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OPERATORS THAT ATTAIN REDUCED MINIMUM

S. H. KULKARNI,1 and G. RAMESH2∗

Abstract. Let H1, H2 be complex Hilbert spaces and T be a densely defined
closed linear operator from its domain D(T ), a dense subspace of H1, into H2.
Let N(T ) denote the null space of T and R(T ) denote the range of T .

Recall that C(T ) := D(T )∩N(T )⊥ is called the carrier space of T and the
reduced minimum modulus γ(T ) of T is defined as:

γ(T ) := inf{‖T (x)‖ : x ∈ C(T ), ‖x‖ = 1}.
Further, we say that T attains its reduced minimum modulus if there exists

x0 ∈ C(T ) such that ‖x0‖ = 1 and ‖T (x0)‖ = γ(T ). We discuss some prop-
erties of operators that attain reduced minimum modulus. In particular, the
following results are proved.
(1) The operator T attains its reduced minimum modulus if and only if its

Moore-Penrose inverse T † is bounded and attains its norm, that is, there
exists y0 ∈ H2 such that ‖y0‖ = 1 and ‖T †‖ = ‖T †(y0)‖.

(2) For each ǫ > 0, there exists a bounded operator S such that ‖S‖ ≤ ǫ and
T + S attains its reduced minimum.

1. Introduction

Let H1 and H2 be complex Hilbert spaces and T : H1 → H2 be a bounded
linear operator. We say T to be norm attaining if there exists x0 ∈ H1 such that
‖x0‖ = 1 and ‖Tx0‖ = ‖T‖. The norm attaining operators are well studied in the
literature by several authors (see [21] for details and references there in). A well
known theorem in this connection is the Lindestrauss theorem which asserts the
denseness of norm attaining operators in the space of bounded linear operators
between two Hilbert spaces with respect to the operator norm (see for example,
[6] for a simple proof of this fact).

A natural analogue for this class of operators is the class of minimum attaining
operators. Recall that a bounded operator T : H1 → H2 is said to be minimum

attaining, if there exists x0 ∈ H1 with ‖x0‖ = 1 such that ‖Tx0‖ = m(T ), the
minimum modulus of T . This class of operators was first introduced by Carvajal
and Neves in [5] and several basic properties were also studied in the line of norm
attaining operators.

A Lindenstrauss type theorem for minimum attaining operators is proved in
[16]. Moreover, rank one perturbations of closed operators is also discussed.
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In this article, we define operators that attain the reduced minimum modulus
and establish several basic properties of such operators. We prove that if a densely
defined closed operator T attains its reduced minimum, then its Moore-Penrose
inverse T † is bounded and attains its norm. It turns out that this class is a
subclass of minimum attaining operators as well as the class of closed range
operators. Finally, we observe that this class is dense in the class of densely
defined closed operators with respect to the gap metric as well as with respect to
the carrier graph topology (see [13] for details). We prove several consequences
of this result.

In the second section we summarize without proofs the relevant material on
densely defined closed operators, the gap metric and the carrier graph topology.
In the third section we define the reduced minimum attaining operators, prove
some of the basic and important properties of such operators and compare with
those of minimum attaining operators. In proving most of our results, we make
use of the corresponding result for minimum attaining operators, which can be
found in [16] and [11]. In Section four we give a correct formula for the distance
between a symmetric operator and a scalar multiple of the identity operator in
the metric defined in [13].

2. Preliminaries

Through out we consider infinite dimensional complex Hilbert spaces which
will be denoted by H,H1, H2 etc. The inner product and the induced norm are
denoted by 〈·〉 and ||.||, respectively. The closure of a subspace M of H is denoted
by M . We denote the unit sphere of M by SM = {x ∈ M : ‖x‖ = 1}.

Let T be a linear operator with domain D(T ), a subspace of H1 and taking
values in H2. If D(T ) is dense in H1, then T is called a densely defined operator.

The graph G(T ) of T is defined by G(T ) := {(Tx, x) : x ∈ D(T )} ⊆ H1×H2. If
G(T ) is closed, then T is called a closed operator. Equivalently, T is closed if and
only if if (xn) is a sequence in D(T ) such that xn → x ∈ H1 and Txn → y ∈ H2,
then x ∈ D(T ) and Tx = y.

