm2) C0nCr (N/mm2) CQ0nCQr (N/mm2) /0n/r (radian) w (radian) GII

f (Nmm/mm2) fp (N/mm2)

0.25; 0.16 5
n20

2Knn

1:4n0n0:1CQ 1:1n0n0:1CQ 0:65n0:50 0 10GI
f

11.5

Fig. 11. Compression of experimental result and numerical result obtained from

the proposed model.
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were used in simulation for masonry shear wall by the author
Vermeltfoort and Raijmakers.

The micro-properties of the shear wall material are obtained
from [12,91] and are given in Tables 5 and 6. The hardening/

softening law for the compression cap is defined by the set
ff;wp

4g ¼ fðfp=3;0:0Þ; ðfp;0:09Þ; ðfp=2;0:49Þ; ðfp=7;1Þg.
The comparison between numerical and experimental load-dis-

placement curves are shown in Fig. 11. The experimental behav-
iour is satisfactorily reproduced by the proposed composite
interface model. The crack pattern for the shear wall are presented
in the Fig. 12. The non-linear behaviour of the shear wall is initi-
ated by the horizontal tensile cracks, that develop at the bottom
and top of the wall at an early loading stage, see Fig. 13(a). On fur-
ther loading the tensile cracking is followed by a diagonal stepped
crack in the shear wall, which leads to collapse of wall. Simulta-
neously, crushing of the toes takes place in compression, see
Fig. 13(b). The experimental behaviour and crack pattern obtained
are well captured by the proposed composite interface model,
which shows that the proposed model is capable of providing the
information of the failure analysis of the shear walls.

6. Conclusion

A plasticity based composite interface model is proposed, which
is capable of simulating the initiation and propagation of crack
under combined normal and shear stresses. Moreover, singularity
at the corner region is removed by using a single surface yield cri-
teria, which is capable of representing pressure-dependent friction
shear failure, cracking by cut-off in tension and crushing by cap-off
in compression. The model is developed by integrating the differ-
ential equation by fully implicit Euler backward method. The equa-
tion are solved by a fully Newton-Raphson technique in monolithic
manner, which lead to combined local and global approach. The
sub stepping is applied to the model to ensure the convergence
and accuracy of the final solution at both local and global level.

First, the model is verified by using basic example i.e. tension,
compression and shear. Then, the validation of the model against
the experimental results has been carried out on the masonry
bed joint in direct shear and the shear wall. The numerical result
shows good correlation with experimental result.

Appendix A. Expression of elasto-plastic interfaces model, first

and second derivatives

T1 :¼ ½ðC � rnn tanð/ÞÞ� T2 :¼ ½CQ � rnn tanðwÞ�

f tðr;qÞ :¼
2

p
arctan

n� rnn

at

� �

Dt :¼ 1þ
rnn � n

at

� �2

Fig. 12. Comparison of experimental and numerical failure patterns: (a) experimental patterns; (b) numerical patterns.

Fig. 13. plot for minimum principal stress (N/mm2): (a) relative tangential

displacement = 1.0 [mm]; (b) relative tangential displacement = 4.0 [mm].
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