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Abstract

Recently developed phase field models of fracture require a diffusive crack representation based on an introduction of a

crack phase field. We outline a thermodynamically consistent framework for phase field models of crack propagation in elastic

solids, develop incremental variational principles. In this work, the numerical implementation of the phase field model for

brittle fracture using natural neighbor Galerkin method is presented. Phase field method diffuses the sharp discontinuity by

introducing a regularized crack functional. The notion of regularized crack functional provides a basis for defining suitable

convex dissipation functions which govern the evolution of the crack phase field. The use of natural neighbors to dynamically

decide the compact support at a nodal point makes it truly mesh free and nonlocal. The method uses smooth non-polynomial

type Sibson interpolants, which are C0 at a given node and C∞ everywhere else. This allows to capture the interface region in

a phase field model more accurately with only few nodes. For a given accuracy, there is an improvement in the computational

time with the use of natural neighbor interpolants. Several benchmark problems were solved to investigate the efficiency of

the numerical implementation of phase field model using natural neighbor Galerkin method.

c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most common failure modes encountered in engineering materials is fracture. A major interest in

designing engineering structures has been to prevent cracking induced failures. Similar to many other physical

localization phenomena, the computational modeling of nucleation, growth, and propagation of cracks in engineering

materials has been important to comprehend the failure mechanisms. In the field of brittle fracture mechanics, the

pioneering work of Griffith [1] has given the direction, followed by notable works from Irwin [2] and Rice [3].

Griffith’s approach is based on the global energy minimization of a cracking solid. Among various approaches

of modeling crack propagation, the continuous (smeared) approaches [4] based on continuum damage mechanics

(CDM) [5] and the discontinuous (discrete) cohesive zone models (CZM) [6] and [7] are popularly adopted. Discrete
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models use various techniques such as remeshing, interface elements, and XFEM [8] to resolve the crack front. On

the other hand, smeared models cease to give meaningful results when the material undergoes softening [9] and [10].

In discrete crack models, displacements are discontinuous across geometrically sharp crack interfaces. The

singular strain field has intensity depending on the orientation of the crack [11] and the displacement jump [12].

There is a need to accurately represent the displacement jump [13] and track the progression of the crack [14]. To

accurately represent the fracture, there is a need for two material models: (1) model for the bulk material as elastic

with embedded cracks [15] or with damage based models [16] and (2) model for treating the crack as a cohesive

interface defined by a traction separation law [17]. The cohesive models, however, require specification of initial

penalty in stiffness to avoid interpenetration of the crack surfaces upon contact. Subsequent to these approaches, to

over come the problems of singularity and jumps in displacement fields, regularization approaches that consider a

uniform or non-uniform spread of the nonlinear singular strain fields over a localized region [18] of finite width [19].

The size of the regularization region is related to the mesh size. In approaches used to model strong discontinuities,

the bandwidth is chosen as small as possible to reach the sharp interface limits in a limiting sense. Such approaches

have been combined with regularized XFEM to achieve the singularity of the displacement field at the crack tip [20].

In smeared or continuous crack models, the displacement field is continuous, resulting in uniform strain field.

The models based on continuum damage mechanics concepts are mostly adopted [21] in local approaches. However,

these models cease to give meaningful results when the material undergoes softening (see [9] and [10]). This

leads to loss of ellipticity of the mathematical problem. To circumvent this, generalized continuum models such as

nonlocal damage models [22] and gradient damage models [23–27] and [28] are adopted [24]. The crack driving

force is defined either in an integral form [9] or in a gradient form [29] and [30] together with the boundary

or surface effects [31]. The gradient damage models have been implemented in the commercial finite element

package (ABAQUS) [32]. The nonlocal models use a diffusive crack to circumvent the problem of tracking the

interface. However, if the diffused description is not accurate and does not converge to the sharp interface limit

asymptotically, the predicted behavior of the crack nucleation and propagation becomes incorrect and leads to

the loss of ellipticity of the mechanical equilibrium equations. Modifications such as homogenized local gradient

damage model with micro inertia effects and the stress-based nonlocal models have been recently been proposed

to make the method more efficient [33]. Continuum Damage Mechanics based methodology for high cycle fatigue

crack growth simulations have been developed and implemented in the framework of extended finite element method

in the work of Pandey et al. [34].

Phase field approaches are synonymous to the smeared or diffused crack approaches and primarily deal with

geometrical regularization of the cracking body (see, e.g., [35–45] and [46]). In a phase field model, the evolution

of a crack front is directly obtained from the solution of coupled governing equations describing the evolution of

the crack phase field and mechanical equilibrium. The method has a continuous displacement field together with

a regular strain field. A stress–strain relationship in terms of the damage is enough to model the overall nonlinear

behavior of the cracking body. The evolution of the damage is derived from the energy minimization condition.

There has been recent focus in the application of this method for cohesive fracture (see [45] and [46]). The method

has been applied to brittle and quasi-brittle fracture (see [47] and [48]). In contrast to discrete fracture models, there

is no need of using sophisticated algorithms to track the fracture surface in phase field models.

A typical phase field model invokes the calculus of variations to derive the equilibrium equations by minimizing

the total energy of the system. Francfort et al. [49] first proposed the brittle fracture problem as an energy

minimization which can be viewed as the generalization of Griffith’s theory of LEFM. The problem of crack

nucleation and its propagation has been solved in a variational setting. The length scale is regarded as a material

property, it is a numerical parameter of which value can be taken as small as possible. For very small values of

chosen length scale the phase field model tends towards cohesive zone model in the limit [47].

Though there are many applications of phase field method for modeling brittle fracture, only a few employed

it for modeling ductile fracture in solids. Ambati et al. [50] proposed a novel model to bring in the effect of

ductility in elasto-plastic solids in the quasi-static kinematically linear regime. This proposed model also agrees

well with the experimental results. Kuhn et al. [51] proposed a phase field model for ductile fracture that can

decouple the plastic material law and fracture phase field which is advantageous from numerical point of view.

