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The dynamics of Ostwald ripening is treated by cluster distribution kinetics represented by a

population balance equation that also describes growth or dissolution. Unlike simple crystal growth

driven by supersaturation, the smaller, more soluble clusters in the distribution dissolve during

ripening near equilibrium and vanish when they reach the critical nucleus size. Larger clusters

accordingly grow as the supersaturation decreases. The long-time asymptotic result of the numerical

solution of the scaled population balance equation is power-law decrease of cluster number and

growth of average cluster mass, Cavg(u). The cluster distribution approximates an exponential

self-similar solution, and eventually narrows until but one large cluster remains, satisfying the mass

balance. A previous theory is here extended to include mass-dependent rate coefficients for growth

and dissolution that satisfy microscopic reversibility. The asymptotic power-law growth, Cavg

;u1/(4/3-l), is determined by the power l on the mass for rate coefficients. The power is l51/3 for

diffusion-controlled and l52/3 for surface-controlled processes. Experimentally observed ripening

behavior is realized by an apt choice of l for a given time range. © 2002 American Institute of

Physics. @DOI: 10.1063/1.1510769#

I. INTRODUCTION

The dynamics of cluster growth and dissolution finds

application in many scientific fields, including biology,1

aerosol science,2 materials science,3 surface science,4

geology,5 and chemical engineering.6 The growth dynamics

for clusters such as crystals, particles, or droplets in solid–

liquid, solid–vapor, liquid–vapor, liquid–liquid, or solid–

solid phase transitions can be understood by examining the

time evolution of cluster size distributions ~CSDs!. The ki-

netics, thermodynamics, and transport processes for the sys-

tem influence the evolution. Modeling the temporal evolu-

tion can be accomplished by population balance equations

~PBEs! that describe the distribution dynamics by mass bal-

ances expressed as integro-differential equations for the

CSD.7–9 At the molecular level monomers reversibly attach

and dissociate at the cluster surface, causing dispersive

growth similar to polymerization, and leading eventually to a

dynamic equilibrium. Our overall aim is to develop a general

and comprehensive approach to such particulate dynamics by

means of distribution kinetics expressed through PBEs.

In condensed-matter physics, Ostwald ripening, or coars-

ening, is the final stage of a first-order phase transition for

condensation of a metastable phase.10 The first stage is

nucleation, and the second stage is dispersed cluster growth

by reversible monomer deposition. In the final stage, smaller

clusters dissolve and give up their monomers to larger clus-

ters. The explanation for such ripening is based on the

Gibbs–Thomson equation, which relates the ratio of interfa-

cial energy to thermal energy such that smaller clusters are

more soluble than larger ones. Clusters become less stable as

they become smaller, and eventually dissolve, transferring

their mass to the solution and on to larger clusters. Clusters

smaller than the critical nucleus are here considered com-

pletely unstable, and hence they instantaneously

disappear.5,11 The ultimate state is reached when only one

cluster remains in equilibrium with the monomer solution.2

The eventual evolution to a single cluster is slow and follows

a power-law relation.10,12 For example, in the crystallization

of biological macromolecules from precipitates,2 Ostwald

ripening occurs over a period of months. Time scales on the

order of millions of years may be required for geological

ripening phenomena.5

In our population balance equation formulation, a rate

coefficient describes the rate with which collisions between a

monomer and a cluster result in attachment. The size depen-

dency of this growth rate coefficient affects the shape of the

resultant cluster size distribution. The growth of clusters may

also be influenced by diffusion and convection effects. As

with nucleation, solubility affects growth rates, which de-

pend on the rate at which molecules reach the growing clus-

ter surface. For protein crystallization, Feher and Kam13 have

shown that the regions surrounding growing crystals have

lower protein concentration relative to the surrounding solu-

tion. The rate of diffusion of proteins in and out of these

regions around the growing crystal limits the growth. An-

other case is when the surface process controls the growth.

Thus, the rate coefficient for crystal growth realistically de-
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pends on size. The dissolution rate is represented as a rate

coefficient times the cluster concentration, where surface

conditions and mass transfer from the surface can influence

the rate. For both diffusion and surface controlled cases, the

deposition and dissolution rates increase with cluster size.