For a densely defined operator, there exists a unique linear operator (in fact, a
closed operator) T ∗ : D(T ∗) → H1, with

D(T ∗) := {y ∈ H2 : x → 〈Tx, y〉 for all x ∈ D(T ) is continuous} ⊆ H2

satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗). We say T to be
bounded if there exists M > 0 such that ‖Tx‖ ≤ M‖x‖ for all x ∈ D(T ). Note
that if T is densely defined and bounded then T can be extended to all of H1 in
a unique way.

By the closed graph Theorem [20], an everywhere defined closed operator is
bounded. Hence the domain of an unbounded closed operator is a proper subspace
of a Hilbert space.

The space of all bounded linear operators between H1 and H2 is denoted by
B(H1, H2) and the class of all densely defined, closed linear operators between
H1 and H2 is denoted by C(H1, H2). We write B(H,H) = B(H) and C(H,H) =
C(H).
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If T ∈ C(H1, H2), then the null space and the range space of T are denoted by
N(T ) and R(T ) respectively and the space C(T ) := D(T ) ∩N(T )⊥ is called the
carrier of T . In fact, D(T ) = N(T )⊕⊥ C(T ) [2, page 340].

Let TC := T |C(T ). As C(T ) = N(T )⊥ (see [13, Lemma 3.3] for details), T ∈
C(N(T )⊥, H2).

Let S, T ∈ C(H) be operators with domains D(S) and D(T ), respectively.
Then S + T is an operator with domain D(S + T ) = D(S) ∩ D(T ) defined by
(S + T )(x) = Sx + Tx for all x ∈ D(S + T ). The operator ST has the domain
D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and is defined as (ST )(x) = S(Tx) for all
x ∈ D(ST ).

If S and T are closed operators with the property that D(T ) ⊆ D(S) and
Tx = Sx for all x ∈ D(T ), then T is called the restriction of S and S is called
an extension of T . We denote this by T ⊆ S.

An operator T ∈ C(H) is said to be

(1) normal if T ∗T = TT ∗

(2) self-adjoint if T = T ∗

(3) symmetric if T ⊆ T ∗

(4) positive if T = T ∗ and 〈Tx, x〉 ≥ 0 for all x ∈ D(T ).

Let V ∈ B(H1, H2). Then V is called

(1) an isometry if ‖V x‖ = ‖x‖ for all x ∈ H1

(2) a partial isometry if V |N(V )⊥ is an isometry. The space N(V )⊥ is called
the initial space or the initial domain and the space R(V ) is called the
final space or the final domain of V .

If M is a closed subspace of a Hilbert space H , then PM denotes the orthogonal
projection PM : H → H with range M , and SM denotes the unit sphere of M .

Here we recall definition and properties of the Moore-Penrose inverse (or gener-
alized inverse) of a densely defined closed operator that we need for our purpose.

Definition 2.1. (Moore-Penrose Inverse)[2, Pages 314, 318-320] Let T ∈ C(H1, H2).
Then there exists a unique operator T † ∈ C(H2, H1) with domain D(T †) =
R(T )⊕⊥ R(T )⊥ and has the following properties:

(1) TT †y = P
R(T ) y, for all y ∈ D(T †)

(2) T †Tx = PN(T )⊥ x, for all x ∈ D(T )

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore-Penrose inverse or the generalized

inverse of T .
The following property of T † is also well known. For every y ∈ D(T †), let

L(y) :=
{
x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| for all u ∈ D(T )

}
.

Here any u ∈ L(y) is called a least square solution of the operator equation
Tx = y. The vector T †y ∈ L(y), ||T †y|| ≤ ||x|| for all x ∈ L(y) and it is called
the least square solution of minimal norm. A different treatment of T † is given
in [2, Pages 336, 339, 341], where it is called “the Maximal Tseng generalized

Inverse”.
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Theorem 2.2. [2, Page 320] Let T ∈ C(H1, H2). Then

(1) D(T †) = R(T )⊕⊥ R(T )⊥, N(T †) = R(T )⊥ = N(T ∗)
(2) R(T †) = C(T )
(3) T † ∈ C(H2, H1)
(4) T † is continuous if and only R(T ) is closed

(5) T †† = T
(6) T ∗† = T †∗

(7) N(T ∗†) = N(T )
(8) T ∗T and T †T ∗† are positive and (T ∗T )† = T †T ∗†

(9) TT ∗ and T ∗†T † are positive and (TT ∗)† = T ∗†T †.