Hence the governing equations can be solved monolithically. Borden et al. [36] for the first time investigated the

effects of stress triaxiality on ductile fracture. They used a cubic degradation function unlike a quadratic degradation

function found in literature and a mechanism for the plastic softening by introducing a yield surface degradation

function etc.
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Phase field models are also employed in dynamic setting [52,53] and [54] and the finite strain setting (see [35,43]

and [37]). Since the phase field description does not require any additional criterion to track the crack propagation,

the complex crack topologies such as branching and merging can be easily dealt even in three dimensions. Lee

et al. [55] studied the fracture propagation in porous media by demonstrating an efficient algorithm that can save

computational time for 3D applications. Borden et al. [56] presented a fourth order approximation to the crack

surface in contrast to the standard second order approximation of Bourdin et al. [57]. The proposed model has

also been demonstrated to study the crack propagation in three dimensions. Pham et al. [42] developed a three

dimensional finite element code for the phase field brittle fracture modeling and validated their results with that of

experimental results under mixed mode conditions.

Griffith’s brittle fracture model assumes that fracture energy dissipates at the instant of crack nucleation where

as in cohesive fracture models the fracture energy depends on the extension of the crack opening. The regularized

variational formulation in the context of cohesive fracture has been developed by Alessi et al. [58]. The phase field

method has been applied to model fracture in plates and shells [37,59,60] and [61]. There is a recent trend on

using enriched finite element approximations like in XFEM for analysis of phase field problems [62], to get better

approximations near the crack tip. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone

model [46] has also been a recent advance. Patil et al. proposed a new multiscale phase field method to simulate

crack propagation in composites [63] and a local moving extended phase field method (LMXPFM) for the failure

analysis of brittle materials [64].

Any numerical strategy for the implementation of the phase field model should address the issue of the

smoothness of approximation required to accurately capture the distribution of the phase field parameter over the

regularized region defined by a suitable limiting length scale parameter. In a limiting sense, the diffused interface

model must reduce to sharp interface model at very low values of the length scale. There has been some recent

works on use of mesh less methods for implementation of phase field models of fracture. For instance Element

free Galerkin method [65], consistent mesh less method [66] have been proposed. In the present work, we aim to

address the issues related to the need of finer mesh near the crack path and accuracy of the solution. Therefore, we

use a mesh free natural neighbor Galerkin method for phase field modeling of the fracture problems. The notion

of use of natural neighbors to dynamically decide the compact support at a nodal point renders it truly mesh free

and nonlocal. The method uses smooth non-polynomial type Sibson interpolants, which are C0 at a given node

and C∞ every where. This allows accurate capture of the interface region in a phase field model with only fewer

nodes compared to the standard finite element method. Further, we do not need to implement any adaptive strategy

like in mesh based methods. This may be attributed to the fact that the Natural Neighbor Galerkin method shape

functions are very smooth and higher order continuous. Although an adaptive strategy with NNGM will improve the

computational time, in the present study, the interest is to consider only this aspect of very smooth approximation

functions of the method and study the performance of the NNGM method with uniform refinements for various

grid sizes without an adaptive approach.For a required accuracy, the cost of computation from the natural neighbor

Galerkin method is almost equal to the finite element method. For the same quadrature, the mesh free method gives

more accurate results.

The paper is arranged as follows. In Section 2, the phase field model for brittle fracture is presented. This is

followed by a discussion on natural neighbor Galerkin method in Section 3. Numerical implementation including

the staggered solution approach is discussed in Section 4. In the last section some numerical examples are presented

to illustrate the benefits from the present approach.

2. Phase field model for brittle fracture

Let us consider a continuous body B ∈ R
δ(δ ∈ 1, 2, 3) with the sharp crack Γ ∈ R

δ−1 as shown in Fig. 1. Let

u(x, t) be the displacement of any material point at x ∈ B at any time t ∈ R. Consider b as the body force field per

unit volume and t as the tractions on the boundary ∂Bt . In 1920, Griffith [1] laid out the theoretical foundation for

brittle fracture. Griffith’s theory suffers from limitations such as the inability to predict crack nucleation and identify

complex crack paths. These limitations are overcome by the variational framework of Griffith’s theory introduced

by Francfort et al. [49]. The process of crack initiation and propagation in the body is governed by the minimization

of the total energy functional written as

E(u,Γ ) = Es + E f − P (1)
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Fig. 1. (a) Sharp crack Γ embedded in the body B and (b) Regularized crack surface Γℓ.

ES , E f and P are the strain energy, fracture energy and energy due to external forces written as

Es =

∫

B

ψ0(ε) dV, E f =

∫

Γ

Gc d A, P =

∫

B

b · u dV +

∫

∂B

t · u d A (2)

ψ0 is the elastic energy density and Gc, a material parameter known as Griffith’s critical energy release rate, is the

energy required to create two new fracture surfaces. This minimization problem is referred to as a free discontinuity

problem [67]. It should be noted that the crack path Γ and the displacement field u (discontinuous across Γ ) are

not known a priori.

