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In this paper, we discover the origin of the scaling

laws of sediment transport under turbulent flow over

a sediment bed, for the first time, from the perspective

of the phenomenological theory of turbulence. The

results reveal that for the incipient motion of sediment

particles, the densimetric Froude number obeys the

‘(1 + σ )/4’ scaling law with the relative roughness

(ratio of particle diameter to approach flow depth),

where σ is the spectral exponent of turbulent

energy spectrum. However, for the bedforms, the

densimetric Froude number obeys a ‘(1 + σ )/6’ scaling

law with the relative roughness in the enstrophy

inertial range and the energy inertial range. For

the bedload flux, the bedload transport intensity

obeys the ‘3/2’ and ‘(1 + σ )/4’ scaling laws with the

transport stage parameter and the relative roughness,

respectively. For the suspended load flux, the non-

dimensional suspended sediment concentration obeys

the ‘−Z’ scaling law with the non-dimensional

vertical distance within the wall shear layer, where

Z is the Rouse number. For the scour in contracted

streams, the non-dimensional scour depth obeys the

‘4/(3 − σ )’, ‘−4/(3 − σ )’ and ‘−(1 + σ )/(3 − σ )’ scaling

laws with the densimetric Froude number, the channel

contraction ratio (ratio of contracted channel width to

approach channel width) and the relative roughness,

respectively.

1. Introduction
The genesis of the phenomenological theory of turbulence

was due to Kolmogorov [1], who derived the scaling

laws of the fully developed steady-state turbulence

originating from the unverified but conceivable tenets [2].

The phenomenological theory, however, provides an

easy means (preserving the scientific basis) predicting

the scaling laws of several fluid flow phenomena

governed by the turbulence. The primary advantage of

the applications of this theory in analysing the classical

2017 The Author(s) Published by the Royal Society. All rights reserved.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



2

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
473:20160785

...................................................

problems on fluid mechanics is that it allows us to obtain the desired results in a much

simpler way requiring less heuristic arguments. In particular, such theory establishes a unique

relationship between the dependent variable and the independent variables of a problem by

means of the turbulence scaling laws, in which the independent variables contain single free

exponents. But this is not the case for an empirical or semi-empirical law describing a problem

on fluid mechanics. The empirical or semi-empirical laws mostly originate from the dimensional

analysis with systematic arguments, containing numerous free exponents, which are determined

from the regression analyses using the experimental and/or field data. Therefore, empirical or

semi-empirical laws proposed by different investigators for a specific problem on fluid mechanics

may render different results. By contrast, the phenomenological theory of turbulence provides a

simple but logical treatment with a scientific background to obtain a unique relationship between

the dependent variable and the independent variables by controlling the degrees of freedom of

the exponents. However, such a relationship includes a multiplicative constant, which should be

obtained via experiments.

Over decades, the applications of the phenomenological theory of turbulence have received

much attention by scientists and engineers, particularly in modelling turbulent flows [2,3]. Some

applications of the phenomenology of turbulence include (i) counting the degrees of freedom, (ii)

comparing the microscopic and the macroscopic length scales, and (iii) obtaining the probability

distribution function of velocity gradients and the law of the energy decay [2]. Nikora [4]

derived the origin of the ‘−1’ spectral law in a wall-bounded turbulent flow by applying the

phenomenology of turbulence. The phenomenology of turbulence was also applied to obtain the

scaling and the similarity laws in open-channel flows [5].

Here, an attempt is made, for the first time, to explore the origin of the scaling laws of sediment

transport from the phenomenological theory of turbulence. We apply the momentum transfer

theory in conjunction with the laws of turbulent energy spectrum to find the link between the

laws of sediment transport and the turbulent energy spectrum.

The paper is organized as follows. In §2, a brief description of the laws of turbulent energy

spectrum is presented. The scaling law of threshold velocity is explained in §3. In §4, the scaling

law of bedload flux is obtained. The scaling law of suspended load flux is deduced in §5, while

the scaling law of scour in a contracted stream is derived in §6. Finally, conclusion is drawn in §7.

2. Laws of turbulent energy spectrum
The characteristic velocity vl of a turbulent eddy, having a characteristic length l, is expressed as

vl ∼

(∫∞

l−1
E(k) dk

)1/2

, (2.1)

where E(k) is the energy spectrum function, k is the wavenumber and the symbol ‘∼’ represents

the ‘scales with’. If the E(k) is characterized by the spectral exponent σ , from dimensional analysis,

it can be written E(k) ∼ V2
LL1+σ kσ , where VL is the velocity scale associated with the integral

length scale L representing the energy containing turbulent eddies. Substituting this form of E(k)

into equation (2.1) yields

vl ∼ VL

(

l

L

)−(1+σ )/2

. (2.2)

The above relationship simply relates the microscopic and macroscopic scales of the turbulent

flow aided by the spectral exponent. It is well known that when the large scale (that is, the

integral length scale or the forcing scale) and the small scale (that is, the dissipation scale)

are separated in the E–k plane, it yields two inertial ranges: the energy inertial range and the

enstrophy (half of square of vorticity) inertial range [6]. From the fundamental tenet of two-

dimensional turbulence, there exist two plausible cascades (figure 1): (i) the energy inverse

cascade and (ii) the enstrophy cascade. In the energy inverse cascade, energy flows in the reverse

direction (that is from small to large scales), while in the enstrophy cascade, the enstrophy

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



3

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
473:20160785

...................................................

k = kf

k–3

k–1

E

k–5/3

k

energy flux enstrophy flux

Figure 1. Schematic of turbulent energy spectrum illustrating the spectral laws.

flows in the forward direction (that is from large to small scales). Unlike three-dimensional

turbulence, two-dimensional turbulence is not characterized by the vortex stretching. From

the assumption of spectral localness of the cascades, the energy spectrum function E(k) in the

energy inertial range or in the enstrophy inertial range at a given wavenumber k, depends solely

on k and local straining rate. Therefore, the energy inverse cascade yields the ‘−5/3’ spectral

law: E(k) ∼ ε2/3k−5/3, where ε is the turbulent kinetic energy (TKE) dissipation rate. In contrast,

the enstrophy cascade yields the ‘−3’ spectral law: E(k) ∼ β2/3k−3, where β is the enstrophy

dissipation rate. Assuming that the energy flux is being fed in to a band of wavenumbers (approx.