Definition 2.3. Let T ∈ B(H1, H2). Then T is said to be norm attaining if there
exists x0 ∈ SH1

such that ‖Tx0‖ = ‖T‖.
We denote the set of all norm attaining operators between H1, H2 byN (H1, H2)

and N (H,H) by N (H).

Definition 2.4. [2, 7, 23] Let T ∈ C(H1, H2). Then

m(T ) := inf {‖Tx‖ : x ∈ SD(T )}
γ(T ) := inf {‖Tx‖ : x ∈ SC(T )},

are called the minimum modulus and the reduced minimum modulus of T , respec-
tively. The operator T is said to be bounded below if and only if m(T ) > 0.

Remark 2.5. If T ∈ C(H1, H2), then

(a) m(T ) ≤ γ(T ) and equality holds if T is one-to-one
(b) m(T ) > 0 if and only if R(T ) is closed and T is one-to-one

Proposition 2.6. [2, 10] Let T ∈ C(H1, H2). Then the following statements are

equivalent;

(1) R(T ) is closed

(2) R(T ∗) is closed
(3) T0 := T |C(T ) has a bounded inverse

(4) γ(T ) > 0
(5) T † is bounded. In fact, ‖T †‖ = 1

γ(T )

(6) R(T ∗T ) is closed

(7) R(TT ∗) is closed.

Remark 2.7. If T ∈ C(H) and T−1 ∈ B(H), then m(T ) = 1
‖T−1‖

, by (5) of

Proposition 2.6.

Theorem 2.8. [20, theorem 13.31, page 349][3, Theorem 4, page 144] Let T ∈
C(H) be positive. Then there exists a unique positive operator S such that T = S2.

The operator S is called the square root of T and is denoted by S = T
1

2 .

Theorem 2.9. [3, Theorem 2, page 184] Let T ∈ C(H1, H2). Then there exists

a unique partial isometry V : H1 → H2 with initial space R(T ∗) and range R(T )
such that T = V |T |.
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Remark 2.10. For T ∈ C(H1, H2), the operator |T | := (T ∗T )
1

2 is called the mod-

ulus of T . Moreover, D(|T |) = D(T ), N(|T |) = N(T ) and R(|T |) = R(T ∗). As
‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ), we can conclude that m(T ) = m(|T |), and
γ(T ) = γ(|T |).
Definition 2.11. [20, page 346] Let T ∈ C(H). The resolvent of T is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is invertible and (T − λI)−1 ∈ B(H)}
and

σ(T ) : = C \ ρ(T )
σp(T ) : = {λ ∈ C : T − λI : D(T ) → H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.

Definition 2.12. [10, Page 267] Let T ∈ C(H). Then the numerical range of T
is defined by

W (T ) :=
{
〈Tx, x〉 : x ∈ SD(T )

}
.

The following Proposition is proved in [17, Chapter 10] for regular (unbounded)
operators between Hilbert C∗-modules, which is obviously true for densely defined
closed operators in a Hilbert space.

Proposition 2.13. [22, Lemma 5.8] Let T ∈ C(H). Let QT := (I + T ∗T )−
1

2 and

FT := TQT . Then

(1) QT ∈ B(H) and 0 ≤ QT ≤ I
(2) R(QT ) = D(T )
(3) (FT )

∗ = FT ∗

(4) ‖FT‖ < 1 if and only if T ∈ B(H1, H2)

(5) T = FT (I − F ∗
TFT )

− 1

2

(6) QT = (I − F ∗
TFT )

1

2 .

The operator FT is called the bounded transform of T or the z-transform of T .

Lemma 2.14. [8, 9, 19] Let T ∈ C(H1, H2). Denote Ť = (I + T ∗T )−1 and

T̂ = (I + TT ∗)−1. Then

(1) Ť ∈ B(H1), T̂ ∈ B(H2)

(2) T̂ T ⊆ T Ť , ||T Ť || ≤ 1

2
and Ť T ∗ ⊆ T ∗T̂ , ||T ∗T̂ || ≤ 1

2
.

