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ABSTRACT

In this Perspective article, we seek the origin of the scaling laws of developing turbulent boundary layers over a flat plate from the perspective
of the phenomenological theory of turbulence. The scaling laws of the boundary-layer thickness and the boundary shear stress in rough and
smooth boundary-layer flows are established. In a rough boundary-layer flow, the boundary-layer thickness (scaled with the boundary rough-
ness) and the boundary shear stress (scaled with the dynamic pressure) obey the “2/(1�r)” and “(1þr)/(1�r)” scaling laws, respectively,
with the streamwise distance (scaled with the boundary roughness). Here, r is the spectral exponent. In a smooth boundary-layer flow, the
boundary-layer thickness (scaled with the viscous length scale) and the boundary shear stress (scaled with the dynamic pressure) obey the
“8/(5� 3r)” and “3(1þr)/(5� 3r)” scaling laws, respectively, with the Reynolds number characterized by the streamwise distance.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096255

I. INTRODUCTION

After Prandtl,1 the boundary layer is recognized as the near-
boundary fluid layer, which is affected by the boundary shear. The
boundary-layer thickness d is measured as the distance z from
the boundary, where the local streamwise velocity u attains 99% of
the free stream velocity U. When a flat plate is aligned parallelly to
an approach free stream, the boundary-layer thickness d grows with
the streamwise distance x (Fig. 1), displaying a switchover from a
laminar boundary layer to a turbulent boundary layer via a transi-
tion region.

Following Prandtl’s discovery of the boundary layer and Blasius’
similarity solution,2 a significant advancement in the boundary-layer
theory is the momentum-integral approach put forward by Theodore
von K�arm�an and Karl Pohlhausen.3,4 The applications of the
momentum-integral approach are far-reaching in a variety of fluid
mechanics problems.5,6

In the momentum-integral approach, the boundary shear stress
s0 follows the generalized von K�arm�an momentum-integral equation

s0ðxÞ ¼ qUd�
dU

dx
þ q

d

dx
ðU2hÞ; (1)

where q is the mass density of fluid, d� is the displacement thickness,
and h is the momentum thickness. The d� and h are expressed, respec-
tively, as

d� ¼

ðdðxÞ

0

1�
u

U

� �

dz; (2a)

h ¼

ðdðxÞ

0

u

U
1�

u

U

� �

dz: (2b)

For a zero-pressure gradient flow, dU/dx¼ 0. Therefore, Eq. (1)
reduces to

s0ðxÞ ¼ qU2 dh

dx
: (3)

Herein, we focus primarily on the developing turbulent boundary
layer. To solve Eq. (3), accurate description of the velocity distribution,
e.g., the law of the wall,7 within the boundary layer is an essential pre-
requisite. Conventionally, in smooth boundary-layer flow with a zero-
pressure gradient, the von K�arm�an momentum-integral equation, Eq.
(3), is solved by considering a 1/7-th power law of self-similar velocity
distribution within the boundary layer.5 In addition, the Blasius
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formula for the boundary shear stress is sought in order to obtain the
development of the boundary-layer thickness and the boundary shear
stress (for detailed derivation, see Appendix). While the von K�arm�an
momentum-integral equation has a strong theoretical background, the
application of the Blasius formula to a developing turbulent boundary-
layer flow is purely empirical. Therefore, the classical scaling laws of the
boundary-layer thickness and the boundary shear stress in standard text-
books of fluid mechanics lack a complete theoretical foundation.
Moreover, the Blasius formula is strictly valid for a smooth boundary-layer
flow. As a result, the classical expressions, being applicable to a smooth
boundary-layer flow, do not reflect the role of boundary roughness in the
scaling laws of the boundary-layer thickness and the boundary shear stress.
However, it is worth mentioning that for a velocity distribution, an equiva-
lence of the 1/m-th power law and the logarithmic law producesm¼ j(8/
k)1/2,8 where j is the von K�arm�an constant and k is the Darcy–Weisbach
friction factor. It indicates that through the Darcy–Weisbach friction fac-
tor, the boundary roughness is implicitly linked with the exponent m,
althoughm is traditionally set as a constant value 7. Therefore, in a rough
boundary-layer flow, the scaling laws of the boundary-layer thickness and
the boundary shear stress remain unexplored.