Recently, Madras and McCoy7 formulated a new ap-

proach to Ostwald ripening that accounted for the evolution

of the CSD in terms of spherical cluster mass. This approach

is based on distribution kinetics with single-monomer con-

current addition and dissociation. The equations are appli-

cable to the reversible process and can be used to quantita-

tively model growth, dissolution, or ripening phenomena.

The reversibility ensures that a closed system relaxes to dy-

namic equilibrium with monomer addition and dissociation

continuing at equilibrium. This theory also showed the evo-

lution of the CSDs to a single large cluster. However, the

ripening theory was restricted to rate coefficients for growth

and dissolution independent of size. Coalescence was ig-

nored to focus on growth and dissolution behavior, but ag-

gregation and deaggregation processes can be incorporated

via a PBE approach.14 Diffusion-controlled growth is re-

stricted to widely separated particles, but it is possible that

other growth mechanisms can be represented by treating size

dependence as an experimental parameter. Reviews15,16 of

cluster nucleation and growth by ripening have been pub-

lished. A recent paper17 involves surfactants added to the

solution, such that the presence of micelles changes the rip-

ening problem by including a micellar phase in addition to

the solution and clusters.

Conventional theories are based on solving an approxi-

mate first-order differential equation for cluster growth of the

CSD.18–23 Most of these theories also approximate the expo-

nential in the Gibbs–Thomson equation by a linear term.

Many models do not explicitly represent the evolution of the

CSD to a single large cluster, where the variance of the CSD

would approach zero ~polydispersity index approaches

unity!. Moreover, some ripening models apply only to a few

particles rather than to the distribution of cluster sizes. A key

feature of the present theory is that the relationship between

interfacial and thermal energy is applied in two ways: to

determine the increased solubility of smaller particles rela-

tive to large particles, and to represent the critical nucleus

size. In classical nucleation theory, clusters smaller than the

critical size are unstable, and can exist only as fluctuations.

Accordingly, we assume that clusters smaller than the critical

size instantaneously vanish.

As described previously, the evolution of CSDs can be

influenced by the size-dependent rates for cluster growth and

dissolution. The goal of the present work is to extend our

earlier treatment7 to include rate coefficients that depend on

cluster mass, and satisfy microscopic reversibility. The coef-

ficients are determined by diffusion- or surface-related pro-

cesses. The theory with size-dependent rates demonstrates

that ripening continues until cluster mass is accumulated into

a single large cluster, and the polydispersity index thus de-

creases to unity. We show that the final equilibrium state is

approached by an asymptotic process independently of initial

conditions. By accounting in the rate expressions for

diffusion- or reaction-controlled growth and dissolution, the

theory provides a framework for understanding the observed

features of Ostwald ripening, including self-similar CSDs

and power-law increase of average cluster size with time.

After introducing the theoretical model and the govern-

ing differential equations in scaled form ~Sec. II!, we nu-

merically solve for the CSD evolution ~Sec. III! over a large

time range. The asymptotic long-time power-law solution is

derived from the moment equations ~Sec. IV!. We present a

new relationship between the exponent, l, for the rate coef-

ficient and the power, b5(4/32l)21. Results are discussed

by comparison with other models and with experimental ob-

servations. In Sec. V conclusions about the validity of the

present theory and of previous theories of ripening are dis-

cussed.

II. THEORETICAL MODEL

For cluster ripening in a batch system, the CSD is de-

fined by c(x ,t)dx , representing the concentration of clusters

at time t in the differential mass range (x ,x1dx). Moments

are defined as integrals over the mass,

c ~n !~ t !5E
o

`

c~x ,t !xndx . ~2.1!

The zeroth moment, c (0)(t), and the first moment, c (1)(t),

are the time-dependent molar ~or number! concentration of

clusters and the cluster mass concentration ~mass/volume!,
respectively. The ratio of the two is the average cluster mass,

cavg
5c (1)/c (0). The variance, cvar

5c (2)/c (0)
2@cavg#2, and

the polydispersity, cpd
5c (2)c (0)/c (1)2, are measures of the

CSD broadness. The molar concentration, m (0)(t), of solute

monomer of molecular weight xm is the zeroth moment of

the monomer distribution, m(x ,t)5m (0)(t)d(x2xm).

The deposition or condensation process by which mono-

mers of mass x85xm are reversibly added to or dissociated

from a cluster of mass x can be written as the reaction-like

process,

C~x !1M~x8! ⇄

kd~x !

kg~x !

