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Cellular Networks with Multi-User Spatial

Multiplexing

Sreejith T. Veetil, Kiran Kuchi and Radha Krishna Ganti

Abstract

This paper characterizes the performance of cellular networks employing multiple antenna open-

loop spatial multiplexing techniques. We use a stochastic geometric framework to model distance

depended inter cell interference. Using this framework, we analyze the coverage and rate using two linear

receivers, namely, partial zero-forcing (PZF) and minimum-mean-square-estimation (MMSE) receivers.

Analytical expressions are obtained for coverage and rate distribution that are suitable for fast numerical

computation.

In the case of the PZF receiver, we show that it is not optimal to utilize all the receive antenna for

canceling interference. With α as the path loss exponent, Nt transmit antenna, Nr receive antenna, we

show that it is optimal to use Nt

⌈(
1− 2

α

) (
Nr

Nt

− 1

2

)⌉

receive antennas for interference cancellation

and the remaining antennas for signal enhancement (array gain). For both PZF and MMSE receivers,

we observe that increasing the number of data streams provides an improvement in the mean data rate

with diminishing returns. Also transmitting Nr streams is not optimal in terms of the mean sum rate.

We observe that increasing the SM rate with a PZF receiver always degrades the cell edge data rate

while the performance with MMSE receiver is nearly independent of the SM rate.

Sreejith T. V. and Kiran Kuchi are with the Department of Electrical Engineering, IIT Hyderabad, India. Radha Krishna Ganti

is with the Department of Electrical Engineering, IIT Madras, India.
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Index Terms

Cellular networks, stochastic geometry, spatial multiplexing, partial zero forcing, minimum mean

square error estimation.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication is an integral part of current cellular

standards. The antennas can be used for increasing the number of data streams or improving the

link reliability and the trade-off is well understood for a point-to-point link [1], [2], [3]. Spatial

multiplexing (SM) is an important technique for boosting spectral efficiency of a point-to-point

link with multiple antenna, wherein independent data streams are transmitted on different spatial

dimensions. The capacity improvement with SM in an isolated link in the presence of additive

Gaussian noise has been extensively studied [4], [5], [6].

However cellular systems are multi-user systems and co-channel interference is a major

impediment to the network performance. Indeed, it has been argued with the help of simulations

in [7], [8] that SM is not very effective in a multi-cell environment due to interference. In

a multi-user setup, in addition to providing diversity and multiplexing, the antennas can also

be used to serve different users and suppress interference, thereby adding new dimensions for

system design.

Existing cellular networks employ both closed-loop and open-loop SM methods. Closed-loop

SM requires channel state information (CSI) at the transmitter, and is suitable for users with

slowly varying channels (low Doppler case). On the other hand open-loop SM is used for

channels with high Doppler or in cases were there is inadequate feedback to support closed-loop

SM. Open-loop SM is also used for increasing the performance of control channels where CSI

feedback is not available. Open-loop SM can be implemented in two ways. In single user SM,

a base station (BS) can allocate all the available data streams to a single user thereby increase

the user’s rate. Alternatively, the BS can serve multiple users at the same time by allocating one

stream per user. The latter approach is termed as open-loop multi-user SM.

DRAFT November 15, 2018



3

We consider the case where each BS has Nt antenna and multiplexes Nt streams with one

stream per user. The receiver has Nr receiver antennas. In this case, with a linear receiver,

Nt degrees-of-freedom (DOF) (among available Nr DOF) can be used for suppressing self-

interference caused by SM while the remaining Nr − Nt DOF can be used for suppression of

other cell interference or to obtain receiver array gain. For a typical cell edge user, a reduction

of the SM rate at the transmitter might result in enough residual DOF (after suppression of self-

interference) to cancel the other cell interference and generally results in an increased throughput.

When the number of data streams transmitted from a BS is less than the number of antennas

available, techniques like cyclic-delay-diversity or open-loop dumb-beamforming [9] can be used

the remaining antennas.

In this paper, we consider distance dependent inter-cell interference and investigate how

multiple antenna can be used in the down link of an open-loop cellular system. A general

design goal is to maximize both mean and cell edge data rates. We analyze the various trade-

offs between SM rate and the achievable mean/cell-edge data rates using linear receivers.

II. RELATED WORK

Recent studies [7], [8] show that spatial multiplexing MIMO systems, whose main benefit

is the supposed potential upswing in spectral efficiency, lose much of their effectiveness in a

multi-cell environment with high interference. Several approaches to handling interference in

multi-cell MIMO systems are discussed in [8]. Blum in [10] investigated the capacity of an

open-loop multi user MIMO system with interference and have shown that the optimum power

allocation across antenna depends on the interference power. When the interference is high, it is

optimal to allocate the entire power to one transmit antenna (single-stream) rather than spreading

the power equally across antenna.

There has been considerable work in ad hoc networks contrasting single stream transmission

with multi-stream transmission using tools from stochastic geometry. It has been shown in

[11], [12] that the network-wide throughput can be increased linearly with the number of
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receive antennas, even if only a single transmit antenna is used by each node, and each node

sends/receives only a single data stream. Interestingly, no channel state information (CSI) is

required at the transmitter to achieve this gain.

Using (1−2/α), where α is the path loss exponent, fraction of the receive degrees of freedom

for interference cancellation and the remaining degrees of freedom for array gain, allows for a

linear scaling of the achievable rate with the number of receiving antennas [12]. It is interesting

to see that canceling merely one interferer by each node may increase the transmission capacity

even when the CSI is imperfect [13]. Importance of interference cancellation in ad-hoc networks

is also discussed in [14], [15] and [16]. However, most of these results are obtained by deriving

bounds on the signal-to-interference ratio (SIR) distribution.

In [17], [18] the exact distribution of SIR with SM and minimum-mean-square-estimation

(MMSE) receiver has been obtained in an ad hoc network when the interferers are distributed as

a spatial Poisson point process. The SIR follows a quadratic form, and results from [19], [20] are

used to obtain the distribution. Again, it was shown that single-stream transmission is preferable

over multi-stream transmission. In [21], distribution of SIR for multiple antenna system with

various receivers and transmission schemes are obtained for a Poisson interference field. In

[16] scaling laws for the transmission capacity with zero-forcing beamforming were obtained,

and it was shown that for a large number of antennas, the maximum density of concurrently

transmitting nodes scales linearly with the number of antennas at the transmitter, for a given

outage constraint. In [22], the distribution of SIR in a zero-forcing receiver with co-channel

interference is obtained.