2.1. Phase field approximation for a sharp crack

We implement the free discontinuity problem by introducing a phase field φ(x, t) for the description of a sharp

crack Γ in a solid continuum B. Its value at any material point varies between 0 and 1 (φ = 0 and φ = 1 representing

undamaged and fully damaged phases, respectively). The phase field φ(x, t) captures the onset and development of

micro-voids and micro-cracks in a macroscopically homogeneous body. Bourdin et al. [57] presented the regularized

variational framework of Griffith’s theory to study the diffused crack propagation. The sharp crack Γ is regularized

with the functional Γℓ as

Γℓ =

∫

B

γ (φ,∇φ) dV, γ (φ,∇φ) =
1

2ℓ

(

φ2 + ℓ2|∇φ|2
)

(3)

where, γ (φ,∇φ) is the crack surface energy density function per unit volume of the solid as given by Miehe

et al. [53]. The length scale ℓ governs the width of the crack, i.e., it governs the region where φ transitions from 1

to 0. It is to be noted that for vanishing length scales ℓ → 0, the regularized crack functional Γℓ converges to the

sharp crack Γ (Γℓ → Γ ). For any sharp crack Γ in the body, the regularized crack phase field φ(x) can be obtained

by minimizing the functional Γℓ with respect to φ, subject to the Dirichlet type condition φ = 1 on the sharp crack

Γ . The Euler equations for the minimization problem are given as φ − ℓ2 △ φ = 0 along with the Neumann type

boundary condition ∇φ · n = 0 on ∂B. This is demonstrated using a numerical example in Section 5.2. Using the

crack surface density function γ (φ,∇φ) given in Eq. (3), the fracture energy E f can now be written as

E f =

∫

Γ

Gc d A =

∫

B

Gcγ (φ,∇φ) dV (4)

2.2. Governing equations

Since the phase field φ(x, t) is smeared, the degradation of the elastic energy density with increase in the phase

field should be accounted for. Therefore, the strain energy of the body is written as

Es =

∫

B

[

(1 − φ)2 + k
]

ψ0(ε) dV, ψ0(ε) =
1

2
λ tr2(ε) + µ tr(ε2) (5)

where, λ and µ are Lame’s constants. k is a small positive constant which ensures a small artificial stiffness of

kψ0(ε) at a fully broken state of φ(x, t) = 1. The expression for strain energy of the body as written in Eq. (5)

facilitates crack growth under compression, which is an unrealistic response. To ensure the crack growth only under
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tension, only tensile part of the elastic energy should be degraded with the increase in the phase field. Therefore,

the strain energy of the body is given as

Es =

∫

B

[

(1 − φ)2 + k
]

ψ+
0 (ε) dV +

∫

B

ψ−
0 (ε) dV (6)

ψ+
0 and ψ−

0 are defined as given by Miehe et al. [53] on the basis of the spectral decomposition of the strain tensor

as ε =
∑δ

i=1 ε
i ni ⊗ ni , where εi and ni are principal strains and principal strain directions. Using this, we write

ε± =
∑δ

i=1⟨ε
i ⟩±ni ⊗ ni along with the definition ⟨a⟩± = (a±|a|)

2
. Then, the tensile and compressive part of the

energy are given by

ψ±
0 (ε) =

1

2
λ⟨tr(ε)⟩2

± + µtr(ε2
±) (7)

Using the expressions of the strain energy of the body from Eq. (6) and the fracture energy from Eq. (4), the total

energy functional in Eq. (1) can be rewritten as given by

E(u, φ) =

∫

B

[

(1 − φ)2 + k
]

ψ+
0 (ε) dV +

∫

B

ψ−
0 (ε) dV +

∫

B

Gcγ (φ,∇φ) dV −

∫

B

b · u dV −

∫

∂B

t · u d A (8)

Minimizing the total energy functional E(u, φ) results in the coupled evolution equations for the displacement field

u and the phase field φ written as follows

∇ ·
{

[

(1 − φ)2 + k
]

∂εψ
+
0 + ∂εψ

−
0

}

+ b = 0 (9)

(

1

ℓ
+ 2

ψ+
0

Gc

)

φ − ℓ∇2φ = 2
ψ+

0

Gc

(10)

along with the Newmann type boundary conditions

σ · n = t (on ∂Bt ) and ∇φ · n = 0 (on ∂B) (11)

It should be noted that the tensile part of the elastic energy ψ+
0 drives the evolution of the phase field φ. However,

the form of Eq. (10) does not ensure that the phase field is monotonically increasing in the loading history. To

enforce the irreversibility of the phase field, a history parameter H was introduced in the work of Miehe et al. [53].

The history parameter represents the maximum value of tensile part of the elastic energy in the loading history:

H(x, t) = max
t∈[0,T ]

ψ+
0 (ε) (12)

Replacing the term ψ+
0 (ε) in Eq. (10) with the history parameter H, we can rewrite the evolution equation of the

phase field as
(

1

ℓ
+

2H

Gc

)

φ − ℓ∇2φ =
2H

Gc

(13)

2.3. Hybrid model

We have two primary field variables: the displacement field u(x, t) and the phase field φ(x, t). The strong form

of the evolution equations for these two fields are given as

∇ ·
{

[

(1 − φ)2 + k
]

∂εψ
+
0 + ∂εψ

−
0

}

+ b = 0 (14a)

(

1

ℓ
+

2H

Gc

)

φ − ℓ∇2φ =
2H

Gc

(14b)

The introduction of the history parameter H decouples the above equations and enables us to solve them using a

robust staggered scheme. However, because of the elastic energy density split in (6), Eq. (14a) is nonlinear which
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results in higher computational cost. To overcome this issue, a hybrid model which uses linear momentum balance

equation but still ensures that the tensile part of the elastic energy density ψ+
0 (ε) drives the phase field φ. The

strong form of the evolution equations can be rewritten as

∇ ·
{

[

(1 − φ)2 + k
]

∂εψ0

}

+ b = 0 (15a)

(

1

ℓ
+

2H

Gc

)

φ − ℓ∇2φ =
2H

Gc

(15b)

with the definition for the history parameter H in (12) still the same. Also, at any point x when ψ+
0 < ψ−

0 , the

phase field φ should be set as zero to prevent the crack surface interpenetration. Also, the evolution equation of the

phase field φ can be recast into the Ginzburg–Landau type equation with a viscosity parameter η as

ηφ̇ = ∂φE (16)

which leads to the modified form of evolution equations written as

∇ ·
{

[

(1 − φ)2 + k
]

∂εψ0

}

+ b = 0 (17a)

(

1

ℓ
+

2H

Gc

)

φ − ℓ∇2φ + ηφ̇ =
2H

Gc

(17b)

The general idea in devising the hybrid model was to retain a linear momentum balance equation within a

staggered scheme, in order to keep a computational cost comparable to that of the isotropic model. This results in

retaining Eq. (15a) from the isotropic model. However, the evolution of φ should be driven merely by the tensile part

of the elastic energy ψ+
0 to avoid cracking in the compressed regions. This motivates keeping Eq. (15b), in which

the definition for the history parameter is H = maxt∈[0,T ] ψ
+
0 (ε). Also, to prevent the crack surface interpenetration,

at any point x when ψ+
0 < ψ−

0 , the phase field φ should be set as zero [50].

