Header menu link for other important links
X
Organic cation linkers polyoxomolybdate-polypyrrole nanocomposite-based supercapacitors
P.K. Muhammed Anees, A.A. Vannathan, T. Kella, , S.S. Mal
Published in Springer Science and Business Media Deutschland GmbH
2021
Volume: 27
   
Issue: 9
Pages: 4023 - 4035
Abstract
A few new hybrid electrode materials have been synthesized and immobilized for the next-generation energy storage device. The hybrid electrodes PVMo11-TBA, PVMo11-BTA, PVMo11-TBP, PVMo11-TBA-PPy, PVMo11-BTA-PPy, and PVMo11-TBP-PPy were well characterized by NMR, XRD, FTIR, FESEM, BET, and tested for electrochemical performance. Among these hybrid electrode materials, the PVMo11-TBA-PPy electrode shows a high specific capacitance of 144.37 F/g at a 1A/g current density and incredible power and energy density of 1100.16 W/kg and 15.28 Wh/kg, respectively. The high electrode’s capacitance was due to the synergistic effect between the PPy and TBA-PVMo11 and high ionic diffusion compared with other synthesized electrodes. It also exhibited high cycle stability of 72.78% after 4500 cycles at 1 M H2SO4 electrolyte. The EIS offers a lower ESR value of 0.72 ohms for the PVMo11-TBA-PPy than PVMo11-TBA, indicating the rapid charge/discharge rate. On the other hand, the PVMo11-BTA-PPy and PVMo11-TBP-PPy electrodes showed lower capacitance values of 26.98 and 19.53. F/g at 0.4 and 1 A/g current density, respectively. Lowering the capacitance could be the prevention of the interaction of organic cations with the counter polyanion. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
About the journal
JournalData powered by TypesetIonics
PublisherData powered by TypesetSpringer Science and Business Media Deutschland GmbH
ISSN09477047