In ad hoc networks, an interferer can be arbitrarily close (much closer than the intended

transmitter) to the receiver in consideration. This results in interference that is heavy-tailed. On

the other hand, in a cellular network the user usually connects to the closest BS and hence the

distance to the nearest interferer is greater than the distance to the serving BS. This leads to a

more tamed interference distribution compared to an ad hoc networks.

DRAFT November 15, 2018



5

A. Main Contributions

In this paper we focus on linear receivers, namely the the partial zero-forcing receiver and

the MMSE receiver. The MMSE receiver optimally balances signal boosting and interference

cancellation and maximizes the SINR. The sub-optimal partial zero-forcing receiver uses a

specified number of degrees of freedom for signal boosting and the remainder for interference

cancellation.

• We provide the distribution of SINR with a partial zero-forcing receiver. This analysis also

includes the inter-cell interference which is usually neglected. The resultant expression can

be computed by evaluating a single integral.

• With one stream per-user, we obtain the optimal configuration of receive antennas. In

particular we show that it is optimal to use Nt

⌈(
1− 2

α

) (
Nr

Nt
− 1

2

)⌉

receive antennas for

interference cancellation and the remaining antennas for signal enhancement (array-gain).

• We compute the cumulative distribution function of the SINR with a linear MMSE receiver.

In the interference-limited case, the distribution can be computed without any integration.

• The sum rate expressions are provided for both PZF and MMSE receivers. Numerical

evaluation of these results show that average sum rate increases with the number of data

streams with diminishing returns. The mean sum rate reaches a maximum value for a certain

optimum number of data stream that is generally less than the number of receive antenna

Nr. On the other hand, increasing the number of data streams always degrades the cell edge

data rate for PZF receiver and MMSE receivers. However, the impact is less severe with a

MMSE receiver.

B. Organization of the paper

In Section III, the system model, particularly the BS location model, is described in detail.

In Section IV, the SINR distribution with a partial-zero-forcing receiver is derived. In Section

V, the SINR distribution is obtained for a linear MMSE receiver and in Section VI, the average
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ergodic rate is analyzed with both PZF and MMSE receivers. The paper is concluded in Section

VII.

III. SYSTEM MODEL

We now provide a mathematical model of the cellular system that will be used in the subse-

quent analysis. We begin with the spatial distribution of the base stations.

Network Model: The locations of the base stations (BSs) are modeled by a spatial Poisson point

process (PPP) [23] Φ ⊂ R
2 of density λ. The PPP model for BS spatial location provides a

good approximation for irregular BS deployments. The merits and demerits of this model for

BS locations have been extensively discussed in [24].

We assume the nearest BS connectivity model, i.e., a user connects to the nearest BS. This

nearest BS connectivity model results in a Voronoi tessellation of the plane with respect to the

BS locations. See Figure 1. Hence the service area of a BS is the Voronoi cell associated with

it.

We assume that each BS is equipped with Nt antenna (active transmitting antennas) and a

user (UE) is equipped with Nr antenna. In this paper we focus on downlink and hence the Nt

antenna at the BSs are used for transmission and the Nr antenna at the UE are used for reception.

We assume that all the BSs transmit with equal power which for convenience we set to unity.

Hence each transmit antenna uses a power of 1/Nt.

Channel and path loss model: We assume independent Rayleigh fading with unit mean between

any pair of antenna. We focus on the downlink performance and hence without loss of generality,

we consider and analyse the performance of a typical mobile user located at the origin. The Nr×1

fading vector between the q-th antenna of the BS x ∈ Φ and the typical mobile at the origin

is denoted by hx,q. We assume hx,q ∼ CN (0Nr×1, INr
), i.e., a circularly-symmetric complex

Gaussian random vector. The standard path loss model ℓ(x) = ‖x‖−α, with path loss exponent

α > 2 is assumed. Specifically, the link between q-th transmit antenna of the BS at x and the

Nr receiver antennas of the user at origin is
√

‖x‖−αhx,q.
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Received signal and interference: We consider the case where each BS uses its Nt antennas to

serve Nt independent data streams to Nt users in its cell1. Let ô ∈ Φ denote the BS that is closest

to the mobile user at the origin. We assume that the UE at the origin is interested in decoding

the k-th stream transmitted by its associated BS ô. Focusing on the k-th stream transmitted by

ô, the received Nr × 1 signal vector at the typical mobile user is

y =
aô,k√
rα

hô,k +
1√
rα

Nt∑

q=1,q 6=k

hô,qaô,q + I(Φ) +w, (1)

where I(Φ) =
∑

x∈Φ\ô
1√
‖x‖α

∑Nt

q=1 hx,qax,q, denotes the intercell interference from other BSs.

The symbol transmitted from the the q-th antenna of the base station x ∈ Φ is denoted by ax,q

and E[|ax,q|2] = 1/Nt. The additive white Gaussian noise is given by w ∼ CN (0Nr×1, σ
2INr

).

The distance between the typical mobile user at the origin and its associated (closest) BS is

denoted by r = ‖ô‖. Observe that r is a random variable since the BS locations are random.

We now present few auxiliary results on the distribution of some spatial random variables that

will be used later in the paper.

Distance to the serving BS and (m− 1)-th interfering BS: We now obtain the joint distribution

of the distance of the origin to the nearest BS and the distance to the m − 1 interfering BS.

Recall that r denotes the distance to the serving (nearest) BS. The PDF of the distance to the

nearest neighbor is [23]

fr(r) = e−λπr22πλr. (2)

We now compute the distance to the (m−1)-th closest interfering BS conditioned on the distance

to the nearest BS r. Let R denote the distance to the (m − 1)-th BS. See Figure 1. Hence the

event R ≤ R0 equals the event that there are at least m− 1 base stations in the region between

two concentric circles of radius r and R centred at origin. Hence

FR|r(R0 | r0) = P [R ≤ R0|r = r0] =
∞∑

k=m−1

e−πλ(R2
0−r20)

[λπ(R2
0 − r20)]

k

k!
, R0 > r0. (3)

1We make the assumption that every cell has at least Nt users. This is true with high probability when there are large number

of users which is normally the case.
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Fig. 1: Illustration of the BS locations modelled by a PPP and their corresponding cells. As an

example, the distance to the fifth nearest BS from the typical user at the origin is denoted by R

and the distance to the serving BS is denoted by r.