kf), known as the forcing wavenumber, the ‘−5/3’ spectral law persists for k ≪ kf for a sufficiently

large Reynolds number, while the ‘−3’ spectral law persists for k ≫ kf up to the dissipation range,

where molecular viscosity prevails (figure 1). Another well-known spectral law in the wall-

bounded turbulent flow is the ‘−1’ spectral law of the energy spectrum (figure 1): E(k) ∼ u2
∗k−1

for L−1 ≤ k ≤ z−1 [4], where u∗ is the shear velocity and z is the vertical distance. Importantly,

for two-dimensional turbulence, the energy transfers from small to large scales in the energy

inverse cascade preserving the ‘−5/3’ spectral law. In contrast, if the energy transfers otherwise

(as in case of three-dimensional turbulence), then the ‘−5/3’ spectral law would not make any

difference in the spectral exponent [7]. Therefore, irrespective of the direction of energy transfer,

the ‘−5/3’ spectral law in the energy inertial range is valid for both two- and three-dimensional

turbulence (figure 1). Specifically, the two-dimensional turbulence is an idealized case, because

the natural flows over a sediment bed can withstand two-dimensionality only for a limited range

of scales.

The momentum transfer theory based on the turbulent energy spectrum revealed the features

of two-dimensional turbulence by linking the friction factor with the Reynolds number and

the roughness height [8]. However, the scaling law of the friction factor for two-dimensional

turbulence in the energy inertial range remains the same for the three-dimensional turbulence.

This is because for both two- and three-dimensional turbulence, the energy spectrum function

obeys the ‘−5/3’ spectral law in the energy inertial range. Rutgers [7] reported that in two-

dimensional turbulence, the energy inverse cascade and the enstrophy cascade can occur

simultaneously or separately depending on how the energy is being fed into the system (uniform

energy injection or oscillating energy injection into the flow). Here, we attempt to find the origin

of the scaling laws of sediment transport by means of laws of turbulent energy spectrum. We
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consider four classical sediment transport problems, which involve the interaction between the

turbulent flow and the sediment particles. These problems include the determination of the

scaling laws of threshold velocity, bedload flux, suspended load flux and scour in a contracted

stream. Such classical problems are the fundamental aspects in sediment transport research; and

therefore, this study intends to analyse such problems to provide an insight of the underlying

flow physics.

3. The scaling law of threshold velocity

(a) Theoretical analysis

Let us consider a fully developed turbulent stream flowing over a sediment bed as sketched

in figure 2. The mean flow depth is h, the mean flow velocity is U and the bed roughness

height is ks. As the ks can be scaled with the nominal diameter d of the sediment particle, we

can write ks ∼ d [9]. Here, the nominal diameter refers to the diameter of a sphere having the

same volume as that of a given sediment particle. A competent velocity, commonly known

as threshold velocity, is defined as the near-bed velocity uc or the mean flow velocity Uc that

is marginally sufficient to initiate the particle motion at the surface of a sediment bed. This

phenomenon is known as the incipient motion of sediment particles [10,11]. The use of the near-bed

flow velocity to quantify the inception of sediment particles remains elusive owing to numerous

complications involved in the velocity measurements at the particle level. On the other hand,

the concept of mean flow velocity to determine the threshold criterion is rather consistent since

the mean flow velocity for a given flow discharge is easy to determine. To estimate the near-

bed flow velocity or the mean flow velocity, the assumption of time-averaged longitudinal flow

velocity is an essential prerequisite. Since an accurate estimation of the near-bed flow velocity

is a difficult proposition, the time-averaged velocity distribution is often extrapolated up to the

particle level to obtain a crude estimation of the near-bed flow velocity as illustrated in figure 2.

Therefore, in this study, we consider the mean flow velocity Uc to represent the threshold velocity.

Several investigators experimentally found the threshold velocity of sediment particles under

different flow regimes [12–18]. Various empirical formulae to predict the threshold velocity were

also reported in the literature. An extensive survey of these formulae was done by García [9]

and Dey [19]. The empirical formulae reveal that for the hydraulically rough flow regime, the

threshold velocity in non-dimensional form can be expressed as a functional relationship as

follows:

Fdc =
Uc

(�gd)1/2
= Kf (ζ ), (3.1)

where Fd is the densimetric Froude number, � is the submerged relative density of sediment

particles [=(ρp – ρf)/ρf], ρp is the mass density of sediment particle, ρf is the mass density of

fluid, K is the multiplicative constant and ζ is the relative roughness (=d/h). Subscript ‘c’ denotes

the threshold value.

The Shields parameter Θ (=τ 0/(�ρfgd), where τ 0 is the bed shear stress and g is the

gravitational acceleration) is commonly used to define the sediment threshold condition

in hydraulically smooth and transitional regimes, while it has a constant value (=0.56) in

hydraulically rough flow regime [19]. However, the Shields parameter Θ and the densimetric

Froude number Fd can be linked as Θ = g(Fd/CR)2, where CR is the Chézy coefficient. This

relationship is also valid under threshold condition and reveals that for a fixed value of Θ , the Fd

is proportional to the CR. Moreover, in the hydraulically rough flow regime, the CR depends on

the relative roughness ζ either logarithmically or by a power of ‘1/6’ [19]. Therefore, at threshold

condition, it yields Fdc ∼ ζ−1/6, which is in conformity with equation (3.1). Here, we show that

the same scaling law can be derived by applying the spectral law in the energy inertial range in

conjunction with the momentum transfer theory of turbulent eddies. In this study, we explore

that the ‘−1/6’ scaling law is legitimate within the energy inertial range, but beyond this range,

different scaling laws are valid according to the laws of turbulent energy spectrum.
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bed particles

enlarged view

h

uc

un VL

us

vd

Figure 2. Schematic of turbulent flow over a loose sediment bed. Themean flow depth is h, themean flow velocity isU and the

velocity at theparticle level isu. Subscript ‘c’ denotes the threshold condition for themotionof sediment particles. Enlarged view

of the bed particles shows a typical interaction between the target particle and the localized turbulent eddy in the immediate

vicinity of the bed surface. The horizontal dashed line represents the wetted surfaceS tangential to the summit of the target

particle at the threshold of dislodgment. The velocity scale of the largest eddy is represented by VL, while the velocity scale of

the localized eddy is denoted by vd. The fluctuations of tangential and normal velocity components are us and un, respectively.

(Online version in colour.)