One of the most useful and well studied metric on C(H1, H2) is the gap metric.
Here we give some details.

Definition 2.15 (Gap between subspaces). [10, page 197] Let H be a Hilbert
space and M,N be closed subspaces of H . Let P = PM and Q = PN . Then the
gap between M and N is defined by

θ(M,N) = ‖P −Q‖.
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If S, T ∈ C(H1, H2), then G(T ), G(S) ⊆ H1 × H2 are closed subspaces. The
gap between G(T ) and G(S) is called the gap between T and S. For a deeper
discussion on these concepts we refer to [10, Chapter IV] and [1, page 70].

We have the following formula for the gap between two closed operators;

Theorem 2.16. [15] Let S, T ∈ C(H1, H2). Then the operators T̂
1

2SŠ
1

2 , T Ť
1

2 Š
1

2 ,

SŠ
1

2 Ť
1

2 and Ŝ
1

2T Ť
1

2 are bounded and

θ(S, T ) = max
{∥∥∥T Ť 1

2 Š
1

2 − T̂
1

2SŠ
1

2

∥∥∥ ,
∥∥∥SŠ 1

2 Ť
1

2 − Ŝ
1

2T Ť
1

2

∥∥∥
}
. (2.1)

On B(H), the norm topology and the topology induced by the gap metric are
the same. This can be seen from the following inequalities.

Theorem 2.17. [18, Theorem 2.5] Let A,B ∈ B(H). Then

θ(A,B) ≤ ‖A− B‖ ≤
√

1 + ‖A‖2
√
1 + ‖B‖2 θ(A,B).

We remark that though the above result is stated for operators defined on a
Hilbert space, it remains true for operators defined between two different Hilbert
spaces.

Definition 2.18. Let T ∈ C(H1, H2). Define the Carrier Graph of T by

GC(T ) := {(x, Tx) : x ∈ C(T )} ⊆ H1 ×H2.

For S, T ∈ C(H1, H2), the gap between GC(S) and GC(T ) is denoted by,

η(S, T ) = ‖PGC(S) − PGC(T )‖.
The topology induced by the metric η(·, ·) on C(H1, H2) is called the Carrier

Graph Topology.
To compute the η(S, T ) we can use the following formula;

Theorem 2.19. Let T, S ∈ C(H1, H2). Then

|η(T, S)− θ(N(T ), N(S))| ≤ θ(T, S) ≤ η(T, S) + θ(N(T ), N(S)).

If N(T ) = N(S), by Theorem 2.19, we can conclude that η(S, T ) = θ(S, T ).
For the details of this metric we refer to [13].

3. Main Results

In this section we define reduced minimum modulus attaining operators and
discuss their properties. Recall that T ∈ C(H1, H2) is called minimum attaining if
there exists x0 ∈ SD(T ) such that ‖Tx0‖ = m(T ). In particular, if T ∈ B(H1, H2),
then T is minimum attaining if there exists x0 ∈ SH1

such that ‖Tx0‖ = m(T ).
We denote the class of minimum attaining densely defined closed operators

between H1 and H2 by Mc(H1, H2) and Mc(H,H) by Mc(H). The class of
bounded minimum attaining operators is denoted by M(H1, H2) and M(H,H)
by M(H).

We propose the following definition;

Definition 3.1. We say T ∈ C(H1, H2) to be reduced minimum attaining if there
exists x0 ∈ SC(T ) such that ‖Tx0‖ = γ(T ).
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The class of reduced minimum attaining densely defined closed linear operators
between H1 and H2 is denoted by Γc(H1, H2). If H1 = H2 = H , then we write
Γc(H1, H2) by Γc(H). The class of bounded operators which attain the reduced
minimum is denoted by Γ(H1, H2) and Γ(H,H) is denoted by Γ(H).

Theorem 3.2. Let T ∈ C(H1, H2). Then T attains its reduced minimum if and

only if T † is bounded and attains its norm.