Hence the conditional PDF is

fR|r(R|r) = 2πλR

(m− 2)!
e−πλ(R2−r2)

(
πλ(R2 − r2)

)m−2
, R > r. (4)

Let β = R/r denote the ratio of the distance of the m−1 th closest interfering BS of the typical

user to the distance of its closest BS. Using (4) and (2), it can be easily shown that the PDF of

the random variable β is

gβ(β) = 2(m− 1)β1−2m(β2 − 1)m−2, β > 1. (5)

Observe that the ration β does not depend on the density of the PPP. The average value of β

is given by E[β] =
√
πΓ(m)

Γ(m−1/2)
≈
√

(m− 1)π, and E[βν ] = ∞, ν ≥ 2 irrespective of m ≥ 2. We

begin with the analysis of a partial zero forcing receiver.

IV. PARTIAL ZERO FORCING (PZF) RECEIVER

In this section, we will analyze the distribution of the post-processing SINR with a PZF

receiver in a cellular setting. We assume that the user has perfect knowledge of the interfering
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node channels that it wishes to cancel.

A. Coverage probability

Each user has Nr antenna, which can be represented as Nr = mNt+δ, m ≥ 1 receive antenna.

The receive filter v for the typical user at the origin is chosen orthogonal to the channel vectors

of the interferers and the streams that need to be canceled. Without loss of generality, we assume

that the typical UE at the origin is interested in the k-th stream (1). The receive filter v is chosen

as a unit norm vector orthogonal to the following vectors:

hô,q : q = 1, 2, .., k − 1, k + 1, .., Nt,

hx,q : x ∈ {x1, x2, ..., xm−1}, q = 1, 2, .., Nt,

where {x1, x2, ..., xm−1} are the (m−1) BSs closest to the typical UE in consideration excluding

ô. The dimension of the span of the above mentioned vectors is Nt− 1+ (m− 1)Nt = mNt− 1

with high probability. Amongst the filters orthogonal to those vectors, we are interested in the

one that maximizes the signal power |v†hô,k|2 . This corresponds to choosing v in the direction

of the projection of vector hô,k on the nullspace of the interfering channel vectors. The dimension

of the corresponding nullspace is Nr −mNt + 1. If the columns of an (Nr −mNt + 1) × Nr

matrix Q form an orthonormal basis for this nullspace, then the receive filter v is chosen as:

v = Q
Q†hô,k

‖Q†hô,k‖
.

So if Nr = mNt + δ, the remaining δ + 1 degrees of freedom can be used to boost the signal

power. Hence at the receiver,

v†yk =
aô,k√
rα

v†hô,k +
Nt∑

q=1,q 6=k

aô,q√
rα

v†hô,q + v†I(Φ) + v†w.

Since v† is designed to null the closest m − 1 interferers, v†I(Φ) = v†I(Φ̂) where Φ̂ = Φ \

{x1, ..., xm−1}. So we have ỹk =
aô,k√
rα
v†hô,k + v†I(Φ̂) + v†w. Let S

△
= |v†hô,k|2 and Hx,q

△
=

November 15, 2018 DRAFT
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|v†hx,q|2. The post processing zero-forcing signal-to-interference-noise ratio (SINR) [11] of the

k-th stream is

SINR =
Sr−α

Ntσ2 +
∑

x∈Φ̂

‖x‖−α

Nt∑

q=1

Hx,q

︸ ︷︷ ︸

Î(Φ̂)

. (6)

Also S ∼ χ2
2(Nr−mNt+1), i.e., a chi-squared random variable with 2(Nr −mNt + 1) degrees of

freedom and Hx,q are i.i.d. exponential random variables. When Nr = mNt the receiver can

only cancel interference from (m− 1) nearest BSs and in this case, S is an exponential random

variable.

A mobile user is said to be in coverage if the received SINR (after pre-processing) is greater

than the threshold z, needed to establish the connection. The probability of coverage is defined

as

PPZF(z)
△
= P[SINR > z]. (7)

Observe that the coverage is essentially the complementary cumulative distribution function

(CCDF) of the SINR. Since PPZF(z), quantifies the entire distribution, it can be used to compute

other metrics of interest like average ergodic rate. We first provide the main result which deals

with the coverage probability with noise. We begin with the evaluation of the Laplace transform

of interference conditioned on the distances R and r.

Lemma 1. The Laplace transform of the residual interference in PZF conditional on R and r

is given by

LI(s) = exp

(

−λπR2

(

2F1

(

Nt,−
2

α
,
α− 2

α
,−R−αs

)

− 1

))

,

where 2F1(a, b, c, z) is the standard hypergeometric function2.

2
2F1(a, b, c, z) =

Γ(c)
Γ(b)Γ(c−b)

∫ 1

0

tb−1(1−t)c−b−1

(1−tz)a
dt, and Γ(x) is the standard Gamma function.
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Proof: The PZF receiver is designed such that it can cancel interference from nearest (m−1)

BSs. Conditioned on the distance to (m− 1)-th BS R,

LI(s) =E

[

e−sÎ(Φ̂)
]

= E exp



−s
∑

x∈Φ̂

‖x‖−α
Nt∑

q=1

Hx,q



 .

Since Hx,q are i.i.d exponential, their sum
∑Nt

q=1Hx,q is Gamma distributed. Using the Laplace

transform of the Gamma distribution,

LI(s) =E

∏

x∈Φ̂

E exp

(

−s‖x‖−α
Nt∑

q=1

Hx,q

)

= E

∏

x∈Φ̂

1

(1 + s‖x‖−α)Nt
,

(a)
= exp

(

−λ2π

∫ ∞

R

(

1− 1

(1 + sx−α)Nt

)

xdx

)

,

=exp

(

−λπR2

(

2F1

(

Nt,−
2

α
,
α− 2

α
,−R−αs

)

− 1

))

. (8)

where (a) follows from the probability generating functional (PGFL) of the PPP [23].

The Laplace transform in Lemma 1 is used next to compute the coverage probability.

Theorem 1. The probability of coverage with PZF receiver having Nr = mNt + δ antennas is

given by

PPZF(z) =

∫ ∞

0

∫ ∞

r

δ∑

k=0

(−s)k

k!

dk

dsk
LI(s)e

−sNtσ2
∣
∣
∣
s=zrα

fR|r(R|r)fr(r)dRdr,

where LI(s) is given in Lemma 1 and fR|r(R|r) in (4).