In this Perspective article, we aim at finding the origin of the scal-
ing laws of developing turbulent boundary layers in both rough and
smooth boundary-layer flows from the phenomenological theory of
turbulence. The phenomenological theory of turbulence stems from
Richardson’s rhyming verse on the disintegration of a large turbulent
eddy into smaller eddies through an energy cascade.9

This article is organized as follows. The scaling of the boundary-
layer thickness and the boundary shear stress is given in Sec. II. The
phenomenological framework is developed in Sec. III. The scaling laws
of rough and smooth boundary-layer flows are deduced in Secs. IV
and V, respectively. Finally, conclusions are drawn in Sec. VI.

II. SCALING OF BOUNDARY-LAYER THICKNESS
AND BOUNDARY SHEAR STRESS

The dimensional analysis enables us to express the scaled
boundary-layer thickness and the boundary shear stress in functional
forms. In a rough boundary-layer flow, the boundary-layer thickness d
can be scaled with the boundary roughness ks, whereas in a smooth
boundary-layer flow, d can be scaled with the viscous length scale t/U.
Here, t is the coefficient of kinematic viscosity of fluid. On the

contrary, in both rough and smooth boundary-layer flows, the bound-
ary shear stress s0 can be scaled with the dynamic pressure qU2/2.

In a rough boundary-layer flow, the scaled boundary-layer thick-
ness and the boundary shear stress are expressed as follows:

d̂jrough �
d

ks

� �

¼ f ðx̂Þ; (4)

ŝ0jrough �
2s0

qU2

� �

¼ f ðx̂Þ; (5)

where x̂ is the streamwise distance scaled with the boundary rough-
ness (� x/ks).

On the contrary, in a smooth boundary-layer flow, the scaled
boundary-layer thickness and the boundary shear stress are expressed
as follows:

d̂jsmooth �
Ud

t

� �

¼ f ðRxÞ; (6)

ŝ0jsmooth �
2s0

qU2

� �

¼ f ðRxÞ; (7)

where Rx is the Reynolds number characterized by the streamwise
distance (� Ux/t).

Herein, the appropriate form of the scaling relationships in Eqs.
(4)–(7) and their origin are explored from the phenomenological the-
ory of turbulence.

III. PHENOMENOLOGICAL FRAMEWORK

After Richardson,9 Kolmogorov’s theory10 laid down the founda-
tion of the phenomenological theory of turbulence.11 The implication
of the phenomenological theory is to predict the scaling laws of a prob-
lem in a scientifically simpler way requiring no empirical influences. A
variety of applications of the phenomenological theory of turbulence
can be found in literature. To be specific, the applications include deri-
vations of the laws of the wall shear flow,12–17 scaling laws of the rough
open-channel flow,18,19 friction law of the permeable-wall flow,20 and
origin of the scaling laws in fluvial systems.21–26 A detailed review on
this topic was reported elsewhere.27

In this section, we aim at deriving a scaling law for the boundary
shear stress s0 developed in a turbulent boundary layer flow, having
the boundary-layer thickness d and the boundary roughness ks
(Fig. 2). The boundary shear stress is caused by the turbulent eddies as
a result of momentum transfer. According to the phenomenological
theory of turbulence, a turbulent flow comprises eddies having wide-
ranging length scales. Due to the mean flow instability, the large eddies
of length scale L become unstable. They eventually break down by dis-
tributing the turbulent kinetic energy (TKE) into smaller eddies, which
undergo the similar breakdown process to produce even smaller
eddies. This process goes on until the length scale becomes equal to
Kolmogorov’s length scale g for which the fluid molecular viscosity
dissipates the TKE into heat. The TKE per unit mass of a turbulent
eddy having a characteristic length scale l is expressed as24

v2l ¼

ð1

1=l

EðkÞdk; (8)

where vl is the characteristic velocity of the turbulent eddy, E(k) is the
energy spectrum, and k is the wavenumber.

FIG. 1. Sketch of a developing boundary layer over a flat plate. Here, u is the local
streamwise velocity, U is the free stream velocity, and d is the boundary-layer
thickness.
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The E(k) in the inertial subrange takes the following form:11

EðkÞ � e2=3k�5=3; (9)

where e is the TKE dissipation rate and the symbol “�” signifies the
“scales with.” The e associated with the large eddies can be scaled as

e �
V2
L

tL
�

V3
L

L
; (10)

where VL is the characteristic velocity of large eddies and tL is the eddy
turnover time, i.e., tL � L/VL. With the above scaling, the E(k) in Eq.
(9) becomes

EðkÞ � V2
LLðkLÞ

�5=3: (11)

The above form of E(k) is substituted in Eq. (8). The result is

vl � VL
l

L

� �1=3

: (12)

The above scaling law reveals the link between the ratio of the
velocity scales and the ratio of the length scales. With regard to the
present problem, the VL in Eq. (12) can be scaled with the free stream
velocity U, while L can be scaled with the boundary-layer thickness
d(x). Therefore