Proof. Suppose T attains its reduced minimum. Then there exists x0 ∈ C(T )
such that ‖x0‖ = 1 and ‖T (x0)‖ = γ(T ). We must have γ(T ) > 0 as otherwise
x0 ∈ N(T ) will imply x0 = 0, a contradiction. This implies that T † is bounded.
Let y0 = T (x0)/‖T (x0)‖ = T (x0)/γ(T ). Then ‖y0‖ = 1 and

‖T †(y0)‖ = ‖T †T (x0)‖/γ(T ) = ‖x0‖/γ(T ) = 1/γ(T ) = ‖T †‖.
Thus T † attains its norm.

Conversely assume that T † is bounded and attains its norm. Then there exists
y0 ∈ H2 such that ‖y0‖ = 1 and ‖T †(y0)‖ = ‖T †‖. Let y0 = u+v where u ∈ R(T )
and v ∈ R(T )⊥. Suppose v 6= 0. Then ‖u‖ < 1. Hence

‖T †‖ = ‖T †(y0)‖ = ‖T †(u)‖ ≤ ‖T †‖‖u‖ < ‖T †‖,
a contradiction. This implies that v = 0, hence y0 ∈ R(T ). Thus there exists
x0 ∈ C(T ) such that y0 = T (x0). Then x0 = T †(y0), hence ‖x0‖ = ‖T †‖. Let
z0 = x0/‖x0‖. Then z0 ∈ C(T ), ‖z0‖ = 1 and

‖T (z0)‖ = ‖y0‖/‖x0‖ = 1/‖T †‖ = γ(T ).

Thus T attains the reduced minimum modulus. �

Corollary 3.3. Let T ∈ C(H1, H2). Suppose T is one-to-one. Then the following

are equivalent.

(1) T ∈ Mc(H1, H2)
(2) T ∈ Γc(H1, H2)
(3) T † ∈ B(H2, H1) and attains its norm.

Proof. Since T is injective, N(T ) = {0}. Hence C(T ) = D(T ) and γ(T ) = m(T ).
This shows equivalence of (1) and (2). Equivalence of (2) and (3) follows from
Theorem 3.2. �

Lemma 3.4. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if TC ∈
Mc(N(T )⊥, H2).

Proof. The proof follows from the fact that m(TC) = γ(T ). �

Proposition 3.5. Let T ∈ Γc(H1, H2). Then R(T ) is closed.

Proof. This follows from Theorem 3.2 and Proposition 2.6. �

Example 3.6. (1) All orthogonal projections on a Hilbert space attain their
reduced minimum

(2) An operator with non closed range cannot attain its reduced minimum.

Proposition 3.7. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if

|T | ∈ Γc(H1).
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Proof. By definition D(|T |) = D(T ) and N(|T |) = N(T ). Hence C(|T |) = C(T ).
Also, ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ). Thus T ∈ Γ(H1, H2) if and only if
|T | ∈ Γ(H1). �

Proposition 3.8. [14, Proposition 4.2] Let T = T ∗ ∈ C(H). Then γ(T ) =
d(0, σ(T ) \ {0}).
Lemma 3.9. (1) Let T ∈ C(H) be self-adjoint. Then m(T ) = d(0, σ(T ))

(2) If T ∈ C(H1, H2), then m(T ) ∈ σ(|T |). In particular, if H1 = H2 = H
and T ≥ 0, then m(T ) ∈ σ(T ).

Proof. Proof of (1): If T is not invertible, then 0 ∈ σ(T ) and T is not bounded
below. Hence in this case m(T ) = 0 = d(0, σ(T )).

Next assume that 0 /∈ σ(T ). Since σ(T ) is closed ([22, Proposition 2.6, Page
29]), we can conclude that d(0, σ(T )) > 0. Also, as T−1 ∈ B(H), T must be
bounded below. Hence m(T ) > 0. In this case, m(T ) = γ(T ). Now, by Proposi-
tion 3.8, we have m(T ) = γ(T ) = d(0, σ(T ) \ {0}) = d(0, σ(T )).