3. Natural neighbor Galerkin method

Natural neighbor Galerkin method is a mesh less numerical tool for solving the partial differential equations.

Like any meshless method, it does not require fixed connectivity information between nodes. In this section, the

application of natural neighbor Galerkin method to solve the phase field equations is presented.

Let us consider a plane in R
2 consisting of a set of distinct nodal points as shown in Fig. 2. The construction of

trial and test functions are based on natural neighbor interpolation. Natural neighbor interpolants are constructed on

the basis of the Voronoi tessellation of the domain with scattered nodal points. The Voronoi tessellation partitions

the plane into domains associated with each node such that any point in that domain is closer to the nodal point

it is associated with than any other node in the plane. These domains are called Voronoi or Thiessen polygons.

The Voronoi tessellation is unique for a nodal set. Mathematically, Voronoi polygon associated with any node PI

is written as

VI = {x ∈ R
2 : d(x, PI ) < d(x, PJ ), ∀J ̸= I } (18)

where, d(x, PI ), the Euclidean metric, is the distance between x and PI . Any two nodes sharing a common Voronoi

edge are called natural neighbors.

Delaunay triangulation of a nodal set is constructed by joining all the natural neighbors. The significance of the

Delaunay triangles in this approach is that they are used as the background cells for numerical integration. One of the

important property of Delaunay triangles is the empty circumcircle criterion: the circumcircle of a Delaunay triangle

contains no other nodes except the three nodes that form the vertex of that Delaunay triangle. This criterion is

employed in finding the nodes that are natural neighbors to any quadrature point. Voronoi Tessellation and Delaunay

triangulation of a nodal point set are dual to each other. Voronoi tessellation and Delaunay triangulation for a nodal

point set is given pictorially in Fig. 2a and 2b, respectively.
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Fig. 2. (a) Voronoi diagram of a nodal set, (b) Delaunay triangulation, and (c) Second order Voronoi polygon for x in the nodal set,

indicating the pictorial representation of the shape function computation.

Fig. 3. (a) Support domain for ΛI related to the node I . (b) Sibson Interpolant ΛI .

A point x is introduced in the plane consisting of the nodal points at which the natural neighbor interpolant is

to be constructed. Empty circumcircle criterion is used to find all the neighbors for the point x. The perpendicular

bisectors of all the lines joining the point x with its neighbors will form a Voronoi cell corresponding to x (i.e., Vx).

The construction of the natural neighbor interpolant at the point x is based on the definition of second order Voronoi

polygon Vx I . Mathematically, this second order Voronoi polygon corresponding to x is written as,

Vx I = {x ∈ R
2 : d(x, PI ) < d(x, PJ ) < d(x, PK ), ∀K ̸= I, J } (19)

This second order Voronoi polygon Vx I contains all the points that have PI as the closest node and PJ as the

second closest node. The C0-continuous natural neighbor interpolant ΛI (x) with respect to node I evaluated at the

point x is defined as the ratio of the area of Vx I to the area Vx . Let us take κI (x) and κ(x) as the Lebesgue measures

of Vx I and Vx , respectively. Then, ΛI (x) is given as

ΛI (x) =
κI (x)

κ(x)
(20)

Fig. 2c illustrates how the natural neighbor interpolant is constructed at point x for the node P4. It is the ratio

of the area shaded in gray to the combined area shaded in gray and blue. By the definition of natural neighbor

interpolant, it is evident that it is always positive and possess the property of partition of unity. It is also interpolatory

in nature and therefore imposition of essential boundary condition can be direct. Natural neighbor interpolants form

a partition of unity. They also possess the property of linear completeness. They are C∞ everywhere except at nodes
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where they are C0. The natural neighbor interpolant corresponding to a node has compact support (i.e., it has non

zero values in the region formed by the overlapping of all circumcircles passing through that node). This is shown

pictorially in (Fig. 3a). A more detailed description on the implementation of the natural neighbor Galerkin method

can be found in [68] and in [69]. The application to other problems can be found in [70] and [71].

4. Numerical implementation

4.1. Weak form and spacial discretization

The weak form of the governing equations (17) is obtained by multiplication with the weight functions (wu and

wφ) and integrating over the body B as

∫

B

wu
{

∇ ·
{

[

(1 − φ)2 + k
]

∂εψ0

}

+ b
}

dV = 0 (21a)

∫

B

wφ
{

(

1

ℓ
+

2H

Gc

)

φ − ℓ∇2φ + ηφ̇ −
2H

Gc

}

dV = 0 (21b)

Assuming constant time intervals, we take τ = tn+1 − tn . The rate of the fracture field φ̇ at any time step tn+1

is defined as

φ̇ =
φn+1 − φn

τ
(22)

In the following equations, the primary fields without any time subscripts are considered to be evaluated at the

time step tn+1. The displacement field u(x, t) and the phase field φ(x, t) are approximated using natural neighbor

interpolations as

u(x, t) =

N
∑

I=1

ΛI (x)uI (t), φ(x, t) =

N
∑

I=1

ΛI (x)φI (t) (23)

where, N is the total number of nodes used to discretize the body. It is to be noted that ΛI (x) has non zero values

only in the region formed by the overlapping of circumcicles passing through the node PI and is zero elsewhere