We now intend to understand as to what extent the formulation (3.1) can be obtained from the

dimensional analysis. Let us consider seven plausible variables: Uc, h, d, ρp, ρf, g and ν, where ν

is the coefficient of kinematic viscosity. Thus, in functional form, the equation f (Uc, h, d, �g, ρf,

ν) = 0 exists. By dimensional analysis, we obtain the following functional relationship:

Fdc = φ(ζ , D∗), (3.2)

where D∗ is the particle parameter [=(d�g/ν2)1/3]. Comparing equations (3.1) and (3.2), it is

revealed that the dimensional analysis produces the similar functional form as that obtained from

empirical formulae, with the exception that the D∗ is an independent variable in equation (3.2).

Notwithstanding that the relationship (3.1) is valid for the hydraulically rough flow regime, where

the Fdc is invariant of D∗. Now, we attempt to explore the origin of the scaling law of equation

(3.2) from the perspective of the turbulent energy spectrum.

Theorem 3.1. For the incipient motion of sediment particles, the densimetric Froude number obeys the

‘(1 + σ )/4’ scaling law with the relative roughness.

Proof. Let us consider the length scale l ∈ (η, L) in the energy inertial range, where η is the

Kolmogorov dissipation length scale. If tl is the eddy turnover time that corresponds to l, then

tl ∼ l/vl. Therefore, the energy flux El is El ∼ v2
l /tl ∼ v3

l /l. In the energy inertial range, the TKE
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production rate and the TKE dissipation rate maintain energy equilibrium by balancing each

other. It therefore implies that the El equals the mean TKE dissipation rate ε. Hence, we obtain

El = ε ∼ v3
l /l [20]. However, for l ∼ L, we can write ε ∼ V3

L/L. Thus, the above consideration

implies vl ∼ VL(l/L)1/3. Importantly, the same relationship can be obtained if σ = −5/3 is

substituted in equation (2.2). The L and VL can be easily scaled with the flow depth h and the

mean flow velocity U, respectively, yielding vl ∼ U(l/h)1/3.

It is pertinent to mention that the Kolmogorov’s scaling laws are valid for a highly idealized

turbulence case, particularly if the small-scale motions are homogeneous and isotropic. In

practical situations, turbulent flow in the vicinity of the sediment beds shows a considerable

departure from the idealized framework because of the substantial modification of the mean

flow field due to the bed roughness heterogeneity and fluctuation anisotropy [21]. However,

the literature survey reveals that the Kolmogorov’s scaling laws are also applicable for non-

homogeneous and anisotropic flows [22]. We, therefore, conclude that the applicability of the

phenomenology of turbulence to describe the small-scale motions for the sediment transport

problems is no longer ambiguous.

Let us now focus on the fluid–sediment interaction in the immediate vicinity of the sediment

bed as depicted in figure 2 (see the enlarged view). Here, a localized turbulent eddy interacting

with the target particle plays a major role to dislodge the particle from its stabilized position. Let

us seek the scaling law of the Reynolds shear stress τ t developed due to the localized eddy at an

imaginary wetted surface S tangential to the summit of the target particle forming the imaginary

surface of the sediment bed. The Reynolds shear stress τ t is expressed as τ t = ρfusun [23], where

us and un are the velocity fluctuations tangential and normal to the S, respectively. The overbar

denotes the time-averaging of a quantity. In fact, the τ t is triggered by the momentum transfer

across the imaginary wetted surface S. Above the surface S, the flow velocity scales with VL or U.

As a result, the fluid transmits a substantial horizontal component of momentum per unit volume

(∼ρfU) tangential to the S. On the other hand, below the S, the flow velocity is significantly

small. Thus, the fluid transmits an insignificant horizontal component of momentum per unit

volume tangential to the S. The localized eddy, bestriding the wetted surface S, transfers the

fluid of high and low momentum fluxes tangential to the S in the downward and the upward

directions, respectively, across the S. Thus, the net transfer of momentum flux across the S is

accomplished by the velocity normal to the S induced by the localized eddy. Therefore, the

Reynolds shear stress developed at the S due to the momentum transfer yields τ t ∼ ρfUun. To

envisage the dominant eddy bestriding the S, we note that the eddies of size greater than l (l ∼ ks

or l ∼ d) feebly contribute to the velocity normal to the S. By contrast, the eddies of sizes smaller

than l perfectly adjust within the inter particles space providing a significant contribution to the

velocity normal to the S. Hence, the eddies of sizes l (l ∼ ks or l ∼ d) contribute their characteristic

velocity vl normal to the S. Thus, we can conceptually write un ∼ vks
∼ vd [8]. From equation (2.2),

it follows:

vks
(∼ vd) ∼ U

(

ks

h

)−(1+σ )/2

∼ U

(

d

h

)−(1+σ )/2

∼ Uζ−(1+σ )/2. (3.3)

Thus, the τ t is

τt ∼ ρfUvd ∼ ρfU
2ζ−(1+σ )/2. (3.4)

The threshold velocity Uc can be obtained by equating the Reynolds shear stress developed at the

wetted surface S and the threshold bed shear stress τ 0c. The τ 0c can be related to the gravitational

stress τg as τ 0c ∼ τg = (ρp − ρf)gdΘc, where Θc is the threshold Shields parameter being a function

of the particle parameter D∗. Let us say Θc = G(D∗). Therefore, at an incipient motion of sediment

particles, we can write τ t ∼ τg, which results in

ρfU
2
c ζ

−(1+σ )/2 ∼ (ρp − ρf)gdG(D∗) ⇒Fdc ∼ ζ (1+σ )/4G1/2(D∗). (3.5)
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Figure 3. The threshold densimetric Froude numberFdc as a function of relative roughness ζ obeying the ‘−1/2’, ‘−1/6’ and

‘0’ scaling laws, and the experimental data in earlier studies [12–18].

Note that for a hydraulically rough flow regime, the function G(D∗) attains a constant value,

as the Θc for rough flow is independent of D∗. �

(b) Results and discussion

In the energy inertial range, we have σ = −5/3 yielding Fdc ∼ ζ−1/6. This relationship reveals

that at an incipient motion of sediment particles, the densimetric Froude number obeys the

‘−1/6’ scaling law with the relative roughness for a fully developed rough-turbulent flow. This

scaling law is in conformity with the friction factor conjecture (Manning–Strickler relationship)

as already derived before. Thus, we can conclude that the origin of the ‘−1/6’ scaling law of the

threshold densimetric Froude number with the relative roughness can be explained from the law

of turbulent energy spectrum in the energy inertial range.