Proof of (2): Note that |T | ≥ 0 and by (1), we have that m(T ) = m(|T |) =
d(0, σ(|T |)). Since, σ(|T |) is closed, we can conclude that m(T ) ∈ σ(|T |). If
H1 = H2 = H and T ≥ 0, then we have |T | = T . Hence in this case the result
follows. �

Remark 3.10. Let T ∈ C(H) be normal. Then we can prove the formula m(T ) =
d(0, σ(T )). First note that the crucial point in proving this in the self-adjoint
case is Proposition 3.8. This is proved for normal operators in [12, Theorem
4.4.5]. Now following along the similar lines of Proposition 3.9, we can obtain the
formula.

Proposition 3.11. Let T = T ∗ ∈ C(H). Then T ∈ Γc(H) if and only if either

γ(T ) or −γ(T ) is an eigenvalue of T . In particular, if T ≥ 0, then T ∈ Γc(H) if
and only if γ(T ) is an eigenvalue of T .

Proof. We have by Lemma 3.4, that T ∈ Γc(H) if and only if TC ∈ M(N(T )⊥).
As N(T )⊥ is a reducing subspace for T , TC is self-adjoint. Now, TC ∈ M(N(T )⊥)
if and only either m(TC) or−m(TC) is an eigenvalue for TC and hence for T . Since
m(TC) = γ(T ), the conclusion follows. In particular, if T ≥ 0, the eigenvalues of
T are positive, so we can conclude that T ∈ Γc(H) if and only if γ(T ) ∈ σp(T ). �

Proposition 3.12. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if

T ∗T ∈ Γc(H1).

Proof. By Theorem 3.2, T ∈ Γc(H1, H2) if and only if R(T ) is closed and T † ∈
N (H2, H1). This is equivalent to the condition that (T ∗)† = (T †)∗ ∈ N (H1, H2).
This is in turn equivalent to the fact that (T †)(T †)∗ ∈ N (H2). But (T †)(T †)∗ =
(T ∗T )†, by Theorem 2.2. Thus by Theorem 3.2, T ∗T ∈ Γc(H1). �

Proposition 3.13. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if

T ∗ ∈ Γc(H2, H1).

Proof. If T ∈ Γc(H1, H2), then R(T ) is closed and so is R(T ∗). Also, we have
γ(T ) = γ(T ∗). By Theorem 3.2, T † ∈ N (H2, H1). Also, (T †)∗ ∈ N (H1, H2), by
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[4, Proposition 2.5]. Note that (T †)∗ = (T ∗)†, by Thoerem 2.2. Hence by Theorem
3.2 again, T ∗ ∈ Γc(H2, H1). Applying the same result for T ∗ and observing that
T ∗∗ = T , we get the other way implication. �

Remark 3.14. The above result need not hold for minimum attaining operators.
Let H = ℓ2 and {en : n ∈ N} denote the standard orthonormal basis for H . That
is en(m) = δnm, the Dirac delta function. Define operators D,R : H → H by

Den =
1

n
en,

Ren = en+1 for each n ∈ N.

Let T = RD. Since R is an isometry, we have m(T ) = m(D) = d(0, σ(D)) =

inf
{ 1

n
: n ∈ N

}
= 0. Since 0 /∈ σp(D), D is not minimum attaining. Thus T is

not minimum attaining. But, N(T ∗) = span{e1}. Som(T ∗) = 0 and T ∗ ∈ M(H).
Note that T ∗T = D2 cannot have closed range since D is compact. Equivalently,
R(T ) is not closed, whence T cannot attain its reduced minimum by Theorem
3.2.

Proposition 3.15. Let T ∈ C(H1, H2). If T ∈ Γc(H1, H2), then T ∈ Mc(H1, H2).

Proof. First assume that T is one-to-one. Then γ(T ) = m(T ). Hence if T ∈
Γc(H1, H2), then clearly T ∈ Mc(H1, H2). If T is not one-to-one, then N(T ) 6=
{0}. Hence in this case m(T ) = 0 and there exists a 0 6= x ∈ N(T ) such that
Tx = 0. Hence clearly T ∈ Mc(H1, H2). This completes the proof. �

Proposition 3.16. [11, Proposition 3.5] Let T ∈ C(H) be positive. Then

m(T ) = inf {〈Tx, x〉 : x ∈ SD(T )}.
In particular, if T ∈ C(H1, H2), then m(T ∗T ) = m(T )2.