C~x1x8!, ~2.2!

where C(x) is the cluster of mass x and M(x85xm) is the

monomer. This process intrinsically conserves mass, and is

most naturally represented by balance equations in terms of

mass x rather than cluster radius r. The balance equations

governing the cluster distribution, c(x ,t), and the monomer

distribution, m(x ,t), are thus based on mass conservation:7

]c~x ,t !/]t52kg~x !c~x ,t !E
0

`

m~x8,t !dx81E
0

x

kg~x

2x8!c~x2x8,t !m~x8,t !dx82kd~x !c~x ,t !

1E
x

`

kd~x8!c~x8,t !d~x2~x82xm!!dx8

2Id~x2x*!, ~2.3!

and
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]m~x ,t !/]t52m~x ,t !E
0

`

kg~x8!c~x8,t !dx8

1E
x

`

kd~x8!c~x8,t !d~x2xm!dx8

1Id~x2x*!x*/xm . ~2.4!

According to the molecularity of Eq. ~2.2!, addition re-

actions are second order in c(x ,t) and m(x ,t), whereas dis-

sociation reactions are first order in c(x ,t). Nucleation of

clusters of mass x* at rate I are source terms or, in this case,

sink terms for denucleation, which occurs when clusters

shrink to their critical size, x*, and then spontaneously van-

ish. The difference between ordinary dissolution due to con-

centration driving forces and total disintegration due to ther-

modynamic instability is thus underscored. For ordinary

particle growth or dissolution, we set I50. Initial conditions

for Eqs. ~2.3! and ~2.4! are c(x ,t50)5c0(x), and m(x ,t

50)5m0
(0)d(x2xm).

We consider ripening to occur when competing growth

and dissolution processes for large and small clusters cause

~i! large particles to grow while smaller particles shrink, and

~ii! denucleation that decreases the number of clusters. The

CSD changes according to Eq ~2.3!, which becomes—when

the integrations over the Dirac distributions are performed—

the finite-difference differential equation,

]c~x ,t !/]t52kg~x !c~x ,t !m ~0 !
1kg~x2xm!c~x

2xm ,t !m ~0 !
2kd~x !c~x ,t !1kd~x1xm!

3c~x1xm ,t !2Id~x2x*!. ~2.5!

Equation ~2.5! shows that c(x ,t) increases by addition of

mass xm to the reactant of mass (x2xm) and decreases by

the loss of reactant of mass x. The dissociation of mass xm

from reactant of mass (x1xm) increases c(x ,t) while the

loss of reactant of mass x decreases c(x ,t). Equation ~2.5!
resembles an equation of Xia and Zinke-Allmang,24 except

for the absence of a denucleation term, and can be expanded

for xm!x to convert the differences into differentials.7,24

At equilibrium, ]c/]t50 and Eq. ~2.5! becomes

meq
~0 !

52@kd~x1xm!c~x1xm!2kd~x !c~x !#/

@kg~x2xm!c~x2xm!2kg~x !c~x !# . ~2.6!

As stated previously Eq. ~2.6! holds for equilibrium, so that

nucleation cannot occur (I50). Expanding the numerator

and denominator around x for xm!x gives

meq
~0 !

5d@kd~x !c~x !#/dx/d@kg~x !c~x !#/dx . ~2.7!

We can integrate the differentials between c(x50)50 and

ceq(x) to get

kd~x !5meq
~0 !kg~x !, ~2.8!

which is a statement of microscopic reversibility ~detailed

balance!.25,26 Thus, with rate coefficients for a cluster of

mass, x, if we have an expression for kg(x), we can calculate

kd(x).

A monomer that attaches to a cluster must diffuse

through the solution to react at the cluster surface.27 Such

diffusion-controlled reactions have a rate coefficient

represented28 by

kg54p~Dc1Dm!~rc1rm! ~2.9!

in terms of diffusion coefficients ~D! and radii ~r! for spheri-

cal cluster and monomer. Because Dc!Dm and rc@rm , we

have

kg54pDmrc ~2.10!

where rc5(3x/4p rc)1/3. Thus, we can write

kg~x !5gxl, ~2.11!

where l51/3 and g54pDm(3/4prc)1/3. The 1/3 power on x

thus represents diffusion-controlled ripening, and coincides

with Binder’s12 expression.