VL � U 6¼ f ðxÞ and L � dðxÞ: (13)

Equation (13) allows us to express Eq. (12) in the following form:

vl � U
l

dðxÞ

� �1=3

: (14)

However, the energy spectrum in Eq. (11) can be expressed in a
more general form as follows:

EðkÞ � V2
LL

1þrkr; (15)

where r represents the spectral exponent. For instance, r¼�5/3
holds for a three-dimensional turbulence, whereas r¼�3 is valid for
a two-dimensional turbulence.24 However, as far as the motivation of
this perspective article is concerned, we focus primarily on the scaling
laws for a three-dimensional turbulence. With the above form of E(k)
and performing similar exercise, the general form of Eq. (14) is
expressed as

vl � U
l

dðxÞ

� ��ð1þrÞ=2

: (16)

The Reynolds shear stress s, caused by a turbulent eddy of length
scale l and velocity scale vl (Fig. 2), acting at the wetted surfaceW tan-
gential to the boundary roughness summits is

s ¼ qvtvn ; (17)

where vt and vn are the tangential and normal velocity fluctuations,
respectively, and the overbar stands for the time-averaging operator.
Below the wetted surfaceW, the flow velocity is quite small. Therefore,
the approach flow transmits a trivial momentum per unit volume tan-
gential to the W. By contrast, above the W, the flow velocity is finite
and scales with the VL. Therefore, the approach flow transmits a signif-
icant momentum per unit volume (� qVL) tangential to the W. The
Reynolds shear stress s is, thus, expressed as the product of the net
momentum contrast across the W and the normal component of the
eddy turnover velocity.12,18 It follows

s � qVLvn: (18)

Since the length scale l of the turbulent eddy spans over a signifi-
cant range, it is important to identify the foremost eddies causing the
momentum transfer at the wetted surfaceW. It is clear that the eddies
of length scale l larger than the boundary roughness ks contribute
weakly to the momentum transfer because they are unable to bestride
the surface W completely. On the contrary, the eddies of length scale
l smaller than ks perfectly bestride the surfaceW, offering a substantial
normal component of the eddy turnover velocity.18 Therefore, the
foremost eddies possess a length scale l¼ ks (Fig. 2). As the foremost
eddies contribute their characteristic velocity vl normal to the W, the
vn can be scaled as vn � vl. With VL � U [Eq. (13)] and using Eq. (16),
the Reynolds shear stress s at theW can be obtained from Eq. (18). In
the absence of the viscous shear stress, the Reynolds shear stress s

developed at the wetted surface W is balanced by the boundary shear
stress s0. Therefore, the s0 is expressed as

s0ðxÞ � qU2 l

dðxÞ

� ��ð1þrÞ=2

� qU2 ks

dðxÞ

� ��ð1þrÞ=2

: (19)

Equations (3) and (19) are two independent expressions for the
boundary shear stress. The former is the classical expression, while the

FIG. 2. Phenomenological sketch of the developing turbulent boundary layer with a
boundary-layer thickness d and a free stream velocity U. Here, s0 is the boundary
shear stress, and L and VL are the length and velocity scales of a large turbulent
eddy, respectively. The enlarged view shows the interaction of a local turbulent
eddy, having a length scale l and a velocity scale vl, and the boundary roughness
ks. The wetted surface W (shown by the horizontal broken line) is tangential to the
boundary roughness summits, and vt and vn are the tangential and normal velocity
fluctuations, respectively.
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latter is the phenomenological expression. Equation (3) can be further
simplified by setting a self-similar velocity distribution within the
boundary layer. The self-similarity implies

u

U
� FðfÞ with f �

z

dðxÞ
: (20)

With Eq. (20), the momentum thickness h from Eq. (2b) is
expressed as

h ¼ cdðxÞ with c ¼

ð1

0

Fð1� FÞdf: (21)

In the above, c is a constant, whose value is immaterial in the pre-
sent context. In fact, it depends on the particular form of velocity dis-
tribution within the boundary layer. Therefore, Eq. (21) suggests that
the momentum thickness h can be scaled as h � d(x). Therefore, Eq.
(3) can be expressed as

s0ðxÞ � qU2 ddðxÞ

dx
: (22)

IV. SCALING LAWS OF ROUGH BOUNDARY-LAYER
FLOW

Equations (19) and (22) can be solved together to obtain the scal-
ing laws of the boundary-layer thickness and the boundary shear
stress. Combining Eqs. (19) and (22) yields the following differential
equation:

dðxÞ½ ��ð1þrÞ=2dd � k�ð1þrÞ=2
s dx: (23)