Importantly, the ‘−1/6’ scaling law is legitimate when the characteristic particle diameter

scales with the size of eddies in the energy inertial range. This condition allows us to restrict

the ‘−1/6’ scaling law within the limits: 5η ≪ d ≪ h, where 5η represents the extent of viscous

sublayer thickness. Substituting η = ν3/4ε−1/4 and ε ∼ U3/h, the range of validity of the ‘−1/6’

scaling law becomes

14.14R−3/4 ≪ ζ ≪ 1, (3.6)

where R is the Reynolds number (=4Uh/ν).

Figure 3 depicts the complete picture of the dependency of threshold densimetric Froude

number Fdc on the ζ over a broad spectrum of ζ and the experimental data of several

investigators [12–18]. A significant agreement between the ‘−1/6’ scaling law and the

experimental data is discernible over a wide range of ζ . From figure 3, it is evident that the range

of validity of the ‘−1/6’ scaling law, as shown in equation (3.6), can be replaced by the following

range: 10−4 < ζ < 10−1.

A close observation of figure 3 reveals that the experimental data lying in the range

10−4 < ζ < 4 × 10−4 slightly depart from the ‘−1/6’ scaling law. The possible reason is attributed

to the fact that for ζ < 4 × 10−4, the characteristic particle diameter becomes close to the

viscous sublayer thickness (d ≥ 5η) and the flow becomes transitional smooth. For ζ < 10−4, the

characteristic particle diameter essentially becomes of the order of the viscous sublayer thickness

(d ∼ 5η), and as a result of which the sediment particles are subjected to a smooth flow regime.

Thus, the sediment particles are completely sheltered by the viscous sublayer and the momentum

transfer becomes truly viscous. Therefore, the applicability of the ‘−1/6’ scaling law does not

hold. For such a scenario, the enstrophy cascade becomes dominant due to the smooth velocity

field (two-dimensional turbulence); and the turbulent energy spectrum obeys the ‘−3’ spectral
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law (figure 1). Therefore, substituting σ = –3 in equation (3.5), we obtain Fdc ∼ ζ−1/2G(D∗),

suggesting a ‘−1/2’ scaling law of the threshold densimetric Froude number with the relative

roughness. It is evident that the experimental data respect the ‘−1/2’ scaling law over a wide

range of ζ (10−6 < ζ < 10−4). The ‘−1/2’ scaling law indicates that for a given ζ , the threshold

velocity required to dislodge the sediment particles is higher than that obtained from the ‘−1/6’

scaling law. This is physically meaningful since the viscous sublayer acts as a barrier to protect

the sediment particles (being of the order of viscous sublayer thickness) from the erosive action

of flow resulting from the energetics of turbulent eddies in the energy inertial range. Thus, it

indicates the requirement of a much higher velocity to dislodge the sediment particles in a

hydraulically smooth flow regime. However, for ζ ≪ 10−6, the resulting eddies belong to the

dissipation range in the energy spectrum (of the order of the Kolmogorov’s length scale) until

they completely transfer the kinetic energy into heat.

On the other hand, when the relative roughness ζ becomes large (ζ ≥ 10−1), the flow is

characterized by the macro-turbulence resulting from the large eddies that belong to the energy

containing range. As a result, the turbulent energy spectrum obeys the ‘−1’ scaling law due

to the presence of energy containing eddies. Thus, substituting σ = −1 in equation (3.5) yields

Fdc ∼ ζ 0G(D∗), suggesting a ‘0’ scaling law of the threshold densimetric Froude number with

the relative roughness. The ‘0’ scaling law indicates that the threshold velocity is independent of

the relative roughness. However, it is relevant to point out that the ‘0’ scaling law holds when

the ‘−1’ spectral law is not disturbed by the large scale motions. A satisfactory agreement of the

‘0’ scaling law with the experimental data trend is evident for ζ ≥ 10−1 (figure 3). Importantly,

when ζ ≈ 1, the proposed momentum transfer theory at the particle–fluid interface does not hold

since the resulting eddies are unable to bestride the wetted surface. Therefore, the ‘0’ scaling law

is legitimate for 10−1 < ς ≪ 1 from the perspective of momentum transfer, although figure 3

reveals that the ‘0’ scaling law still agrees well with the experimental data up to ζ ≈ 1.

The transition zones between the ‘−1/2’ and ‘−1/6’ scaling laws and the ‘−1/6’ and ‘0’ scaling

laws are further depicted by faded solid lines in order to capture the behavioural features of the

turbulent energy spectrum in the transition zones. Thus, figure 3 reveals the missing link between

the threshold velocity law (densimetric Froude number as a function of relative roughness)

and the laws of turbulent energy spectrum. Moreover, figure 3 can be linked with the Shields

diagram for different flow regimes (hydraulically smooth, transitional and rough), depending on

the values of G(D∗). To be explicit, for a lower value of ζ , although the G(D∗) does not attain a

constant value, the laws of the spectrum are still valid because a multiplicative factor G(D∗) can

be applied to balance the momentum transfer (see equation (3.5)).

In the case of bedforms, the effective resistance to flow can be split into two parts: (i) the

resistance due to forces experienced by individual particles, known as resistance due to particles

or skin friction, and (ii) resistance due to form drag [24]. The resultant pressure distribution over

an entire bedform and the flow separation arising from the adverse pressure gradient induce a

considerable form drag. In contrast, the skin friction drag oversees the transport of bed sediment

particles. Thus, for bedforms, the bed roughness becomes a dynamic parameter being a function

of flow characteristics and the bed sediment particles. To capture the effect of form drag, the

roughness height is commonly replaced by the composite roughness ksc. Fedele & García [25]

reported that the ksc can be approximated as ksc/d ∼ ζ−1/3. This relationship is valid for ζ < 10−3

and D∗ < 9.654, which are common conditions in large alluvial streams with sand ripples and

dunes. In the preceding sections, we found that the Fdc ∼ ζ (1 + σ )/4, where it was assumed that

the bed roughness height is proportional to the diameter of sediment particles, that is, ks ∼ d.

However, for bedforms, the ks is replaced by ksc, yielding Fdc ∼ (ksc/h)(1+σ )/4 ∼ (ζksc/d)(1+σ )/4.

