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Abstract: 

Synthesis of 1-(2-bromophenyl)-2-phenylethanonesvia an intermolecular Pd-catalyzed -arylation of 1-

(2-bromophenyl)ethanones, is presented. The method relies on a selective C‒H activation (-arylation) of 

relatively more reactive external iodo-arenes as coupling partners without affecting the bromo-substituent. 

Moreover, the scope and generality of the method has been well studied by employing the reaction on iodo-

arenes bearing electron withdrawing, simple and electron donating groups on the aromatic ring. 
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INTRODUCTION: 

Synthetic organic chemistry has always faced the challenge of developing sustainable methods. In this 

regard, efficient construction of C‒C bonds has been achieved by transition-metal catalysis. Among them, 

palladium has gained recognization as one of the most used metals for a wide spectrum of reactions. 

Namely, Heck,[1] Stille,[2] Suzuki,[3] Sonogashira[4] and Buchwald-Hartwig[5] coupling transformations are 

some of the renowned reactions. Even very recently, reactions of C–H activation via organo-palladium 

intermediate species have been versatile in this field.[6,7]  

The -arylation is one of the C–H activation of sp3 carbon present next to the carbonyl functionality, 

which involves  C-C bond formation, by the reaction of aryl halide and the carbonylcompond having -

hydrogens. Classical arylation of ketones follow the nucleophilic aromatic substitution reaction of a 

stabilized enolate on the aryl halide. This method requires stoichiometric amount of arylating reagent and 
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is hard to deal and various synthetic methods have to be followed to make different alkylating reagents for 

the α-arylation of ketones. Due to these main concerns chemists felt to develop new methods for the α-

arylation of ketones and have come up with a new transition metal catalyzed -arylation of ketones. In this 

regard Buchwald and Hartwig contributed a core part and developed various unusual and active palladium 

catalytic systems, by means of synthesizing diverse sterically hindered alkyl and electron-rich phosphine 

ligands for the selective -arylation8 of ketones. As per few reports, -arylations play a key step in synthesis 

of various intermediates present in natural and unnatural products.9 

In an extension to our ongoing research passion on transition-metal catalysis,[10] particularly in domino 

one-pot,[10f,g] domino sequential one-pot[10d,e] processes,we recently reported a novel domino Pd-catalysis 

for the synthesis of novel 7-Methyl-5H-dibenzo[a,c][7]annulen-5-ones,[10g] Herein, we present selective -

arylation of 1-(2-bromophenyl)ethanones using external iodo-arenes without affecting the bromo-

substituent of 1-(2-bromophenyl)ethanones (Scheme 1).  

 

  

Scheme 1. Comparison of the alkyl group directing Pd-catalysis. 

 

RESULTS AND DISCUSSION 



When Pd-catalysis of 1b was explored with the external halobenzenes (2a, 2e & 6g) as the coupling 

partners, it did not deliver the expected fused cyclic system (5ba & 5be) via bi-aryl formation followed 

by intramolecular Buchwald-Hartwig coupling, rather, impeded just after -arylation stage and gave the 

ketones (3ba & 3be). It is worth mentioning that the selective -arylation was found successful only in 

case of more reactive external iodo-arenes (2a & 2e) than the corresponding bromo counterparts (Scheme 

2).[10g]  

 

.  

Scheme 2. Reported - arylation of 2-bromoacetophenone 2b. 

The -arylations[9] have been established by the research groups of Buchwald and Hartwig. Recently, the 

Willis et al reported -arylation even by using 1-bromo-2-iodobenzenes as coupling partners.[11] Unlike the 

Willis et al report, the present work describes -arylation wherein the bromo-substituent is part of the 

acetophenone 1 (Scheme 2). The study began with the preparation of 2-bromoacetophenones 1b using the 

standard reaction conditions (methylmagnesiumiodide addition to 2-bromobenzaldehydes and oxidation of 

the resulted secondary alcohol to the corresponding ketone).[10f, 10g] However, after several attempts, we 

realized that reported reaction conditions[10g] for longer reaction time was not so general and applicable for 

other systems. In most of the cases, it was observed the formation of bi--arylation products along with the 



small amount of other by-products as well. This can be justified because of the fact that the little excess of 

iodo-arenes (2a & 2e) other than 2-bromoacetophenone 1b would always tend to participate for second -

arylation. Therefore, various attempts were made to identify the suitable reaction conditions. Gratifyingly, 

it was recognized that the conditions[8a] reported by Buchwald et al were found suitable to our systems (i.e. 