(refer Fig. 3a). Using Galerkin weighted residual method, we choose the natural neighbor interpolants as the weight

functions. Thus, from Eq. (21a), we obtain a set of linear algebraic equations as

K u
I J uJ = f u

I (24)

where,

K u
I J =

∫

B

[

(1 − φ)2 + k
]

(Bu)T
I C(Bu)J dV, f u

I =

∫

B

(Bu)T
I b dV +

∫

∂B

(Bu)T
I t d A (25)

C is the plane strain constitutive matrix for linear isotropic material and Bu contains interpolant derivatives written

as

(Bu)I =

⎡

⎣

ΛI,x 0

0 ΛI,y

ΛI,y ΛI,x

⎤

⎦ (26)

Again, using the natural neighbor interpolants for the weight function wφ in Eq. (21b), we obtain a set of linear

algebraic equations as follows

K
φ

I J φJ = f
φ

I (27)

where,

K
φ

I J =

∫

B

(Bφ)T
I D(Bφ)J dV, f u

I =

∫

B

(Bφ)T
I p dV (28)
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D =

⎡

⎢

⎣

(

1
ℓ

+ 2H

Gc
+

η

τ

)

0 0

0 ℓ 0

0 0 ℓ

⎤

⎥

⎦
, (Bφ)I =

⎡

⎣

ΛI

ΛI,x

ΛI,y

⎤

⎦ , p =

⎡

⎣

2H

Gc
+

ηφn

τ

0

0

⎤

⎦ (29)

Due to the absence of an element structure in Natural Neighbor Galerkin Method, the stiffness matrices and the

force vectors are assembled on the nodal basis in the global level. The stiffness matrix (or force vector) evaluated

at every quadrature point are summed up to obtain the global stiffness matrix (or global force vector).

4.2. Staggered algorithm

The subsequent discussion will be about the staggered solution scheme used to solve the governing equations

for utn+1
and φtn+1

at any time step tn+1. The displacement field utn , the phase field φtn and the history parameter

Htn are known from the previous time step tn . At first, the weak form of momentum balance equation (24) is solved

for utn+1
using the frozen phase field φ = φtn . Then, using Eq. (12), the history parameter Htn+1

is evaluated at

the quadrature points using the displacement field utn+1
. Next, the phase field φtn+1

is solved using Eq. (27) for

H = Htn+1
. Finally, the values of utn+1

, Htn+1
and φtn+1

are then stored for the next time step.

5. Numerical examples

In this section, we study the numerical efficiency of our phase field fracture model. The numerical computation

was carried out using the natural neighbor shape functions described in Section 3. In all examples, a 3 × 3 quadrature

rule was used for numerical integration over Delaunay triangles. The state of plane strain is considered. Pre-existing

notch or crack is used to initiate crack in the numerical examples discussed below. Pre-existing notch is modeled as

a discrete one in the geometry in few examples. In other examples, pre-existing crack is induced using the history

field H as given in the work of Borden et al. [52]. The history field is set as follows:

H(x) = B

{

Gc

2ℓ

(

1 − d(x,l)

ℓ

)

, if d(x, l) ≤ ℓ

0, if d(x, l) ≥ ℓ
(30)

where, d(x, l) is the closest distance from x from the line l that represents the pre-existing crack. The scalar B has

a magnitude of 103. Staggered scheme outlined in Section 4.2 is used to numerically solve the phase field model.

One staggered iterations (if not mentioned otherwise) are used to solve the model in all the numerical examples

since we used very small displacement increments. In few examples, the numerical results obtained by using the

natural neighbor shape functions are compared with the finite element solution. Linear triangular elements were

used in the numerical analysis using Finite Element method. All the numerical simulations were carried out on a

PC with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz and 64 GB RAM. MATLAB was used to develop the

code (for both Finite Element Method and Natural Neighbor Galerkin Method). The computational time reported

in this work is the time taken by the MATLAB to execute the code.

5.1. 1D Bar with a central notch

A bar with a central notch is fixed at one end and pulled at the other end with the applied displacement. The

geometry and boundary conditions of the example are shown in Fig. 4. The area of cross section of the bar is

assumed to be A = 1 mm2 and at the notch its value it assumed to be A = 0.25 mm2. The properties used are

λ = 121.15 kN/mm2, µ = 80.77 kN/mm2, and Gc = 0.0027 kN/mm. The displacement is applied at the end of the

bar in increments of ∆u = 10−5 mm. The damage profile when the bar fails completely is shown in Fig. 5a for

different values of the length scale parameter ℓ. The load displacement plots for different length scales ℓ is shown

in Fig. 5b. It is seen that with the decrease in the length scale, there is an increase in the failure load and failure

displacement. Borden et al. [52] derived an expression of critical tensile stress that 1D bar can sustain and is given

as

σc =
9

16

√

EGc

3ℓ
(31)
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Fig. 4. Geometry and boundary conditions of the 1D bar with a center notch.

Fig. 5. (a) Damage profile of the 1D bar for different values of length scale parameter ℓ at the failure load. (b) Load-Deflection curves for

the 1D bar for the different values of length scale ℓ..

where, E is the Young’s modulus of the material. This expression confirms the observation that failure load

increases with the decrease in the length scale parameter ℓ. This observation leads to the conclusion that the

length scale ℓ should be seen as a material parameter. Therefore, the length scale ℓ should be chosen based on

the experimental data. The critical tensile stress σc, Young’s modulus E and Griffith’s critical fracture energy Gc

can be determined for a material using experiments. With all these values known, the length scale parameter can

be calculated using Eq. (31). It should also be noted that when ℓ → 0, the critical stress becomes infinite which

is in accordance with the properties of Griffith’s theory (i.e. crack nucleates at stress singularities). The effect of

length scale has been studied in detail in the works of Pham et al. [25] and Amor et al. [72]. In one dimension,

natural neighbor interpolation is same as linear finite elements [70]. The natural neighbor shape functions in one

dimension are given as

ΛI =
x I+1 − x

x I+1 − x I

and ΛI+1 =
x − x I

x I+1 − x I

(32)

where, x I and x I+1 are the coordinates of two adjacent nodes. Therefore, solutions obtained using finite element

interpolants and natural neighbor interpolants will be the same.