When growth is limited by monomer attachment and dis-

sociation at the cluster surface, the rate coefficient is propor-

tional to the cluster surface area,24 kg}rc
2, so that we can

write kg5gx2/3; thus in Eq. ~2.11!, l52/3 for surface-

controlled ripening. If the deposition is independent of the

surface area, then kg5gx0. Other expressions for the rate

coefficients that are applicable to cluster growth6,20,24,29 may

be realistic for complex and combined rate processes.

To establish an expression for the dissolution rate coef-

ficient, we use the Gibbs–Thomson equation,

meq
~0 !

5m`
~0 ! exp~V ! ~2.12!

with

V52sv/rcRT , ~2.13!

where v is monomer molar volume, s is interfacial energy, R

is the gas constant, and T is temperature. Substitution into

Eq. ~2.8! yields

kd~x !5kxl exp@v~x/xm!21/3# , ~2.14!

where k5gm`
(0) and v5(3xm/4prc)21/32sv/RT . Substi-

tuting these expressions in Eq. ~2.5! yields

]c~x ,t !/]t52gxlc~x ,t !m ~0 !~ t !1g~x2xm!l

3c~x2xm ,t !m ~0 !~ t !2kxl

3exp@v~x/xm!21/3#c~x ,t !1k~x1xm!l

3exp@v~~x1xm !/xm!21/3#

3c~x1xm ,t !2Id~x2x*!. ~2.15!

For l50, Eq. ~2.15! reduces to the governing equation in our

previous work.7

Using the dimensionless variables,

j5x/xm , u5tgm`
~0 !xm

l , S5m ~0 !/m`
~0 ! ,

C5cxm /m`
~0 ! , ~2.16!

C ~n !
5c ~n !/m`

~0 !xm
n , J5I/gm`

~0 !2xm
l

in Eq. ~2.15! and Eq. ~2.4! yields the fully dimensionless

equations,
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]C~j ,u !/]u5S~u !@2jlC~j ,u !1~j21 !lC~j21,u !#

2jl exp~vj21/3!C~j ,u !

1~j11 !l exp~v~j11 !21/3!

3C~j11,u !2Jd~j2j*! ~2.17!

and

dS~u !/du5@2S~u !1eVa#C ~l !
1Jj* ~2.18!

with initial conditions, S(u50)5S0 and C(j ,u50)

5C0(j). The ratio of interfacial to thermal energy, or

Gibbs–Thomson relationship, gives

V~j !5v/j1/3, j*5~v/ln S !3. ~2.19!

From Eq. ~2.1! the scaled moments are

C ~n !~u !5E
0

`

C~j ,u !jn dj . ~2.20!

In the formulation of Eq. ~2.17!, the Gibbs–Thomson equa-

tion applies to each cluster rather than to the average cluster;

thus, V is a function of j and larger clusters grow while

smaller clusters dissolve. Equation ~2.18! is a moment equa-

tion, however, and Va is evaluated at the average-sized clus-

ter, Va5v/(Cavg)1/3, where Cavg
5C (1)/C (0). An alternate

treatment is to expand @2S(u)1eV#'V , which is valid for

small V and for S near to its equilibrium value,10,18 S51.

Then Eq. ~2.18! would become

dS~u !/du5vC ~l21/3!
1Jj*. ~2.21!

The computational effect of this approximation becomes

negligible as the distribution shifts with time to larger par-

ticles.

The powers are equal for the growth and dissociation

terms in Eq. ~2.17! owing to detailed balancing—

microscopic reversibility, Eq. ~2.8!. Reif25 observes that for a

system in equilibrium, microscopic reversibility will in gen-

eral be valid, so that the probability of occurrence of a pro-

cess must equal the probability of occurrence of the reverse

process. Detailed balance is also a consequence of employ-

ing reciprocal relations in reaction processes.26

III. NUMERICAL SOLUTION

For various values of l we solved the differential Eqs.