Proof: Conditioned on the random variables R and r, we have

Pc(z, α | r) =EI[P(S > z rα(I+Ntσ
2))],

(a)
=

δ∑

k=0

(z rα)k

k!
EI[(I+Ntσ

2)ke−zrα(I+Ntσ2)],

(b)
=

δ∑

k=0

(
(−s)k

k!

dk

dsk
L(I+Ntσ2)(s)

)

s=zrα
. (9)

(a) follows from the CCDF of χ2
2(Nr−mNt+1) and (b) by the differentiation property of the

Laplace transform. L(I+Ntσ2)(s) is the Laplace transform of interference and noise and equals

LI(s) exp(−sNtσ
2) where LI(s) is given in Lemma 1. The result follows by averaging over R

and r.
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B. Interference limited networks, σ2 = 0

We now specialize the coverage expression in Theorem 1 when σ2 = 0, i.e., an interference-

limited network. In Theorem 1, the coverage probability expression requires evaluating the k-th

derivative of a composite function. The derivatives of a composite function can be written in

a succinct form by using a set partition version of Faà di Bruno’s formula. We now introduce

some notation that will be used in the next theorem.

A partition of a set S is a collection of disjoint subsets of S whose union is S. The collection

of all the set partitions of the integer set [1, 2, 3, . . . k] is denoted by Sk and its cardinality is

called the k-th Bell number. For a partition υ ∈ Sk, let |υ| denote the number of blocks in

the partition and |υ|j denote the number of blocks with exactly j elements. For example, when

k = 3, there are 5 partitions,

S3 =
{

{1, 2, 3},
{
{1}, {2, 3}

}
,
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
,
{
{1}, {2}, {3}

}}

.

For the partition υ =
{
{1}, {2}, {3}

}
, |υ| = 3, |υ|1 = 3 and |υ|2 = 0. Also, define

Λς,Nt
(z) , 2F1

(

Nt + ς, ς − 2

α
, ς − 2

α
+ 1,−z

)

,

where 2F1(a, b, c, x) is the standard hypergeometric function.

Theorem 2. When the network is interference limited, i.e., σ2 = 0, the probability of coverage

with a PZF receiver having Nr = mNt + δ antennas is

PPZF(z) =

δ∑

k=0

zk

k!

∑

υ∈Sk

(−1)|υ|(m)|υ|Eβ

[

β−αk

Λ0,Nt
(β−αz)m

k∏

j=1

(
(Nt)j(− 2

α
)j

(α−2
α

)j

Λj,Nt
(β−αz)

Λ0,Nt
(β−αz)

)|υ|j
]

,

(10)

where, (x)n = Γ(x+n)
Γ(n)

is the Pochhammer function., The expectation is with respect to the variable

β = R/r whose PDF is given by g(β) provided in (5)

Proof: See Appendix A.

In Table I, the coverage probability expressions are provided for the case of m = 2. We now

make a few observations:
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Fig. 2: Coverage probability versus m for various Nt with α = 4 at z = 0 dB.

• When m = 1, i.e., only the self-interference from the other data streams is canceled, β = 1

almost surely and hence the expectation with respect to β in Theorem 2 can be dropped.

• When δ = 0, i.e., all the antenna are used to cancel interference, then

PPZF(z) = Eβ[Λ0,Nt
(β−αz)−m].

From the expression, it seems that the coverage probability increases exponentially with the

number of canceled interferers. However, this is not the case as β in the above expression

is a function of m. This can be seen in Figure 2 where we observe diminishing benefits

with increasing m

• In Theorem 2, the coverage probability is obtained by averaging over β = R/r. Hence

PPZF(z) corresponds to the coverage probability of typical user. Instead of averaging over

β, evaluating (22) at a particular value of β would indicate the coverage of a user at a

specified distance. For example, β = 1 would correspond to an edge user with m = 2.

C. Interference cancellation or signal enhancement?

The antennas at the receiver can be used for either interference cancellation or enhancing the

desired signal. In our formulation, mNt− 1 antenna are used for interference cancellation while
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Nt ×Nr Coverage probability PPZF(z)

1× 2
∫∞

β=1
2

β3
2F1(1,− 2

α
;1− 2

α
;−zβ−α)2

dβ.

1× 3
∫∞

β=1
2

β3
2F1(1,− 2

α
;1− 2

α
;−zβ−α)2

−

4zβ−α−3Γ(1− 2

α
)2 2F1(2,1− 2

α
;2− 2

α
;−zβ−α)

Γ(2− 2

α
)Γ(− 2

α
) 2F1(1,− 2

α
;1− 2

α
;−zβ−α)3

dβ.

2× 4
∫∞

β=1
2

β3
2F1(2,− 2

α
;1− 2

α
;−zβ−α)2

dβ.

2× 5
∫∞

β=1
2

β3
2F1(2,− 2

α
;1− 2

α
;−zβ−α)2

−

8zβ−α−3Γ(1− 2

α
)2 2F1(3,1− 2

α
;2− 2

α
;−zβ−α)

Γ(2− 2

α
)Γ(− 2

α
) 2F1(2,− 2

α
;1− 2

α
;−zβ−α)3

dβ.

TABLE I: Coverage probability expressions for σ2 = 0, m = 2 with different Nt.

δ+1 antenna are used for signal enhancement. For a given Nr, what is the optimal (m, δ) split

to maximize the coverage probability? Since coverage probability is a complicated expression

of (m, δ), we will use the average interference-to-signal ratio as the metric. We have

E[SINR−1] = E[Ntσ
2rαS−1 + S−1Irα],

which equals Ntσ
2
E[rα]E[S−1]+E[S−1]E[Irα]]. If δ 6= 0, then E[S−1] = 1

2δ
. Since r is Rayleigh

distributed, E[rα] = (πλ)−α/2Γ(1+α/2). Also, E[Irα] = Nt

∑∞
k=mE[β−α

(k) ], where β(k) represent

the ratio of the distance to the k-th nearest interfering station to the serving BS distance. Using

(5), we obtain

E[Irα] = Nt

∞∑

k=m

(k − 1)Γ(k − 1)Γ(1 + α/2)Γ(k + α/2)−1.