Substituting ksc/d ∼ ζ−1/3 [25] into this relationship yields Fdc ∼ ζ (1+σ )/6. This relationship is

valid for the alluvial streams with sand ripples and dunes. For ζ < 10−4 (in the enstrophy inertial

range), the particle transport is governed by the spectral exponent σ = −3 and thus, the proposed

scaling becomes Fdc ∼ ζ−1/3. By contrast, for 10−4 < ζ < 10−3 (in the energy inertial range), the

particle transport is governed by the spectral exponent σ = −5/3 and thus, the proposed scaling

becomes Fdc ∼ ζ−1/9.
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tp
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t0p t0f
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t
bedload layer

saltating

slidingrolling

eddy

Figure4. Schematic of bedload transport and the decomposition of applied fluid bed shear stressτ 0 into the dispersive particle

shear stress τ 0p and the interfacial fluid shear stress τ 0f . (Online version in colour.)

4. The scaling law of bedload flux

(a) Theoretical analysis

When the flow velocity exceeds the threshold velocity, the sediment particles are set in motion

due to the applied fluid bed shear stress τ 0 in excess of the threshold bed shear stress τ 0c. Under

such a situation, the transport of sediment particles takes place within a thin layer, called the

bedload layer (figure 4), in the form of consecutive contacts of the particles with the bed, known

as the bedload transport [26]. At relatively small excess bed shear stress (=τ 0 − τ 0c), the bedload

transport occurs in rolling and/or sliding mode as illustrated in figure 4. On the other hand, with

an increase in excess bed shear stress, the sediment particles are transported as a saltating mode,

where the particles perform small jumps in the close proximity of the bed, but remain within

the bedload layer (figure 4). The bedload flux qb is usually expressed as the quantity of solid

volume of sediment transported per unit time and width. More than a century and a quarter ago,

du Boys [27] was the first to provide a mathematical description of the bedload flux stemming

from the principle of force balance between the applied fluid force and the frictional resistance.

The key feature of the du Boys equation is to relate the bedload flux with the excess bed shear

stress. Following the du Boys equation, several investigators attempted to propose the improved

version of the bedload flux equations, referred to as the du Boys type equations. A comprehensive

compilation of du Boys type equations was done by García [9] and Dey [19]. However, the

bedload flux laws proposed by the earlier investigators involve several free exponents, which

were determined by the regression analysis of the experimental and/or field data. The state of

the art is that an acceptable justification of the appropriate choice of the exponents or the origin

of the scaling laws is still lacking.

Let us first attempt to find the scaling law of bedload flux qb from a simple dimensional

analysis. We start with eight plausible variables: qb, h, d, �g, ρf, ν, τ 0 and τ 0c. Thus,

in functional form, the equation f (qb, h, d, �g, ρf, ν, τ 0, τ 0c) = 0 exists. Introducing the

bedload transport intensity Φb [=qb/(�gd3)1/2], the applied Shields parameter Θ [=τ 0/(ρf�gd)],

the threshold Shields parameter Θc [=τ 0c/(ρf�gd)] and the transport stage parameter

T∗ [=(τ 0 − τ 0c)/τ 0c = (Θ − Θc)/Θc], and noting that Θc = G(D∗), we obtain the functional

relationship as

Φb = φ(T∗, ζ , D∗). (4.1)
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We suppose that the motion of sediment particles is confined to the bedload layer, which

can be scaled with the diameter of a sediment particle [28]. By definition, the qb is scaled as

qb ∼ nd3vp [19], where n is the number of particles transported per unit area of the sediment

bed surface and vp is the particle velocity. To determine a scaling law of qb, we require to obtain

the scaling laws for n and vp. Following the conventional mechanics of bedload transport [26],

we decompose the applied fluid bed shear stress τ 0 into the dispersive particle shear stress τ 0p

(that is, the transmitted stress due to momentum exchange for the collision of particles) and

the interfacial (or the inter-particle) fluid shear stress τ 0f (that is, the transmitted stress due to

interfacial fluid), as shown in figure 4. Thus, the formulation is τ 0 = τ 0p + τ 0f. The reason of

such a consideration is attributed to the fact that the sediment-laden flow is characterized by

the shear which includes the shear between the layers of the particles, and the shear between

the particles and the neighbouring fluid. With the removal of a layer of sediment particles by

the flow, a dispersive pressure on the subsequent layer of particles is established as a stabilizing

force. Bagnold [26] argued that during the bedload transport, the τ 0f equals the threshold bed

shear stress τ 0c for the initiation of particle motion at the bed. Thus, the component τ 0c of the

applied fluid bed shear stress τ 0 is transferred directly to the immobile-bed particles in the form

of a skin frictional stress. On the other hand, the remaining bed shear stress (τ 0 − τ 0c) is directly

transferred to the mobile particles in the form of a drag induced bed shear stress τ 0b. Thus, we

can write τ 0p ∼ τ 0b ∼ nf D [29], where f D is the drag force. The f D can be scaled with the frictional

resistance to flow as f D ∼ f R ∼ (ρp − ρf)gd3 [19]. Thus, we can write

n ∼
τ0 − τ0c

fD
∼

τ0 − τ0c

(ρp − ρf)gd3
∼

Θ − Θc

d2
. (4.2)

The particle dynamics in bedload transport is an intricate phenomenon since the particle

dynamics depend on the local fluctuating fluid forces, such as turbulent drag, turbulent lift,

collision with neighbouring particles, etc., together with the particle fluctuations and the inter-

particle friction. As a consequence, to understand the particle dynamics, proper analysis of the

local force system must be pursued [30]. However, to simplify the particle dynamics from the

perspective of scaling laws (as main focus of this study), we proceed with the following concept.

Theorem 4.1. For the bedload flux, the bedload transport intensity obeys the ‘3/2’ and ‘(1 + σ )/4’

scaling laws with the transport stage parameter and the relative roughness, respectively.

Proof. Since the local bed shear stress is proportional to the square of the local flow velocity,

from the relationship τ 0p = τ 0 − τ 0c [26], at a dynamic equilibrium condition, the particle velocity

vp can be simply obtained as: v2
p ∼v2

f − v2
fc, where vf is the flow velocity in the immediate vicinity

of the sediment bed. Since the vf is provided by the localized eddy bestriding the fluid–particle

interface, the vf can be scaled as vf ∼ U. Subscript ‘c’ as usual denotes the threshold condition.