5.2. Plate with an embedded center crack

In this example, we consider a square plate with a sharp crack Γ embedded in its center. The geometry and

the boundary conditions considered are depicted in Fig. 6. In order to capture the discrete crack (i.e., when the

length scale becomes zero), we need to discretize the body with sharp crack with infinite number of elements

(nodal spacing h = 0) which is impossible. This example is to study the role of the length scale ℓ and the nodal

spacing h (element size in the case of FEM) in the numerical computation of regularized crack topology Γℓ. It is

also to demonstrate the regularization of a sharp crack. The contour plots of the regularized crack topology φ(x)

for different length scales are shown in Fig. 7 and it is the pictorial representation for Γ -convergence (i.e., Γℓ → Γ

when ℓ → 0).

For modeling with very small length scales ℓ, there is a need for extremely fine meshes to resolve the regularized

crack surface which results in higher computational cost. It should be noted the need for finer mesh only arises

in the region where crack is expected to propagate. It is shown that, in Finite Element Method, an element size
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Fig. 6. Plate with an embedded center crack. (a) Geometry and boundary conditions, (b) nodal distribution with 11617 nodes for the nodal

spacing of h = 0.01 mm, and (c) nodal distribution with 2921 nodes for the nodal spacing of h = 0.02 mm.

Fig. 7. Regularized crack surfaces for different length scales (a) l = 0.32 mm, (b) l = 0.04 mm, and (c) l = 0.01 mm obtained with a

nodal spacing of h = 0.005 mm.

of h < (ℓ/2) is needed to resolve the regularized crack surface [54]. Here, we show that, with natural neighbor

interpolants, a nodal spacing of h < ℓ is sufficient to resolve the regularized crack surface even closer to the crack.

Also, the use of natural neighbor shape functions also results in better accuracy. This reduces the computational

effort needed to numerically implement the phase field model. In Fig. 8, three fixed nodal spacing of h = 0.025

mm, h = 0.010 mm, and h = 0.005 mm were used. The length scale was varied and the regularized crack surface

Γℓ was numerically computed. It can be seen that the ratio (Γ/Γℓ) is maximum and closer to one at (ℓ/h) = 1 in

the case of Natural Neighbor Galerkin Method. Also, a desired condition Γℓ ≃ Γ is achieved better with Natural

Element Galerkin Method. To resolve a length scale ℓ = 0.02 mm, one needs a nodal spacing of h = 0.01 mm with

finite element method and h = 0.02 mm with Natural Neighbor Galerkin approach. The nodal distribution for these

two spacings are shown in Fig. 6b and 6c, respectively. The finite element simulation for h = 0.01 mm needed

a computational time of 1.055 s, whereas, the numerical simulation with natural neighbor interpolants needed a

computational time of 1.012 s. Though the computational time is almost same, only fewer nodes are required to

resolve a length scale ℓ with natural neighbor Galerkin method compared to finite element method.

The comparison of accuracy of the regularized crack topology was shown in Fig. 8 in the manuscript for

different fixed nodal spacings. This also includes a coarse discretization. In all the cases of nodal spacing, the

curve corresponding to Natural Neighbor Galerkin Method peaked at ℓ/h = 1 and the curve corresponding to FEM

peaked at ℓ/h = 2. We infer from this that, to resolve a length scale ℓ, one needs h = 0.5ℓ with Finite Element

Method and h = ℓ with Natural Neighbor Galerkin Method. This means that fewer nodes are needed with Natural

Neighbor Galerkin Method, which results in lower computational effort. This also indicates that the rates at which



12 P. Kasirajan, S. Bhattacharya, A. Rajagopal et al. / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113019

Fig. 8. Comparison of accuracy of the regularized crack topology for a fixed nodal spacing of (a) h = 0.025 mm, (b) h = 0.010 mm, and

(c) h = 0.005 mm.

Fig. 9. Nodal spacing h versus the ratio Γ/Γℓ.

the solution converge in Natural Neighbor Galerkin method is much faster than in FEM. The peak values of Γ/Γℓ
versus the nodal spacing for both the cases are shown in Fig. 9:

It is observed that the accuracy with Natural Neighbor Galerkin Method is better when compared with the Finite

Element Method for any nodal spacing.

5.3. Edge notched specimen under tension

A square plate with a horizontal edge notch is considered for this example. The geometry and boundary

conditions are shown in Fig. 10. The upper boundary of the plate is subjected to a vertical displacement ∆u. The

material parameters are chosen as λ = 121.15 kN/mm2, µ = 80.77 kN/mm2 and Gc = 0.0027 kN/mm. The state

of plane strain is assumed. Two values of the length scale parameter are considered for the analysis: ℓ = 0.0075

mm and ℓ = 0.015 mm. For the case of ℓ = 0.015 mm and ℓ = 0.0075 mm, the model is discretized using 4982

nodes and 16184nodes respectively. Refined mesh is used where the crack is expected to propagate. The numerical

computation are carried out for the monotonic displacement increments of ∆u = 10−5 mm. The pre-existing notch

is induced numerically using Eq. (30).

As expected, the crack nucleates at the tip of the pre-existing notch and propagates horizontally. The crack pattern

for the length scale of ℓ = 0.0075 mm at various displacements are shown in Fig. 11. The load–displacement curve
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Fig. 10. Edge notched specimen under tension. (a) Geometry and boundary conditions and (b) the nodal distribution with 4982 nodes.