Hence

E[SINR−1] =
NtΓ(1 + α/2)

2δ

(

σ2(πλ)−α/2Γ(1 + α/2) +
∞∑

k=m

Γ(k)Γ(1 + α/2)

Γ(k + α/2)

)

. (11)

It follows from Kershaw’s inequality that Γ(k + α/2)/Γ(k) ≈ (k + α/4 − 1/2)α/2 (indeed an

upper bound). Substituting for Γ(k+α/2)/Γ(k) and replacing the summation by integration, we

have the following approximation:

E[SINR−1] ≈ NtΓ(1 +
α
2
)

2δ

(

σ2(πλ)−
α
2 Γ(1 +

α

2
) +

2Γ(1 + α
2
)(m+ α

4
− 1/2)1−

α
2

α− 2

)

. (12)

Using this result we can obtain the optimal m and is stated in the following proposition.
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Fig. 3: Average E[SINR−1] from (11) as a function of m for Nr = 10 with different Nt and α

for σ2 = 0. The optimal (lowest) value in each case is marked. We observe that the optimal

value is always Nt

⌈(
1− 2

α

) (
Nr

Nt
− 1

2

)⌉

as specified in Proposition 1.

Proposition 1. The optimal m∗(σ2) is the smallest integer that is greater than the positive root

of the equation

2(m+α/4−1/2)1−α/2Nt+σ2(πλ)−α/2Nt(α−2)−(Nr−mNt)(m+α/4−1/2)−α/2(α−2) = 0,

if such a root exists. In particular when σ2 = 0, i.e., when the system is interference limited, we

have

m∗(0) = Nt

⌈(

1− 2

α

)(
Nr

Nt
− 1

2

)⌉

. (13)

Proof: To find the optimal m, we set δ = Nr − mNt in (12), differentiate and equate to

zero.

This is in tune with the results in [11], where they show that it is optimal to use (1 −

2/α) fraction of the antennas for interference cancellation. In Figure 3, the average E[SINR−1]

computed using (11) is plotted as a function of m for various configurations. We observe that the

optimal m∗(0) coincides with the optimal m as can be seen in the Figure 3. This result indicates

that it is optimal to utilize m∗(0) fraction of receive antenna to cancel interfering nodes and
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Fig. 4: Coverage probability versus z for Nr = 4 and different Nt with optimal choice of m.

The path loss exponent α = 4 and σ2 = 0. Coverage probability versus z for different choices

of m and δ. The path loss exponent α = 4 and σ2 = 0. The Monte Carlo results are also plotted

and marked with ⊕. For Nt ×Nr = 1× 4 and α = 4, from (13), m∗(0) = 2.

utilize the remaining antenna to strengthen the desired signal. So as the path loss exponent α

increases, more antenna should be used for interference cancellation rather than boosting the

desired signal.

D. Numerical results for coverage and discussion

In Figure 4, the coverage probability is plotted for 1×4 configuration for α = 4 and different

choices of m and δ using Theorem 2. In the same Figure, the coverage results for different

configurations obtained by Monte Carlo simulation are marked by ⊕. We first observe that the
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coverage results obtained with Monte Carlo simulations match with the analytical results.

We observe that utilizing all the antennas for interference cancellation is not optimal. In fact,

from Figure 4, we observe that utilizing all the antenna for interference cancellation leads to the

lowest coverage probability, particularly for medium SIR thresholds.

If a very high SIR is required, we observe from Figure 4 that it is better to use all the antenna

for cancellation. This can be observed by looking at the crossover points of the different curves.

So an interior user should use his antenna to cancel interferers and obtain a higher SIR. For

most users, canceling the strongest interference improves the coverage significantly over the ZF

receiver which utilizes all of its receiver DoF to cancel interference. So in a practical system,

obtaining the channel of the nearest interferer is sufficient to have good coverage. It can also

be seen that canceling nearest three BSs is giving almost same coverage compared to canceling

nearest two, the reason is that the interference from the third may not be strong enough. So the

better strategy can be canceling nearest BSs and using the remaining DoF for array gain. We

also observe that canceling one interferer, i.e., m = 2 has the highest coverage probability and

corresponds to m∗(0) for Nt ×Nr = 1× 4.

Now coming to the performance of the PZF receivers with multi-stream transmission, we can

see that the coverage probability reduces with increasing SM rate for a fixed number of antennas

at the receiver. In Figure 4, it is easy to see that the coverage is heavily reduced with increasing

the number of streams Nt. This is because, increasing the number of streams while keeping Nr

constant will increase the interference and the antenna available to cancel external interference

is also reduced. For the edge user this effect is dominant and we can get more insight into this

when we study the rate parameters.

V. LINEAR MMSE RECEIVER

In this Section, we analyze the performance of a linear MMSE receiver with inter-cell inter-

ference. We consider the case where each BS uses its antennas to serve independent data streams

to the users connected to it. Each user decodes its assigned stream using a linear MMSE receiver
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treating other streams as interference. Focusing on the user at the origin, interested in the k-th

stream, the linear MMSE filter is given by v
†
ô,k = h

†
ô,kR

−1
ô,k, where

Rô,k =
1

Nt rα

Nt∑

q=1,q 6=k

hô,k h
†
ô,k +

1

Nt

∑

x∈Φ\ô

1
√

‖x‖α
HH† + σ2INr

,

is the interference plus noise covariance matrix. The post processing SINR at the receiver is

given by

SINR =
1

Nt rα
h
†
ô,kR

−1
ô,khô,k.

It is assumed that each receiving node has the knowledge of corresponding transmitting channel

H0 and Rô,k.

The result in [19], [20] can be used to express the SINR distribution in terms of the channel

gains. We then use the probability generating functional of the PPP to average the channel gains

to obtain the coverage with a MMSE receiver. In [18], the exact distribution of SIR with SM

and MMSE receiver has been obtained in an ad hoc network when the interferers are distributed

as a spatial Poisson point process. However, the results are obtained by starting with a finite

network and then obtaining the final distribution by a limiting argument. The proof in this paper

uses the probability generating functional, and is easier to extend to other spatial distribution of

nodes. Also, as mentioned earlier, unlike an ad hoc network, where the distance to the intended

transmitter is fixed, in a cellular network the distance r is random making the network scale

invariant (the coverage probability without noise does not depend on the density of the BSs).

We first introduce some notation about integer partitions from number theory that we use to

present the main results in this paper. We need integer partition to represent coefficient of m-th

term of a polynomial which is a product of a number of polynomials. The integer partition of

positive integer k is a way of writing k as a sum of positive integers. The set of all integer

partitions of k is denoted by Ik and pj is the j-th term in the partition p. Here we used |p|

to denote the cardinality of the set p. For example, the integer partitions of 4 are given by

I4 = {{1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {1, 3}, {4}}. The second term of the partition, p = {1, 1, 1, 1},

is p2 = 1 and |p| = 4. For each partition, we introduce non-repeating partition set, q(p), without
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any repeated summands and q(p)j represents the number of times the j-th term of q(p) is

repeating in p. For example, for the partition p = {1, 1, 2}, we have q(p) = {1, 2} and q(p)1 = 2.