with 1 equivalent of iodo-arene and 1.1 equivalents of 2-bromoacetophenone). Moreover, these optimized 

conditions were found broadly applicable to various iodo-arenes containing electron withdrawing, simple, 

and electron donating substituents on the aromatic ring. Comparatively, the reaction was completed in 

shorter reaction time (i.e. typically 45 min to 3 h) than that reported previously[10g] and furnished clean -

arylation products 3ac-3cf in very good yields as shown in Table 1.  

 

Table 1. Pd-catalyzed -arylation of 2-bromoacetophenones 1a–1c with iodo-arenes 2a–2f.[a,b,c] 

 
[a] All reactions are carried out on 0.5 mmol scale of iodo-arenes in 4 mL of toluene (0.12 M).  
[b] Yields in the parentheses are isolated yields of chromatographically pure products.  
[c] For compounds 3ac-3cf the first letter refers to the 2-bromoacetophenes 1a-1c whereas the second letter indicates the aromatic ring 
coming from iodo-arenes 2a-2f. 

 

 CONCLUSION 



In summary, we have developed a Pd-catalysis selective -arylation of 1-(2-bromophenyl)ethanones, for 

the synthesis of 1-(2-bromophenyl)-2-phenylethanones. The relatively more reactive external iodo-arenes 

than bromo-arenes are identified as suitable coupling partners. 

EXPERIMENTAL SECTION 

1-(2-bromophenyl)-2-(3,4-dimethoxyphenyl)ethanone (3ac): General Procedure-1 followed with 

aryliodide 2c (132.0 mg, 0.50 mmol), ortho-bromoacetophenone 1a (109.4 mg, 0.55 mmol), Pd(OAc)2 (2.2 

mg, 2 mol%), xantphos (11.6 mg, 4 mol%), tBuOK (72.9 mg, 0.65 mmol) and dry toluene (4 mL) at 80 C 

for 45 min. Silica gel column chromatography (20 g, petroleum ether/ethyl acetate, 85:15 to 80:20) 

furnished the title compound 3ac (155 mg, 92%) as yellow solid, recrystallized the solid with 

dichloromethane/hexane, m. p. 74–76 C. [TLC control (petroleum ether/ethyl acetate 90:10), Rf(1a)=0.55, 

Rf(2c)=0.45 and Rf(3ac)=0.20, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2956, 2923, 2852, 

1697, 1587, 1512, 1463, 1422, 1259, 1154, 1140, 1025, 791, 757, 678 cm-1. 1H NMR (CDCl3, 400 MHz): 

δ=7.57 (d, 1H, J=7.8 Hz, Ar-H), 7.35–7.15 (m, 3H, Ar-H), 6.78 (d, 1H, J=8.7 Hz, Ar-H), 6.76 (dd, 1H, 

J=8.7 and 1.9 Hz, Ar-H), 6.74 (d, 1H. J=1.9 Hz, Ar-H), 4.15 (s, 2H, ArCOCH2), 3.83 (s, 3H, ArOCH3), 

3.82 (s, 3H, ArOCH3) ppm. 13C NMR (CDCl3, 100 MHz): 201.8 (s, Ar-C=O), 148.9 (s, Ar-C), 148.1 (s, 

Ar-C), 141.4 (s, Ar-C), 133.5 (d, Ar-CH), 131.4 (d, Ar-CH), 128.6 (d, Ar-CH), 127.2 (d, Ar-CH), 125.8 (s, 

Ar-C), 121.9 (d, Ar-CH), 118.6 (s, Ar-C), 112.7 (d, Ar-CH), 111.2 (d, Ar-CH), 55.8 (q, 2C, 2 × ArOCH3), 

49.0 (t, Ar-COCH2) ppm. HR-MS (ESI+) m/z calculated for [C16H16
79BrO3]+=[M+H]+: 335.0277; found 

335.0294, [C16H16
81BrO3]+=[M+H]+: 337.0259; found 337.0274. 

SUPPLEMENTARY MATERIAL 

Copies of 1H and 13C NMR spectra related to this article can be found online at. 
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