Integrating the above equation subject to the boundary condition
d(x¼ 0)¼ 0 provides the scaling law of the boundary-layer thickness
as

dðxÞ � k�ð1þrÞ=ð1�rÞ
s x2=ð1�rÞ ) d̂jrough � x̂2=ð1�rÞ: (24)

Substituting Eq. (24) into Eq. (22) results the scaling law of the
boundary shear stress as

s0ðxÞ � qU2k�ð1þrÞ=ð1�rÞ
s xð1þrÞ=ð1�rÞ ) ŝ0jrough � x̂ð1þrÞ=ð1�rÞ:

(25)

Therefore, in a rough boundary-layer flow, the scaling laws of the
boundary-layer thickness [Eq. (24)] and the boundary shear stress [Eq.
(25)] together state:

In a rough boundary-layer flow, the boundary-layer thickness
(scaled with the boundary roughness) and the boundary shear
stress (scaled with the dynamic pressure) obey the ‘2/(1�r)’ and
‘(1þr)/(1�r)’ scaling laws, respectively, with the streamwise
distance (scaled with the boundary roughness), where r is the
spectral exponent.

For a three-dimensional turbulence, r¼�5/3 for which Eqs.
(24) and (25) yield the scaling laws of the boundary-layer thickness
and the boundary shear stress in a rough boundary-layer flow as
follows:

dðxÞ � k1=4s x3=4 ) d̂jrough � x̂3=4; (26)

s0ðxÞ � qU2k1=4s x�1=4 ) ŝ0jrough � x̂�1=4: (27)

Equations (26) and (27) show the explicit functional form of Eqs.
(4) and (5), respectively. It is interesting to note that Eq. (19) for
r¼�5/3 corresponds to Strickler’s scaling law.

V. SCALING LAWS OF SMOOTH BOUNDARY-LAYER
FLOW

In a smooth boundary-layer flow, the boundary roughness
ks ! 0. Therefore, it appears from Eq. (19) that the boundary shear
stress vanishes as the boundary roughness approaches zero. However,
this contradicts the experimental observations and, thus, is not physi-
cally acceptable. Importantly, in a smooth boundary-layer flow, the
boundary roughness is protected by a thin viscous sublayer, whose
thickness is considered to be five times the Kolmogorov length scale
(¼ 5g). The g is expressed as

g ¼
t3

e

� �1=4

: (28)

Using Eqs. (10) and (13), the above equation becomes

g �
t3=4 dðxÞ½ �1=4

U3=4
: (29)

Therefore, the foremost eddy causing the boundary shear stress
in a smooth boundary-layer flow is of the length scale l¼ 5g.18 From
Eq. (19), the boundary shear stress s0 is expressed as

s0ðxÞ � qU2 g

dðxÞ

� ��ð1þrÞ=2

: (30)

Substituting Eq. (29) into Eq. (30) yields

s0ðxÞ � qU2 t

UdðxÞ

� ��3ð1þrÞ=8

: (31)

Equations (22) and (31) can be solved together to obtain the scal-
ing laws of the boundary-layer thickness and the boundary shear
stress. Combining Eqs. (22) and (31) yields the following differential
equation:

dðxÞ½ ��3ð1þrÞ=8dd �
t

U

� ��3ð1þrÞ=8

dx: (32)

Integrating the above equation subject to the boundary condition
d(x¼ 0)¼ 0 provides the scaling law of the boundary-layer thickness as

dðxÞ �
t

U

� ��3ð1þrÞ=ð5�3rÞ

x8=ð5�3rÞ ) d̂jsmooth � R8=ð5�3rÞ
x : (33)

Substituting Eq. (33) into Eq. (22) results the scaling law of the
boundary shear stress as

s0ðxÞ � qU2 t

U

� ��3ð1þrÞ=ð5�3rÞ

x3ð1þrÞ=ð5�3rÞ

) ŝ0jsmooth � R3ð1þrÞ=ð5�3rÞ
x : (34)
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Therefore, in a smooth boundary-layer flow, the scaling laws of
the boundary-layer thickness [Eq. (33)] and the boundary shear stress
[Eq. (34)] together state:

In a smooth boundary-layer flow, the boundary-layer thickness
(scaled with the viscous length scale) and the boundary shear
stress (scaled with the dynamic pressure) obey the “8/(5� 3r)”
and “3(1þr)/(5� 3r)” scaling laws, respectively, with the
Reynolds number characterized by the streamwise distance,
where r is the spectral exponent.