The next Theorem provides the coverage probability in a general setting.

Theorem 3. The probability of coverage with a linear MMSE receiver, when the BS locations

are modelled by a PPP is

PMMSE(z) =
1

(1 + z)Nt−1

∫ ∞

0

e−zσ2 rα
Nr−1∑

m=0

Nr−m∑

v=1

(zσ2 rα)v−1

(v − 1)!
zm

min(m,Nt−1)
∑

k=0

(
Nt − 1

k

)

∑

p∈Im−k

e−πλr2Θ0,Nt
(z) (2 π λ)|p|+1Kp(z)r

2|p|+1dr, (14)

where Θς,Nt
(z) = 2F1

(
Nt, ς − 2

α
; ς − 2

α
+ 1;−z

)
and Kp(z) =

∏|p|
j=1 (

Nt
pj
)
Θpj,Nt

(z)

αpj−2
∏|q(p)|

j=1 q(p)j !
.

Proof: See Appendix C.

When σ2 = 0, the coverage probability expressions can be simplified and does not require

integration.

Lemma 2. The coverage probability of a typical user in an interference-limited environment,

i.e., σ2 = 0 with MMSE receiver is

PMMSE(z) =
1

(1 + z)Nt−1

Nr−1∑

m=0

zm
min(m,Nt−1)
∑

k=0

(
Nt − 1

k

)
∑

p∈Im−k

2|p|Γ(|p|+ 1)Kp(z)

Θ0,Nt
(z)|p|+1

, (15)

Proof: Follows from Theorem (3), by setting σ2 = 0 and integrating with respect to r.

Note the the coverage expression in (15) is not a function of λ. This is because of the

scale invariance property of the PPP. In Figure 5, the coverage probability with linear MMSE

receiver is plotted for different configurations. As expected, using higher number of transmitting

antennas, keeping Nr the same, the coverage probability reduces because of the increased

interference. Also, as the number of receiving antennas increase, keeping Nt a constant, the

coverage probability increases because of increased diversity order.
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Fig. 5: Coverage probability versus z for for different antenna configurations with σ2 = 0 and

α = 4 using a linear MMSE receiver.

VI. AVERAGE ERGODIC RATE

In this Section, we compute the rate CDF for a typical user and also the ergodic data rate.

We assume that Nt users are being served by the BS in a cell, with one stream per user. Also

for computing the rate, we treat residual interference as noise. The ergodic rate is given by

E[log2(1+ SINR)] . Since log2(1+ SINR) is a positive random variable, its mean is given by the

integral of its CCDF. Hence

C(Nt, Nr)
△
= E [log2(1 + SINR)] =

∫ ∞

0

P(SINR ≥ 2t − 1)dt. (16)

P(SINR ≥ 2t − 1) depends on the receiver used and follows from the coverage probability by

setting z = 2t − 1.
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Total rate with SM: In SM each user decodes a single stream and hence achieves an ergodic

rate C(Nt, Nr), Nt > 1. Hence for Nt users, the rate CDF is given by

FSM(c) = P(Nt log2(1 + SINR) ≤ c), (17)

where SINR denotes the SINR with Nt transmit and mNt + δ receive antenna3. The above

distribution can be easily computed from the SINR CCDF in Theorem 2 for a PZF receiver and

the result in Theorem 3 for the MMSE receiver. It is easy to see that the total average downlink

rate is given by CSM = NtC(Nt, Nr).

Total rate with SST: In SST, the BS has only one antenna, i.e., Nt = 1. Hence it can serve only

one stream and hence one user. So all the users are served by dividing the resources either in time

(TDMA) or frequency (FDMA). Hence in this case, each user has 1/Nt time or frequency slice.

In SST, since the resources have to be divided among the users, each user achieves an average rate

N−1
t C(1, Nr). Hence for Nt users the average total downlink rate achieved is CSST = C(1, Nr).

The rate CDF is given by

FSST (c) = P(log2(1 + SINR) ≤ c).

Various rate profiles are presented in in Table II, Figures 6, 7, 8 and 9 for path loss exponent

α = 4 and σ2 = 0 obtained by numerically evaluating the analytical expressions. In Table II,

the rate profile is provided for various antenna configurations when a PZF receiver is used. We

observe that the average rate is maximized4 when m = m∗(0) = Nt

⌈(
1− 2

α

) (
Nr

Nt
− 1

2

)⌉

. We

also observe that the MMSE receiver provides higher ergodic rate compared to PZF receiver for

all antenna configurations.

In Figure 6, the average rate is plotted as a function of number of transmit streams for various

Nr with a MMSE receiver. We observe that the average sum rate does not increase linearly with

the number of transmit antenna. Interestingly, transmitting Nt = Nr streams, does not lead to

3In this expression we are neglecting the correlations of SINR across the users.

4These maximum values are underlined in the Table.
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PZF

SM/SST Nt ×Nr (m,δ) Mean 5% 80%

SST

1× 4 (4,0) 3.51731 0.187 5.7162

1× 4 (3,1) 4.2137 0.5804 6.4790

1× 4 (2,2) 4.26918 0.7899 6.3964

1× 4 (1,3) 3.83127 0.8333 5.622

1× 6 (6,0) 3.9738 0.2585 6.3549

1× 6 (1,5) 4.3858 1.2300 6.2300

1× 6 (2,4) 5.0142 1.3100 7.2100

1× 6 (3,3) 5.2393 1.2900 7.5700

SM

2× 6 (3,0) 5.0627 0.1541 8.4645

2× 6 (1,4) 6.5011 1.2600 9.6600

2× 6 (2,2) 6.8904 0.9200 10.7

3× 6 (2,0) 5.5691 0.1100 9.1100

3× 6 (1,3) 7.6797 1.0500 11.7100

MMSE

SM/SST Nt ×Nr Mean 5% 80%

SST

1× 2 3.36 0.404 5.22

1× 4 4.87 1.149 7.19

1× 6 5.85 1.77 8.26

SM

2× 2 3.64 0.319 5.38

2× 4 6.35 1.016 9.46

3× 4 6.63 0.958 9.73

4× 4 6.58 0.925 9.09

2× 6 8.06 1.73 11.97

3× 6 9.12 1.66 13.64

4× 6 9.56 1.62 13.96

5× 6 9.67 1.59 13.65

6× 6 9.34 1.57 12.87

TABLE II: Rate profile comparison for various configurations with PZF (left) and MMSE (right)

receivers.

the maximum rate. For example, with Nr = 6 the maximum rate is achieved by transmitting

five streams and not six streams. We also observe that while transmitting more streams than Nr,

would hurt the average rate, the rate reduction is slow with increasing streams. For example,

consider the case of Nr = 4. We see that transmitting five streams decreases the sum rate from 7

bits/sec/Hz to 5 bits/sec/Hz . However, the average rate is more or less fixed even if the number

of streams are increased above five. From Figure 7, similar to the MMSE receiver, we observe

diminishing returns with increasing Nt even for the PZF receiver. The mean rate for PZF receiver

configured with 1× 4 is 4.27 while it is 5.27 for 2× 4, 5.57 for 3× 4 and 4.47 for 4× 4.