Hence, it follows:

vp ∼ (U2 − U2
c )1/2 ∼ Uc

(

U2

U2
c

− 1

)1/2

. (4.3)

The particle velocity vp can be experimentally determined using the particle image velocimetry

technique [31–33]. From equation (4.3), we perceive that if U ≈ Uc, then vp ≈ 0, which indicates the

threshold condition. Although the experimental observations evidenced the existence of non-zero

particle velocity at the threshold, this can be neglected in practical situations [32]. Since τ 0 ∼ ρfU
2

(applying the friction factor conjecture), we obtain

U

Uc
=

(

τ0

τ0c

)1/2

=

(

Θ

Θc

)1/2

. (4.4)

Therefore, equation (4.3) reduces to

vp ∼ Uc

(

Θ

Θc
− 1

)1/2

. (4.5)
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The above scaling law of the particle velocity (see equation (4.5)) is in agreement with the

empirical formula of Sekine & Kikkawa [34]. Using equation (3.5), equation (4.5) reduces to

vp ∼ (�gd)1/2ζ (1+σ )/4G1/2(D∗)

(

Θ

Θc
− 1

)1/2

. (4.6)

Substituting equations (4.2) and (4.6) into the scaling law qb ∼ nd3vp, we finally obtain

Φb ∼
(Θ − Θc)3/2

Θ
1/2
c

ζ (1+σ )/4G1/2(D∗) ∼ T
3/2
∗ ζ (1+σ )/4G3/2(D∗). (4.7)

�

(b) Results and discussion

It is revealed that equation (4.7) produces the similar functional form as that obtained from

equation (4.1). The ‘3/2’ scaling law with T∗ (equation (4.7)) is in conformity with the empirical

formulae proposed in earlier studies [28,35–37]. Furthermore, the studies of Damgaard et al. [38]

evidenced the ‘3/2’ scaling law with T∗ for sloping beds ranging from −29° to 30°. They also

reported that the bed slope does not influence the ‘3/2’ scaling law for a higher value of Shields

parameter. However, for σ = −3, −5/3 and −1, the Φb obeys the ‘−1/2’, ‘−1/6’ and ‘0’ scaling

law with the relative roughness, respectively.

5. The scaling law of suspended load flux

(a) Theoretical analysis

When the motion of sediment particles in a flowing fluid is such that they are bounded by the

surrounding fluid over a longer duration, the sediment particles are said to be in suspension.

In a turbulent flow, the mechanism of suspended sediment motion takes place through the

transport of sediment particles by the velocity fluctuations and the mixing of sediment particles

with the surrounding fluid. For a two-dimensional steady-uniform flow, the complex diffusion

process is responsible for the convection of suspended sediment particles. In this case, the motion

of suspended sediment particles is hypothesized in a continuum scale as the concentration of

sediment transport flux. The transport of the suspended particles occurs convectively when a

fluid parcel carrying a certain concentration of sediment particles is transported by the vertical

velocity fluctuations to a zone of lower concentration of sediment particles and mixes with

the surrounding fluid. Thus, the suspended sediment flux is directly related to the vertical

gradient of concentration. Rouse [39] was the first to obtain the vertical distribution of suspended

sediment concentration, known as Rousean distribution, stemming from the advection–diffusion

equation of suspended sediment motion coupled with the Prandtl’s mixing length theory.

After Rouse [39], several investigators envisioned the mechanism of sediment suspension as a

transport of sediment particles governed by the turbulent diffusion and the mixing of fluid.

A comprehensive compilation of the studies on suspended sediment concentration was done

by Dey [19].

In a two-dimensional steady-uniform flow, the well-known advection–diffusion equation of

suspended sediment motion in the vertical direction (that is, the z-direction) reads [19]

εsz∂zC(z) + wsC(z) = 0, (5.1)

where εsz is the solid diffusivity in the z-direction, C(z) is the local sediment concentration and

ws is the terminal fall velocity of sediment particles. The εsz can be related to the turbulent

diffusivity εtz as εsz = εtzSc−1, where Sc is the turbulent Schmidt number. The Reynolds shear

stress τ t is expressed as τ t = ρfεtzsl, where sl is the local strain rate in the z-direction [=u∗/(κz)]

and κ is the von Kármán constant (=0.41). Within the turbulent wall shear layer (z < 0.2 h), the

τ t equals the bed shear stress τ 0 (=ρfu
2
∗) yielding εtz = u∗κz. The linear variation of εtz with
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eddy

Fd

Fu

vl

z

z = a

S(z)

l

C(z + l)

C(z)

C = Ca

C(z – l)

reference level

C(z)

Figure 5. Schematic of the exchange of suspended sediment concentration in turbulent flow. (Online version in colour.)

z is legitimate within the turbulent wall shear layer because the turbulent wall shear layer is

realized as the constant stress layer [23]. It is worth emphasizing that the major shortcoming

of the Rouse equation is that the equation stems from the linear law of turbulent shear stress

in conjunction with the log-law, which is valid under the constant bed shear stress conjecture.

It therefore yields a quadratic profile of εtz(z) across the boundary layer. On the other hand,

the linear relationship of εtz(z) can be fairly applied within turbulent wall shear layer because

our main intention is concerned with the turbulent wall shear layer, where the dynamics of the

suspended load flux is important from the perspective of establishing a suitable scaling law. Thus

substituting εsz = εtzSc−1 and εtz = u∗κz into equation (5.1) yields

∂zC(z) + ZC(z)z−1 = 0, (5.2)

where Z is the Rouse number [=wsSc/(κu∗)].

To integrate equation (5.2), the boundary condition is commonly used as C(z = a) = Ca, where

a is the reference level and Ca is the reference concentration [39], as shown in figure 5. Thus,

integrating equation (5.2) yields

C+ =

( z

a

)−Z

, (5.3)

where C+ = C/Ca.

Theorem 5.1. For the suspended load flux, the non-dimensional suspended sediment concentration

obeys the ‘−Z’ scaling law with the non-dimensional vertical distance within the wall shear layer.