~2.17!–~2.20! by a Runge–Kutta technique with an adaptive

time step with C(j ,u) evaluated sequentially at each time

step. Denucleation implies that clusters are removed at every

time step of the computation when they shrink to the critical

cluster size, j*, such that the CSD is zero when j<j*. The

cluster moments are calculated by integration of the nonzero

CSD from j* to `. Because C(j ,u) lies in the semi-infinite

domain, it was converted to a bounded range ~0,1! by the

mapping function, j5j*1(Cavg
2j*)y /(12y) with 0<y

<1. This causes y to vary from 0 to 1 when j varies from j*

to `. By choosing this mapping, we ensure that when y is

centered at 0.5, the distribution is centered around Cavg(u)

and is bounded at the lower end by j*, which increases as S

decreases, according to Eq. ~2.19!. Choosing this grid pro-

vides that the mapping is fine in the range of prevalent sizes

and coarse at very high and very low sizes. It is, therefore,

possible to consider a narrow CSD with a few hundred in-

tervals to do the numerical analysis. The mass variable ~y!
was divided into 1000 intervals and the adaptive time ~u!
step varied from 0.001 to 0.1 ensuring stability and accuracy

at all values of the parameters. I ~or J! is the number of

clusters removed at every time step of the computation when

they reach the critical cluster size, x*. At every time step, the

mass balance,

S01C0
~1 !

5S~u !1C ~1 !~u !, ~3.1!

was verified.

For generality, we consider an initial gamma distribution

with smallest cluster mass, j0
* ,

C0~j !5@C0
~0 !/G~a !b0#@~j2j*!/b0#a21

3exp@2~j2j0
*!/b0# , ~3.2!

which has the moments

C0
~n !

5C0
~0 !(

j5

n

~ j
n!j0

*
n2 j

b0
j G~ j1a !/G~a !. ~3.3!

Thus, C0
avg

5ab01j0
* and C0

var
5ab0 .2 We choose a51 for

an initial exponential distribution, the dimensionless zeroth

moment C0
(0)

51, and the supersaturation S055. The param-

eter values, v52 and 5, were used in computing the factor in

the Gibbs–Thomson equation, V, and the critical cluster

size, j*. The initial critical size, j0
* , is 30 when v5S055,

and 1.9 when v52 and S055. The initial average cluster

mass, C0
avg , of course must be larger than j0

* .

Figure 1 shows the evolution of the CSD for C0
avg

575

and l51/3. The distribution evolves @Fig. 1~a!# from an ini-

tial exponential distribution cut off at a value of j530, which

is the initial critical cluster size, j0
* . As the number of clus-

ters declines and the clusters become larger, the CSD area

and height decrease. The critical nucleus mass, represented

by the scaled quantity, j*, increases with time. Clusters

smaller than j* are totally unstable, and are considered to

vanish instantaneously. This is a departure from other

theories7,12 that assume clusters of all sizes are present in the

distribution, with the condition that limj→0 C(j ,u)50. The

numerical calculation for ripening ends when the remaining

one cluster is in equilibrium with the monomer phase, con-

sistent with the mass balance based on initial total amount of

monomer, is thus C`
(1)

5C0
(1)

1S021. Figure 1~b! shows that

the CSD is exponential for large j and Fig. 1~c! shows that

for similarity coordinates the lines nearly collapse onto a

single line and are therefore approximately self-similar.30

Eventually, the exponential CSD becomes a delta distribu-

tion.

Figure 2 shows the evolution of the supersaturation, S,

and the parameter, eV, with time as they approach each other

for l51/3. As indicated by Eq. ~2.18!, S5eV'1 is required

at equilibrium, where dS/du50. This justifies the expansion

of eV as a Taylor series for the asymptotic case, t→` .

Figures 3 and 4 show the time evolution of the cluster

number concentration and average cluster mass for various

values of l. The log–log plots indicate power-law decrease,

C (0);u2b, and increase, Cavg;ub, respectively, with time.
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It is obvious that the increase in average particle mass is

caused by the decrease in number of particles. If this were

not the case, then the mass increase would come from a

decrease in supersaturation, which is impossible if the sys-

tem is near equilibrium (S'1). The powers approach the

value in Table I, b51/(4/32l), and can be derived as a

long-time asymptotic solution as we will demonstrate

shortly. The asymptotic slopes, identical to accepted

values,21–23 b51 and 3/2 for l51/3 and 2/3, respectively,

are independent of the initial conditions, as illustrated in

Figs. 4~a!–4~c!. The average radius of the spherical cluster is

given by 4ravg
3 /3p5Cavg, so that if we define m by ravg

;u1/m, then m53/b5(423l) as displayed in Table I. For

l51/3 and 2/3, the values are m53 and 2, and are approxi-

mately in the range for ripening and normal grain growth,23

from 2 to nearly 6. It is evident in Fig. 4 that for times

smaller than the asymptotic limit, the slopes of log–log plots

of cluster size versus time are smaller, and m is larger, reach-

ing 6, as experiments show.23 For ripening experiments that

deviate from ideal diffusion or surface control, a value of l
could be selected to describe the data at a given time.