According to ITU definition, the 5% point of the CDF of the normalized user throughput is

considered as cell edge user spectral efficiency and is plotted in Figure 8 for a PZF receiver.

We see that increasing Nt and hence increasing the number of streams in SM degrades the
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Fig. 6: Average rate versus number of transmit streams with a MMSE receiver.
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Fig. 7: Average rate versus number of transmit streams with a PZF receiver for optimal m.

performance of the edge users. For the edge users the SINR is very weak. Adding more streams

will increase the interference which is difficult to cancel. For example in the Nr = 4 case,

the mean rate increases from 4.27 to 5.57 when Nt increases from 1 to 3. However, cell edge

users rate reduces from 0.82 to 0.34 (almost halved) and for Nt = 4 it is 0.073. Therefore the
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Fig. 8: Cell edge spectral efficiency versus number of transmit streams with a PZF receiver.

degradation in performance for the cell edge users is drastic compared to a little improvement in

the average sum rate for the PZF receiver when moving from SST to SM. A similar observation

can be made for other receiver configurations. This implies increasing Nt and using the multiple

transmit antenna for transmitting more streams will hurt the cell edge users. So from an edge

user perspective, SST is more beneficial.

In Figure 9, the cell edge spectral efficiency is plotted for a MMSE receiver. We observe that

unlike a PZF receiver, the cell edge rate does not decrease significantly with increasing streams.

This suggests that MMSE receiver is the choice for edge users if SM is utilized to transmit

multiple streams. It will be interesting to see the performance of MMSE receiver with limited

channel knowledge.

VII. CONCLUSION

In this paper, we characterized the performance of open-loop spatial multiplexing techniques in

cellular networks with both MMSE and partial zero-forcing receivers in the presence of distance

dependent intercell interference. Expressions for the CDF of the SINR of a typical user are
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obtained using tools from stochastic geometry. The distribution of SINR is used to characterize

the coverage and the rate of a typical user. For the PZF receiver, we show that it is optimal to

cancel Nt

⌈(
1− 2

α

) (
Nr

Nt
− 1

2

)⌉

closest interferers, where α is the path-loss exponent.

We observe that increasing the SM rate provides an improvement in the mean rate with

diminishing returns. The mean rate reaches a maximum value for a certain optimum SM rate

that is generally less than Nr. In contrast, increasing the SM rate always degrades the cell

edge data rate for the PZF receiver, while the cell edge rate with a MMSE receiver is nearly

independent of the SM rate. However, the MMSE receiver requires the full channel knowledge

and the practicality of MMSE receiver should be addressed along with the pilot design methods

to enable reliable estimation of channel and interference parameters.
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APPENDIX A

PROOF OF THEOREM 2

In Theorem 1, setting σ2 = 0, we have

PPZF(z) =

∫ ∞

0

∫ ∞

r

δ∑

k=0

(−s)k

k!

dk

dsk
LI(s)

∣
∣
∣
s=zrα

fR|r(R|r)fr(r)dRdr.

We first evaluate the derivatives inside the above integral. The k-th derivative of LI(s) can be

evaluated using Faà di Bruno’s formula for the derivative of a composite function g(f(x)), and

properties of the derivatives of the hypergeometric function. In this paper we use a set partition

version of Faà di Bruno’s formula which is stated below.

dk

dsk
g (f(s)) =

∑

υ∈Sk

g(|υ|)(f(s))

k∏

j=1

(f (j)(s))|υ|j ,

where the notation for the set partition is introduced in Section IV-B. Let g(s) = e−λπ R2s and

f(s) = 2F1

(
Nt,− 2

α
; α−2

α
;−R−αs

)
. Hence LI(s) = eλπR

2
g(f(s)). The p-th derivative of g(s) is

g(p)(s) = (−λπR2)
p
e−λπR2s. The following property of hypergeometric functions can be easily
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verified dj

dsj 2F1(a, b; c; s) =
(a)j(b)j
(c)j 2F1(a + j, b + j; c + j; s), where (a)j is the Pochhammer

symbol. Hence,

f (j)(s) =
(Nt)j(− 2

α
)j

(α−2
α

)j
(−R−α)j 2F1(Nt + j,− 2

α
+ j;

α− 2

α
+ j;−R−αs). (18)

Using the property,
∑k

j=1 j|υ|j = k and Faà di Bruno’s formula, we obtain

dk

dsk
LIR

(s)
∣
∣
∣
s=zrα

=eλπR
2
∑

υ∈Sk

(−1)k+|υ| (λπ)|υ| R2|υ|−αke−λπ R2
2F1(Nt,− 2

α
;α−2

α
;−R−αrαz)

×
k∏

j=1

(
(Nt)j(− 2

α
)j

(α−2
α

)j
2F1(Nt + j,− 2

α
+ j;

α− 2

α
+ j;−R−αrαz)

)|υ|j
. (19)

We obtain PPZF(z) by substituting (19) in Theorem 1 with the functions fR|r(R|r) and fr(r)

given by (3) and (2). Then by using the transformation R/r → β and r → t (which implies

β > 1), and the corresponding Jacobian we have (after basic algebraic manipulation),

PPZF(z) =
4(πλ)m

(m− 2)!

δ∑

k=0

(−z)k

k!

∫ ∞

t=0

∫ ∞

β=1

∑

υ∈Sk

(−1)k+|υ| (λπ)|υ| (βt)2|υ|−αke−λπ (βt)2 2F1(Nt,− 2
α
;α−2

α
;−β−αz)

×
[

k∏

j=1

(
(Nt)j(− 2

α
)j

(α−2
α

)j
2F1(Nt + j,− 2

α
+ j;

α− 2

α
+ j;−β−αz)

)|υ|j
]

tαk+2m−1(β2 − 1)m−2βdβdt.