For a three-dimensional turbulence, r¼�5/3 for which Eqs. (33)
and (34) yield the scaling laws of the boundary-layer thickness and the
boundary shear stress in a smooth boundary-layer flow as follows:

dðxÞ �
t

U

� �1=5

x4=5 ) d̂jsmooth � R4=5
x ; (35)

s0ðxÞ � qU2 t

U

� �1=5

x�1=5 ) ŝ0jsmooth � R�1=5
x : (36)

Equations (35) and (36) show the explicit functional form of Eqs.
(6) and (7), respectively. The above scaling laws match completely
with the classical expressions for the boundary-layer thickness and the
boundary shear stress in a smooth boundary-layer flow, as given in
standard textbooks (see Appendix). It is interesting to note that Eq.
(31) for r¼�5/3 corresponds to Blasius’ scaling law.

VI. CONCLUSION

This Perspective article, dedicated to the Centennial of the
K�arm�an-Pohlhausen Momentum-Integral Approach, presents the ori-
gin of the scaling laws of developing turbulent boundary layers. The
phenomenological theory of turbulence is applied to explore the scal-
ing laws of the boundary-layer thickness and the boundary shear
stress in both rough and smooth boundary-layer flows. In a rough
boundary-layer flow, the boundary-layer thickness (scaled with the
boundary roughness) and the boundary shear stress (scaled with the
dynamic pressure) obey unique scaling laws with the streamwise dis-
tance (scaled with the boundary roughness). On the contrary, in a
smooth boundary-layer flow, the boundary-layer thickness (scaled
with the viscous length scale) and the boundary shear stress (scaled
with the dynamic pressure) obey unique scaling laws with the
Reynolds number characterized by the streamwise distance. The scal-
ing relationships reflect the role of the spectral exponent. To be spe-
cific, for a three-dimensional turbulence, the boundary-layer
thickness (scaled with the boundary roughness) and the boundary
shear stress (scaled with the dynamic pressure) in a rough boundary-
layer flow obey the “3/4” and “�1/4” scaling laws with the streamwise
distance (scaled with the boundary roughness). On the contrary, the
boundary-layer thickness (scaled with the viscous length scale) and
the boundary shear stress (scaled with the dynamic pressure) in a
smooth boundary-layer flow obey the “4/5” and “�1/5” scaling laws
with the Reynolds number characterized by the streamwise distance.

ACKNOWLEDGMENTS

S.Z.A. acknowledges the Institute Seed Grant of Indian
Institute of Technology Hyderabad in carrying out this research.

S.D. acknowledges the J C Bose Fellowship Award [Funded by
DST j Science and Engineering Research Board (SERB), Grant
Reference No. JCB/2018/000004] in pursuing this work.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Sk Zeeshan Ali: Conceptualization (equal); Data curation (equal); Formal
analysis (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Resources (equal); Validation (equal); Visualization
(equal); Writing – original draft (lead); Writing – review and editing
(equal). Subhasish Dey: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Resources (equal); Validation (equal); Visualization
(equal); Supervision (lead); Project administration (lead);Writing – original
draft (supporting); Writing – review and editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: CLASSICAL EXPRESSIONS FOR d(X) AND

s0(X) IN A SMOOTH BOUNDARY-LAYER FLOW

In a smooth boundary-layer flow, a 1/7-th power law of veloc-
ity distribution is traditionally used. Therefore

u

U
¼ FðfÞ with Fð0 � f � 1Þ ¼ f1=7: (A1)

Inserting the above equation into Eq. (3) produces

s0ðxÞ ¼
7

72
qU2 ddðxÞ

dx
: (A2)

Moreover, the boundary shear stress in a smooth turbulent
boundary-layer flow follows the Blasius formula:

s0ðxÞ ¼ 2:28� 10�2qU2 t

UdðxÞ

� �1=4

: (A3)

Combining Eqs. (A2) and (A3) yields a differential equation of
d(x), which is solved subject to the boundary condition d(x¼ 0)¼ 0.
The result is

dðxÞ ¼ 0:376
t

U

� �1=5

x4=5 ) d̂jsmooth ¼ 0:376R4=5
x : (A4)

Substituting Eq. (A4) into Eq. (A2) yields the boundary shear
stress as

s0ðxÞ ¼ 2:91� 10�2qU2 t

U

� �1=5

x�1=5

) ŝ0jsmooth ¼ 2:91� 10�2R�1=5
x : (A5)
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Equations (A4) and (A5) corroborate the scaling laws, as
deduced in Eqs. (35) and (36).
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