Figure 5 shows that the polydispersity, Cpd, for several

values of l, evolves to unity, corresponding to a delta distri-

bution for a single large cluster remaining after infinite time.

FIG. 1. Evolution of the dimensionless cluster size distribution for a51,

v55, S055, C0
(0)

51, C0
avg

575, l51/3, plotted on ~a! log-linear, ~b! linear-

log, and ~c! similarity coordinates.

FIG. 2. Time dependence of S(u) and eV showing the decrease of the

driving force, S2eV, for conditions of Fig. 1.

FIG. 3. Time evolution of the cluster number density, C (0)(u), showing

asymptotic power-law decrease with time for various l. The parameters

used in the calculations are a51, v55, S055, C0
avg

575 and C0
(0)

51.
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We also investigated the evolution of the CSDs for different

initial distributions, by assuming various values of the

gamma distribution parameter, a, in Eq. ~3.1! for l51/3.

Changing a implies that the initial polydispersity is different

in each case. Figure 6 indicates that the polydispersity, Cpd,

evolves to unity independently of the initial distribution.

IV. ASYMPTOTIC SOLUTION

In this section we present an analytical asymptotic ~long-

time! scaling solution10,12 for the present approach to the

Ostwald ripening problem. We convert our PBE, Eq. ~2.17!,
into a Fokker–Planck equation7 by expanding terms in C(j
61,u) around large j and keeping only first-order terms,

]C~j ,u !/]u5]@jl~S2eV!C~j ,u !#/]j2Jd~j2j*!.
~4.1!

The asymptotic solution requires that S→1 so that if we

expand eV we find

eV
2S;v/j1/3. ~4.2!

Because j grows with time as the CSD shifts to larger par-

ticles, v/j1/3 will eventually become small enough to justify

keeping only one term in the expansion. The cluster-mass-

based Eq. ~4.1! is similar to the cluster-radius-based conven-

tional ripening equation,7 except that we have explicitly in-

cluded the denucleation process.

The moment equations for Eq. ~4.1! with Eq. ~4.2! are

found by multiplying by jn and integrating ~the second term

by parts! according to the moment definition, Eq. ~2.20!,

dC ~n !/du52nvC ~n1l24/3!
2Jj*n ~4.3!

so that for n50,

dC ~0 !/du52J ~4.4!

and for n51,

dC ~1 !/du52vC ~l21/3!
2Jj*. ~4.5!

Now we assume, following Binder12 and Marqusee and

Ross,10 that for long time, C(j ,u) has a scaled solution in

terms of a function F to be determined,

FIG. 4. Time evolution of the average cluster size, Cavg(u), showing evo-

lution to asymptotic power-law increase with time. The parameters used in

the calculations are a51, S055, and C0
(0)

51 with ~a! v55, C0
avg

575, ~b!

v55, C0
avg

550, ~c! v52, C0
avg

55.

FIG. 5. Evolution of polydispersity, Cpd(u), with time. Other conditions are

the same as in Fig. 3.

TABLE I. Power-law behavior of Cavg;ub and ravg;u1/m.

l b5(4/32l)21 m53/b

0 3/4 4

1/3 1 3

1/2 6/5 5/2

2/3 3/2 2

1 3 1
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C~j ,u !5u22bF~~j2j*!ux!, ~4.6!

which is indeed a general form for the exponential solution

we found by our numerical analysis ~Fig. 1!,

C~j ,u !5@C ~0 !~u !/b~u !#exp@2~j2j*!/b~u !# . ~4.7!