Fig. 11. Crack pattern of the edge notched specimen under tension at the displacement of (a) u = 0.0052 mm, (b) u = 0.0055 mm, and

(c) u = 0.0059 mm for the length scale of l = 0.0075 mm.

obtained using finite element method and Natural Neighbor Galerkin Method for the length scale of ℓ = 0.015 mm

is shown in Fig. 12. At each time step, eight staggered iterations were carried out to obtain these curves. It is seen

that the load–displacement curves obtained by both numerical tool match perfectly. Also, these results match well

with those reported in the works of Miehe et al. [53] and Rabczuk et al. [73]. The effect of the number of staggered

iterations and the viscosity parameter on the load displacement curve are shown in Fig. 13a and 13b, respectively.

The computational time taken for this simulation for l = 0.0075 mm was 522 min and that obtained from standard

FEM is 295 min.

Three numerical simulations were carried out for edge notched specimen under tension with three ℓ/h (same ℓ in

all cases) ratios with both Natural Neighbor Galerkin Method and Finite Element Method and the load displacement

plot for these cases are shown in Fig. 14:

In Fig. 14(b), it can be seen that, for the case of ℓ/h = 1 with Finite Element Method, the load deflection

curve does not converge. Whereas in Fig. 14(a), with Natural Neighbor Galerkin Method, even with ℓ/h = 1, the

load deflection curve matches with the plots of higher ℓ/h. This observation reiterates the conclusion drawn from

previous example, i.e., with Natural Neighbor Galerkin Method, h = ℓ is enough to resolve a length scale ℓ. This

results in the better convergence characteristics with coarser discretizations in Natural Neighbor Galerkin Method

than those obtained from Finite Element Method. This may be attributed to the smooth (C∞ everywhere and C0

at nodes) and inherently nonlocal (dynamic natural neighbor based computation of compact support) approximants

in Natural Neighbor Galerkin Method. The computational time required for the simulations mentioned above are

tabulated as shown in Table 1.
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Fig. 12. Load-Deflection curves of the edge notched specimen under tension for the length scale of ℓ = 0.015 mm.

Fig. 13. Load-Deflection curves for the edge notched specimen under tension for (a) different number for staggered iterations and (b)

different values of viscosity parameter η.

Table 1

Computational time (in minutes) taken to execute the phase field MATLAB code

developed for Natural Neighbor Galerkin Method and Finite Element Method for

different ℓ/h ratios.

ℓ/h NNGM FEM

1 133 82

2 522 295

3 1262 820

It is observed that the computational time required with NNGM is higher than FEM for the same discretization

(same ℓ/h ratio). However, we have established in the Regularization example (Plate with an embedded center

crack) that FEM and Natural Neighbor Galerkin method needs h = 0.5ℓ and h = ℓ, respectively to resolve the

length scale ℓ. In this case, FEM needed 295 minutes for ℓ/h = 2 and Natural Neighbor Galerkin method needed

133 minutes for ℓ/h = 1. Thus, from the perspective of convergence characteristics and accuracy, for a given fixed
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Fig. 14. Load-Deflection curves for edge notched specimen under tension for different ℓ/h ratios: Results obtained with (a) Natural Neighbor

Galerkin Method and (b) Finite Element Method.

Fig. 15. Crack pattern of the edge notched specimen under tension at the displacement of u = 0.0059 mm for the length scale of l = 0.0075

mm obtained with (a) Finite Element Method with ℓ/h = 2 and (b) Natural Neighbor Galerkin Method with ℓ/h = 1.

Fig. 16. Load-Deflection curves of the edge notched specimen under tension for the length scale of ℓ = 0.0075 mm obtained with Finite

Element Method with ℓ/h = 2 and Natural Neighbor Galerkin Method with ℓ/h = 1.
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Fig. 17. Edge notched specimen under shear. (a) Geometry and boundary conditions and (b) the nodal distribution with 19887 nodes.

Fig. 18. Crack pattern of the edge notched specimen under shear at the displacement of (a) u = 0.01 mm, (b) u = 0.013 mm, and (c)

u = 0.016 mm for the length scale of l = 0.01 mm.

mesh the Natural Element Galerkin Method is better than FEM. A comparison of the NNGM results with ℓ/h = 1

and FEM with ℓ/h = 2 is made. A more detailed study in to performance of NNGM with ℓ/h = 1 and FEM

with ℓ/h = 2 was made by plotting of crack paths for this length scale. The results are shown in Figs. 15 and 16

for the edge notch specimen under tension. Fig. 15 shows the crack pattern of the edge notched specimen under

tension at the displacement of u = 0.0059 mm for the length scale of l = 0.0075 mm obtained with (a) Finite

Element Method with ℓ/h = 2 and (b) Natural Neighbor Galerkin Method with ℓ/h = 1, both showing similar

results. Fig. 16 shows the Load-Deflection curves of the edge notched specimen under tension for the length scale

of ℓ = 0.0075 mm obtained with Finite Element Method with ℓ/h = 2 and Natural Neighbor Galerkin Method

with ℓ/h = 1. Its is observed that the NNGM is computationally more efficient than the FEM.
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Fig. 19. Load-Deflection curves of the edge notched specimen under shear for the length scale of ℓ = 0.005 mm.

Fig. 20. Crack pattern of the edge notched specimen under shear at the displacement of u = 0.016 mm for the length scale of l = 0.01

mm obtained with (a) Finite Element Method with ℓ/h = 2 and (b) Natural Neighbor Galerkin Method with ℓ/h = 1.

Fig. 21. Load-Deflection curves of the edge notched specimen under shear for the length scale of ℓ = 0.01 mm obtained with Finite Element

Method with ℓ/h = 2 and Natural Neighbor Galerkin Method with ℓ/h = 1.