Proof. Now, we intend to grasp that how far the ‘−Z’ scaling law (equation (5.3)) can be

derived by means of the energetics of turbulent eddies. Let us consider a wetted surface S(z)

at a distance z from the boundary as depicted in figure 5. The local sediment concentration at the

wetted surface S is C(z). The net sediment flux through the wetted surface S can be obtained by

considering the eddies of size l straddling that surface. Since the fluctuations of normal velocity

component un of an eddy can be scaled with its velocity scale vl (un ∼ vl), as discussed earlier,

we introduce un = p1vl, where p1 is a coefficient being of the order of unity (p1 < 1). The upward

sediment flux (volume per unit time and width) is therefore Fu = (p1vl − ws)C(z − l), while the

downward sediment flux is Fd = (p1vl + ws)C(z + l). Applying the Taylor series expansion, we

can fairly approximate C(z − l) ≈ C(z) − l∂zC(z) and C(z + l) ≈ C(z) + l∂zC(z). For an equilibrium

sediment concentration, the net sediment flux through the wetted surface S must be zero. Thus,
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the equilibrium Fu = Fd yields

lvlp1∂zC(z) + wsC = 0. (5.4)

The relationship (5.4) represents the governing equation of the particle dynamics of suspended

sediment particles governed by the localized turbulent eddy. Since vl ∼ (εl)1/3, we can write

vl = p2(εl)1/3, where p2 is a coefficient. Using this relationship, equation (5.4) reduces to

ε1/3l4/3p1p2∂zC(z) + wsC = 0. (5.5)

Since the eddies having a size larger than z are unable to completely trigger the wetted surface

S (as evident from figure 5), it can be inferred that the dominant eddies triggering the S are

the eddies of size l = z. Now, we pay an attention to the turbulent wall shear layer, where

the TKE production rate equals the TKE dissipation rate (since the eddies are in the energy

inertial range). Therefore, using the energy balance [23], the Reynolds shear stress can be written

as τ t = ρfεs−1
l [23]. Importantly, beyond the turbulent wall shear layer, the energy balance is

not legitimate because the individual terms in the TKE budget equation maintain an energy

equilibrium. Using τ t = ρfu
2
∗ and sl = u∗/(κz), we obtain ε = u3

∗/(κz). Substituting this expression

of ε into equation (5.5) yields

∂zC(z) +
κ4/3

p1p2Sc
ZC(z)z−1 = 0. (5.6)

It may be noted that equations (5.2) and (5.6) would be identical if and only if κ4/3 = p1p2Sc.

Since the Sc is of the order of unity, this identity reduces to κ4/3 = p1p2. Substituting κ = 0.41 and

p2 = 0.928 (from Kolmogorov ‘4/5’ scaling law), we obtain p1 = 0.33, which is consistent with the

assumption that the p1 is of the order of unity. Thus, the origin of the ‘−Z’ scaling law is obtained

from the perspective of energetics of turbulent eddies. �

(b) Discussion

The relationship (5.3) can also be written as lnC+ = −Z lnz+ +Z lna+, where z+ is z/h and a+ is

a/h. The a+ is considered as 0.05 [19]. Figure 6a shows the variations of C+ with z+ obtained from

the ‘−Z’ scaling law within the turbulent wall shear layer (z+ < 0.2) for Z = 0.25, 0.5, 1 and 2.

The well-known Rouse equation of concentration, C+ = [a+(1 − z+)/z+(1 − a+)]Z corresponding

to the values of Z = 0.25, 0.5, 1 and 2 is also plotted. From figure 6a, it is evident that for z+ < 0.2,

the ‘−Z’ scaling law closely corroborates with the Rouse equation, although the scaling law

slightly overestimates the Rouse equation. Therefore, the ‘−Z’ scaling law within the turbulent

wall shear layer is a substitution for the Rousean C+(z+) distribution. Here, it may be interesting

to set an inverse problem: for a given Rousean C+(z+) distribution, how the Rouse number Z

can be obtained? This problem can be solved by fitting a straight line or drawing a tangent to the

given Rousean C+(z+) distribution, preferably within the turbulent wall shear layer, where the

Rousean C+(z+) distribution depicts a constant gradient in the log–log scale (figure 6a). Needless

to say, the negative value of that constant gradient represents the Rouse number Z , as evident

from equation (5.3). Therefore, the Rouse number can be interpreted as the negative gradient of

the Rousean C+(z+) distribution (in log–log scale) within the turbulent wall shear layer.

The ‘−Z’ scaling law is further compared with some experimental data of Coleman [40] and

Lyn [41], as shown in figure 6b. Coleman’s [40] experimental data for Z = 0.75 and a+ = 0.035 and

Lyn’s [41] data for Z = 1.5 and a+ = 0.072 are plotted in figure 6b. It shows that the ‘−Z’ scaling

law has an excellent agreement with the experimental data within the turbulent wall shear layer

(z+ < 0.2).
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(b)
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‘–Z’scaling law ‘–Z’scaling law
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Z = 0.75
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Z = 1.5

Figure 6. Non-dimensional concentration C+ as a function of z+ for (a) different values ofZ and (b)Z = 0.75 and 1.5 and

the experimental data of Coleman [40] and Lyn [41].

6. The scaling law of scour in a contracted stream

(a) Theoretical analysis

Scour in a contracted stream (for example, scour within a channel contraction) is one of the

common problems of sediment transport. Contractions of channel width to construct bridges,

weirs, and other hydraulic structures are practical examples for the cases of contracted streams.

Owing to the concentration of streamlines in a contraction, the flow is convectively accelerated

in the contracted portion resulting in a higher flow velocity and in turn, an enhanced bed shear

stress that can erode the sediment bed in the contracted portion. Figure 7a,b shows a schematic

view of scour within a channel contraction for a rectangular channel. The approach channel width

and the approach flow depth are B1 and h1, respectively, while the contracted channel width and

the contracted flow depth are B2 and h2, respectively. When the approach flow enters into the

contracted portion, the flow concentration in the contracted portion is enhanced as described in

figure 7a. As a result of which, the sediment bed is eroded due to an increased velocity within

the contraction as shown in figure 7b. Thus, the scour hole within the contraction is developed.

The size of the scour hole grows with time causing a gradual reduction of flow velocity within the

contraction in accordance with the increase in flow area with the development of scour hole

(figure 7b). Eventually, an equilibrium scour is attained when the flow velocity in the contracted

portion reduces to a threshold velocity and is unable to dislodge the sediment particles from the

scour hole.