We can see that the product term is free of t and we can group the other terms and by integrating

with respect to t we obtain the result.

APPENDIX B

PROOF OF THEOREM 3

Denote the BS serving the typical user at the origin by x0 which is at a distance r, we have

from [19],

P(SINR > z|r) = e−z/γ
Nr−1∑

m=0

(
Nr−m∑

v=1

(z/γ)v−1

(v − 1)!

)

zm EΦ′

[
Cm

D(z)

]

, (20)

where Nr is the number of receiver antennas and Cm is the coefficient of zm in D(z), which

is given by D(z) = (1 + z)Nt−1
∏

x∈Φ′(1 + Γxz)
Nt , where Φ′ = Φ\{x0}. The first term in D(z)

corresponds to same cell interference due to the Nt − 1 streams intended for the other users of

the same cell and the second term corresponds to the interference contribution from other cells.
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Here, Γx’s are the interferer powers relative to the desired source, i.e., Γx = ‖x‖−αrα. By using

the binomial expansion D(z) can be expanded as

D(z) =

Nt−1∑

k=0

(
Nt − 1

k

)

zk
∏

x∈Φ′

Nt∑

ν=0

(
Nt

ν

)

Γν
xz

ν .

We can observe that the coefficient of zm can be written as a product of coefficient of zk from

the first polynomial and the coefficient of zl from the second term such that m = k + l. Hence

the coefficient of zm is

Cm =
∑

k+l=m

(
Nt − 1

k

)
∑

p∈Il

∑6=
x1,x2,...,x|p|∈Φ′

∏|p|
j=1

(
Nt

pj

)
Γ
pj
xi

∏|q(p)|
j=1 q(p)j!

, (21)

where Il is the set of all integer partitions of l. See Section V for details about integer partitions.

Here
∑6=

implies sums over disjoint tuples. The term
∏|q(p)|

j=1 q(p)j! in the denominator of (21)

is to eliminate the repeating combinations of product terms formed by the permutations of

x1, x2, . . . , x|p| ∈ Φ′. For example, p = {1, 1, 2} is an integer partition of l = 4, and this partition

will contribute product terms {x1x2x
2
3, x2x1x

2
3, x1x

2
2x3, x3x

2
2x1, x

2
1x2x3, x

2
1x3x2}. Therefore the

total number of nonrepeating product terms is 3!/2! = 3. Hence

EΦ′

[
Cm

D(z)

]

= (1 + z)1−Nt

∑

k+l=m

∑

p∈Il

(
Nt−1

k

)

∏|q(p)|
j=1 q(p)j!

E





∑6=
x1,x2,...,x|p|∈Φ′

∏|p|
j=1

(
Nt

pj

)
Γ
pj
xi

∏

x∈Φ′(1 + Γxz)Nt





︸ ︷︷ ︸

T1

. (22)

We now focus on the term T1, which can be rewritten as

T1 = E





6=
∑

x1,x2,...,x|p|∈Φ′





|p|
∏

j=1

(
Nt

pj

)
Γ
pj
xi

(1 + Γxi
z)Nt




∏

x∈Φ′\{x1,x2,...,x|p|}
(1 + Γxz)

−Nt



 .

We now use Campbell-Mecke theorem for a PPP which we state for convenience. Let f(x, φ) :

(R2)n ×N → [0,∞) be a real valued function. Here N denotes the set of all finite and simple

sequences [23] in R
2. Let Φ be a PPP of density λ. We have

E

6=
∑

x1,x2,...xn∈Φ
f(x1, x2, . . . xn,Φ\{x1, x2, . . . , xn}) = λn

∫

(R2)n
E[f(x1, x2, . . . xn,Φ)]dx1dx2 . . .dxn.

In our case, we have T1 = E
∑6=

x1,x2,...,x|p|∈Φ′ f(x1, x2, . . . , x|p|,Φ
′ \ {x1, x2, . . . , x|p|}), where

f(x1, x2, . . . , x|p|, φ) =





|p|
∏

j=1

(
Nt

pj

)
Γ
pj
xi

(1 + Γxi
z)Nt





︸ ︷︷ ︸

T2

∏

x∈φ
(1 + Γxz)

−Nt .
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We use the probability generating functional of a PPP [23] to evaluate EΦ′ [f(x1, x2, . . . , x|p|,Φ
′)]

EΦ′ [f(x1, x2, . . . , x|p|,Φ
′)] = T2E

∏

x∈φ
(1 + Γxz)

−Nt

(a)
= T2 exp

(

−λ2π

∫ ∞

r

x(1 − (1 + x−αrαz)−Nt)dx

)

= T2 exp

(

−πλr2
(

2F1

(

Nt,−
2

α
;
α− 2

α
;−z

)

− 1

))

.

where (a) follows from the PGFL of a PPP, polar coordinate transformation and the fact that the

interferers are at a distance at least r away. Now substituting in the Campbell-Mecke theorem

we obtain

T1 =exp

(

−πλr2
(

2F1

(

Nt,−
2

α
;
α− 2

α
;−z

)

− 1

)) |p|
∏

j=1

(
Nt

pj

)

2πλ

∫ ∞

r

x(x−αrα)pj

(1 + x−αrαz)Nt
dx,

=exp
(
−πλr2 (Θ0,Nt

(z)− 1)
)

|p|
∏

j=1

(
Nt

pj

)
2πλr22F1

(
Nt, pj − 2

α
; pj − 2

α
+ 1;−z

)

αpj − 2
,

=exp
(
−πλr2 (Θ0,Nt

(z)− 1)
) (

2 π λ r2
)|p|

|p|
∏

j=1

(
Nt

pj

)
Θpj ,Nt

(z)

αpj − 2
.

Substituting for T1 in (22) we have EΦ′

[
Cm

D(z)

]

equals

(1 + z)1−Nt exp
(
−πλr2 (Θ0,Nt

(z)− 1)
) ∑

k+l=m

(
Nt − 1

k

)
∑

p∈Il

(2 π λ r2)
|p|∏|p|

j=1

(
Nt

pj

)Θpj,Nt
(z)

αpj−2
∏|q(p)|

j=1 q(p)j !
.

Substituting in (20), we obtain the conditional coverage probability. Averaging with respect to

the density of r given in (2), we obtain the result.
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