5.4. Edge notched specimen under shear

A rectangular plate with an edge notch is considered for this example. The geometry and boundary conditions

are shown in Fig. 17. The material parameters are chosen as λ = 121.15 kN/mm2, µ = 80.77 kN/mm2 and

Gc = 0.0027 kN/mm. The state of plane strain is assumed. The plate is discretized using 19887 nodes and a length
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Fig. 22. Symmetric three point bending test. (a) Geometry and boundary conditions and (b) the nodal distribution with 4894 nodes.

scale of ℓ = 0.01 mm is used. Refined mesh is used where the crack is expected to propagate. The computation is

carried out with the displacement increment of ∆u = 10−4 mm in the first 100 time steps and ∆u = 2×10−6 mm in

the subsequent time steps. The simulation was carried out for the isotropic case (without the energy decomposition

into tensile and compressive parts). The consequence is that crack growth can occur also under compressive state

of stress which is an unrealistic response. The results from the isotropic model and hybrid model are shown in

Fig. 18. This is to demonstrate the necessity of the energy decomposition such that only tensile part of the elastic

energy drives the evolution of the phase field. The load deflection curves for both the isotropic and hybrid cases

are presented in Fig. 19. The computational time taken for this simulation with l = 0.01 mm for the hybrid case

was 4608 min, while that obtained from FEM was 2908 min.

A comparison of the NNGM results with ℓ/h = 1 and FEM with ℓ/h = 2 is made. A more detailed study in to

performance of NNGM with ℓ/h = 1 and FEM with ℓ/h = 2 was made by plotting of crack paths for this length

scale. The results are shown in Figs. 20 and 21 for the edge notch specimen under shear. Fig. 20 shows the crack

pattern of the edge notched specimen under shear at the displacement of u = 0.016 mm for the length scale of

l = 0.01 mm obtained with (a) Finite Element Method with ℓ/h = 2 and (b) Natural Neighbor Galerkin Method

with ℓ/h = 1. Both the methods are more or less giving similar crack paths. Fig. 21 shows the load deflection

diagram clearly indicating that NNGM is still a flexible discretization even with ℓ/h = 1.

5.5. Symmetric three point bending test

This example considers the three point bending test of a notched beam. The geometry and boundary conditions

of the problem are depicted in Fig. 22. The material parameters are chosen as λ = 12 kN/mm2, µ = 8 kN/mm2

and Gc = 5 × 10−4 kN/mm. The beam is discretized using 4894 nodes and a length scale of ℓ = 0.03 mm is

used. Refined mesh is used where the crack is expected to propagate. The computation is carried out with the

displacement increment of ∆u = 10−4 mm in the first 360 time steps, ∆u = 10−6 in the next 24000 time steps

and ∆u = 10−5 mm in the subsequent time steps. Fig. 23 depicts the contour profile of the phase field at various

displacements for the length scale of ℓ = 0.03 mm. Fig. 24 shows the load displacement curve for the symmetric

three point bending test, which matches with the curve presented in Miehe et al. [53]. The computational time taken

for this simulation for l = 0.03 mm was 13680 min, whereas that obtained from FEM was 9216 min.

5.6. Asymmetrically notched three point bending test

This example considers the three point bending test of an asymmetrically notched beam. The geometry and

boundary conditions of the problem are depicted in Fig. 25. The material parameters are chosen as λ = 12 kN/mm2,

µ = 8 kN/mm2 and Gc = 10−3 kN/mm. The beam is discretized using 17680 nodes and a length scale of ℓ = 0.03

mm is used. Refined mesh is used where the crack is expected to propagate. The computation is carried out with the

displacement increment of ∆u = 4.2×10−3 mm in the first 50 time steps, ∆u = 10−4 in the subsequent time steps.

Fig. 26 depicts the contour profile of the phase field at various displacements for the length scale of ℓ = 0.03 mm.

The crack pattern is similar to that obtained by Bittencourt et al. [74]. Fig. 27 shows the load displacement curve

for the asymmetrically notched three point bending test. The load displacement curve obtained for this numerical
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Fig. 23. Crack pattern at the displacement of (a) u = 0.043 mm, (b) u = 0.044 mm, and (c) u = 0.1 mm for the length scale of l = 0.03

mm.

Fig. 24. Load-Deflection curve for the symmetric three point bending test.

Fig. 25. Asymmetrically notched three point bending test. (a) Geometry and boundary conditions and (b) the nodal distribution with 17680

nodes.



20 P. Kasirajan, S. Bhattacharya, A. Rajagopal et al. / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113019

Fig. 26. Crack pattern at the displacement of (a)u = 0.21 mm, (b)u = 0.215 mm, and (c)u = 0.2175 mm for the length scale of l = 0.03

mm.

Fig. 27. Load-Deflection curve for the asymmetrically notched three point bending test.

example matches with the result presented in Ambati et al. [50]. The computational time taken for this simulation

for l = 0.03 mm was 2736 min, whereas that obtained from FEM was 1728 min.

For all the numerical examples, ℓ/h = 2 was considered for the analysis with both Natural Element Galerkin

Method and Finite Element Method. The interest was to compare the FEM results obtained for an adequately refined

good mesh for both FEM and NNGM. A more detailed study in to performance of NNGM ℓ/h = 1 and plotting

of crack paths for this length scale is a future study. The computational time need for NNGM is higher than Finite

Element Method. The computational times taken for the simulation are tabulated in Table 2.

6. Conclusions

In the present work we have demonstrated the use of natural neighbor Galerkin method for phase field modeling

of quasi-brittle fracture problems. The use of natural neighbors to dynamically decide the compact support at a nodal

point makes it truly mesh free and nonlocal. The method uses smooth non-polynomial type Sibson interpolants,
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Table 2

Computational time (in minutes) taken to execute the phase field MATLAB code.

Example NNGM FEM

Edge notched specimen under shear (Hybrid) 4608 2980

Symmetric three point bending test 13680 9216

Asymmetrically notched three point bending test 2736 1728

which are C0 at a given node and C1 everywhere else. This allows accurate capture of the interface region in

a phase field model with only few number of nodes. For a given accuracy, there is a marginal improvement in

the computational time. Only fewer nodes are required to resolve a length scale ℓ with natural neighbor Galerkin

method compared to the finite element method.
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