Note that many ripening models have j*50, which in effect

ignores the denucleation process. Because the growth and

dissolution control the asymptotic behavior, such an approxi-

mation is admissible for a long-time solution, but becomes

less accurate in the nonasymptotic range. Our numerical re-

sults show that

C ~0 !~u !5a0u2b ~4.8!

and

b~u !5Cavg~u !2j*5a1ub, ~4.9!

which implies that C (1)
5C (0)Cavg is constant with u and

j*(u);ub. As time increases, the supersaturation S de-

creases to unity, and by the mass balance, Eq. ~3.1!, the total

cluster mass, C (1), becomes constant. This is referred to by

Gratz22 as ‘‘steady-state coarsening,’’ although the system is

changing with time. Therefore, the asymptotic solution is

C~j ,u !5@u22ba0 /a1#exp@2~j2j*!u2b/a1# . ~4.10!

Thus we get the same relationship for b and x in Eq. ~4.6!
found by others;10,12 in our notation, x52b . If b is known,

Eq. ~4.10! provides the time and size dependence of the

asymptotic CSD.

The moments of the exponential solution, Eq. ~4.7!, can

be written for integer values of n,

C ~n !~u !5C ~0 !~u !(
j5

n

~ j
n!j*n2 jb j j!, ~4.11!

which yields the asymptotic time dependence, C (n)(u)

;u2bubn. With dC (1)/du50 in Eq. ~4.5!, substituting the

time dependence yields u2bub(l21/3);u (2b21)ub, or

b51/~4/32l !. ~4.12!

To our knowledge, this is a new relationship between the

asymptotic power, b, and the exponent, l, of the rate coeffi-

cient. Equation ~4.12! shows how the exponent on the mass

dependence of the rate coefficients is related to the power-

law behavior of the time-dependent growth during ripening.

The new result @Eq. ~4.12!# for average mass, Cavg

;u1/(4/32l), is valid for well-known diffusion-controlled

~51/3! and surface-controlled ~52/3! processes, but may be

useful for more complex kinetics as well. For example, by

choosing the appropriate value of l, one may model data

with different values of m.21

Because the CSD is sharply peaked, the result is the

same if one considers a delta distribution in the asymptotic

limit, t→` , thus, if

C~j ,u !5C ~0 !~u !d~j2j*! ~4.13!

then the moments are

C ~n !~u !5C ~0 !~u !j*n ~4.14!

and the solution proceeds as above. The asymptotic solution

provides the basis for the assumed starting equation of other

treatments.19–21

V. CONCLUSION

Mathematically modeling the Ostwald ripening problem

is inherently difficult owing to the complex interactions of

kinetics, thermodynamics, and distribution dynamics for the

phase transition. Our approach utilizes a population balance

equation that incorporates the kinetics of monomer addition

and dissociation to describe how the cluster distribution

evolves in time. The thermodynamic relationship for size-

dependent solubility of clusters affects the driving force of

supersaturation, and through detailed balancing, influences

the mass dependence of the growth and dissolution rate co-

efficients. Small clusters are postulated to vanish spontane-

ously when they shrink to their critical nucleus size, thus

reducing the number density of clusters during the evolution

to a single large cluster. We thus differ from other models

that assume clusters of all sizes are present, even those

smaller than the critical nucleus size. By a numerical solu-

tion to the difference-differential population balance equa-

tion, Eq. ~2.17!, we find asymptotic power-law behavior, in-

dependent of initial conditions, for the decreasing cluster

number density and for the increasing average cluster mass.

According to an asymptotic solution based on the self-

similar, exponential form of the long-time behavior, the

power is simply related to the mass dependence of the rate

coefficients as b5(4/32l)21.

A goal of the current work has been to examine carefully

the detailed, fundamental features of Ostwald ripening. Con-

sistent with prior distribution-kinetics models,6–9 the theory

begins with the kinetics of the cluster mass distribution,

which obeys an integrodifferential population balance equa-

tion. Moments of the PBE provide differential equations that

show the evolution of total cluster mass, cluster number, and

their ratio, average cluster mass. The PBE describes not only

the reversible growth and dissolution rates, which depend on

a power of the cluster mass, but also the denucleation pro-

cess by which unstable clusters spontaneously dissolve and

FIG. 6. Polydispersity, Cpd(u), as a function of time for various initial

values of the gamma distribution parameter, a. Other conditions are the

same as in Fig. 1.
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vanish. The ratio of interfacial to thermal energy gives the

expression for the critical size when a cluster becomes un-

stable, and also provides the effect of particle-surface curva-

ture on solubility. Although other theories of ripening do not

adopt all these detailed features of kinetics and thermody-

namics, they are mostly correct in the asymptotic limit when

the growth process is rate-controlling.
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