We are now going to find the scaling law of the equilibrium scour depth ds from the

dimensional analysis. Let us denote the sum of the equilibrium scour depth ds and the approach

flow depth h1 as D (=ds + h1). We start with nine plausible variables: D, U1, B1, B2, h1, d, �g, ρf and

ν. Thus, in functional form, the equation f (D, U1, B1, B2, h1, d, �g, ρf, ν) = 0 exists. Denoting the

densimetric Froude number for the approach flow Fd1 [=U1/(�gd3)1/2], the relative roughness

ζ 1 (ratio of particle diameter d to approach flow depth h1) and the channel contraction ratio r

(=B2/B1), we obtain following functional form:

D

h1
= φ(Fd1, r, ζ1, D∗). (6.1)

Theorem 6.1. For the scour in contracted streams, the non-dimensional scour depth obeys the

‘4/(3 − σ )’, ‘−4/(3 − σ )’ and ‘−(1 + σ )/(3 − σ )’ scaling laws with the densimetric Froude number, the

channel contraction ratio and the relative roughness, respectively.
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h2

h1

B1 B2

ds

21

21

(a)

(b)

Figure 7. Schematic of scour in a contracted stream: (a) plan view and (b) elevation view. The approach channel width and the

approach flow depth are B1 and h1, respectively. The contracted channel width and the contracted flow depth are B2 and h2,

respectively. The equilibrium scour depth is ds. (Online version in colour.)

Proof. The continuity equation of fluid flow satisfies

U1h1B1 = U2|U2=Uc
h2B2. (6.2)

Neglecting the difference in velocity heads and the loss through the transition, the energy per unit

weight of the fluid between the approach section and the contracted section yields ds = h2 − h1.

With this and using equation (6.2), we obtain

D

h1
=

ds + h1

h1
=

U1

U2|U2=Uc

1

r
. (6.3)

From equation (3.5), the threshold velocity in the contracted channel is given by

U2|U2=Uc
∼ (�gd)1/2

(

d

h2

)(1+σ )/4

G1/2(D∗) ∼ (�gd)1/2

(

D

h1

)−(1+σ )/4

ζ
(1+σ )/4

1 G1/2(D∗). (6.4)

Substituting equation (6.4) into equation (6.3) yields

D

h1
∼F

4/(3−σ )
d1 r−4/(3−σ )ζ

−(1+σ )/(3−σ )
1 G−2/(3−σ )(D∗). (6.5)

�

(b) Results and discussion

For σ = −3, −5/3 and −1, equation (6.5) yields D/h1 ∼F
2/3
d1 r−2/3ζ

1/3
1 , F

6/7
d1 r−6/7ζ

1/7
1 and Fd1r−1ζ 0

1 ,

respectively. Now we intend to validate the proposed scaling laws with the experimental

data. Since the spectral exponent σ = −3 signifies the limit of the hydraulically smooth flow,

the roughness elements become of the order of viscous sublayer thickness. As a result, the

experimental data can hardly be obtained for this case. This is because of the fact that most of the
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Figure 8. Comparison of the scaling laws of D/h1 for (a)σ =−5/3 with the experimental data in earlier studies [42–46] and

(b)σ = −1 with the experimental data of Dey & Raikar [46].

laboratory and field experimental data related to scour problems are subjected to hydraulically

transitional and/or rough flow regimes. Therefore, we only validate the proposed scaling laws

for σ = −5/3 and −1 with the experimental data. Figure 8a shows the comparison of the

proposed scaling law of D/h1 for σ = −5/3 with the experimental data in earlier studies [42–

46]. These experimental data include sand and gravel with the relative roughness in the range of

10−4 < ζ 1 < 10−1, which properly satisfies the validity of the spectral exponent σ = −5/3. The

±20% error band is also depicted for a quantitative understanding of the experimental data

scatter (due to the variability of G(D∗) in transitional-rough flow) from the best-fitted straight

line. Figure 8a, however, shows an excellent matching of the proposed scaling law with the

experimental data. On the other hand, figure 8b shows the comparison of the proposed scaling

law of D/h1 for σ = −1 with the experimental data of Dey & Raikar [46]. These experimental data
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include large gravel (macro-roughness) with the relative roughness in the range of 10−1 < ζ 1 < 1,

which fairly satisfies the validity of the spectral exponent σ = −1. The ±20% error band is also

shown for an understanding of experimental data scatter. In this case, the agreement of the

proposed scaling law of D/h1 for σ = −1 with the experimental data is satisfactory.

We are also interested to validate the proposed scaling laws of D/h1 with the empirical

formulae reported by previous investigators. The empirical formula of Straub [47] shows that the

D/h1 is scaled with r−6/7, which is in agreement with the present study for the spectral exponent

σ = −5/3. Moreover, the proposed scaling law of D/h1 for σ = −5/3 completely corresponds to

the formulae of Gill [43] and Laursen [48]. Both Gill [43] and Laursen [48] reported the formula

as D/h1 = 0.424F
6/7
d1 r−6/7ζ

1/7
1 . According to the empirical formula of Lim [45], the scaling of D/h1

follows D/h1 ∼F
3/4
d1 r−3/4ζ

1/4
1 , which is somewhat different from the proposed scaling laws. It is

important to note that since the empirical formulae are developed by the regression fittings of the

experimental and/or field data, which may contain uncertainties, the free exponents involved in

the empirical formulae can differ significantly depending on the availability and the quality of

raw experimental and field data. However, the empirical formulae of Gill [43] and Laursen [48]

completely corroborate with the proposed scaling law in the energy inertial range (σ = −5/3).

By contrast, the empirical formula of Lim [45], in general, tends to correspond to the proposed

scaling law of D/h1 for σ = −5/3.

7. Conclusion
The origin of the scaling laws of sediment transport under turbulent flow is investigated from the

perspective of the phenomenological theory of turbulence. The link between the scaling laws of

sediment transport and the laws of turbulent energy spectrum is explored from the concepts of

the energy cascade (energy inverse cascade for two-dimensional turbulence and energy forward

cascade for three-dimensional turbulence), the enstrophy cascade and the ‘−1’ spectral law of

wall-bounded turbulence. This study shows that the origin of the scaling laws of sediment

transport can be explained by applying the fundamental laws of turbulent energy spectrum (for

both two- and three-dimensional turbulence), where the energy cascade, the enstrophy cascade

and the ‘−1’ spectral law play a significant role for the momentum transfer of turbulent eddies.

This study analyses the scaling laws of four fundamental problems of sediment transport: the

incipient motion of sediment particles, the bedload flux, the suspended load flux and the scour

in a contracted stream. It is revealed that the phenomenological theory provides a shorthand

approach to find the origin of the scaling laws. This study also provides a physical insight into

the sediment transport problems by elucidating the interaction between the localized turbulence

and the sediment particles. The proposed concept can be further used to analyse many other

practical problems, which involve the fluid–sediment interaction.
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