Proposition 3.17. Let T ∈ C(H) be positive. Then

γ(T ) = inf {〈Tx, x〉 : x ∈ SC(T )}.
In particular, if T ∈ C(H1, H2), then γ(T ∗T ) = γ(T )2.

Proof. Since, TC is positive, we have by Proposition 3.16,

γ(T ) = m(TC) = inf {〈TCx, x〉 : x ∈ SC(T )}
= inf {〈Tx, x〉 : x ∈ SC(T )}. �

Further, if T ∈ C(H1, H2), then T ∗T ∈ C(H1) is positive. Thus by applying the
above formula for T ∗T and by the definition of γ(T ), we get the conclusion.

Remark 3.18. If T ∈ C(H) be positive. Then the following statements are equiv-
alent (see [11, Proposition 3.8]):

(1) T ∈ Mc(H)
(2) m(T ) is an eigenvalue of T
(3) m(T ) is an extreme point of W (T ).
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In general if T ∈ Γc(H) and is positive, then γ(T ) need not be an extreme point
of the numerical range of T . To see this, consider the operator T on C3, whose

matrix with respect to the standard orthonormal basis of C3 is




0 0 0
0 1

2
0

0 0 1


.

It can be easily computed that γ(T ) = 1
2
, which is not an extreme point of

W (T ) = [0, 1], but m(T ) = 0, which is an extreme point of W (T ).

Proposition 3.19. Let T ∈ C(H1, H2) and FT be the bounded transform of T .
Then

(1) γ(FT ) =
γ(T )√

1 + γ(T )2

(2) m(FT ) =
m(T )√

1 +m(T )2
.

Proof. Proof of (1): In view of Proposition 3.17 it is enough to show that γ(F ∗
TFT ) =

γ(T ∗T )

1 + γ(T ∗T )
. First we note that F ∗

TFT = T ∗T (I + T ∗T )−1 = I − (I + T ∗T )−1.

Using the formula in Proposition 3.8, we get

γ(F ∗
TFT ) = d(0, σ(F ∗

TFT ) \ {0})
= inf { µ

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= inf {1− 1

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= 1− sup { 1

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= 1− 1

1 + inf {µ : µ ∈ σ(T ∗T ) \ {0}}

=
γ(T ∗T )

1 + γ(T ∗T )
.

Hence we can conclude that γ(FT ) =
γ(T )√

1 + γ(T )2
.

Proof of (2): To prove this we need to use (1) of Lemma 3.9 and follow the
similar steps as above. �

Proposition 3.20. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if

FT ∈ Γ(H1, H2).

Proof. In view of Proposition 3.12, it suffices to show that T ∗T ∈ Γc(H1) if and
only if F ∗

TFT ∈ Γ(H1). First, note that (FT )
∗ = FT ∗ . If T ∗T ∈ Γc(H1), there
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exists x0 ∈ SC(T ∗T ) such that T ∗Tx0 = γ(T ∗T )x0. Then we have

F ∗
TFTx0 =

(
I − (I + T ∗T )−1

)
x0

=
γ(T ∗T )

1 + γ(T ∗T )
x0

=
γ(T )2

1 + γ(T )2
x0

= γ(FT )
2x0

= γ(F ∗
TFT )x0.

This shows that F ∗
TFT ∈ Γ(H1).

To prove the converse, suppose F ∗
TFT ∈ Γ(H1). Then F ∗

TFT = FT ∗FT =
T ∗T (I + T ∗T )−1 ∈ Γ(H1). Thus there exists x0 ∈ N((FT )

∗FT )
⊥ = N(FT )

⊥ =
N(T )⊥ such that T ∗T (I +T ∗T )−1x0 = γ(FT ∗FT )x0. By Proposition 3.19, we can
obtain that

(I − (I + T ∗T )−1)(x0) =
(
1− (

1

1 + γ(T )2
)
)
(x0).

Equivalently, (I + T ∗T )−1(x0) =
1

1 + γ(T )2
x0. That is x0 ∈ R

(
(I + T ∗T )−1

)
=

D(I + T ∗T ) = D(T ∗T ). It follows that (I + T ∗T )(x0) = (1 + γ(T )2)(x0) or
T ∗Tx0 = γ(T ∗T )x0, concluding T

∗T attains its reduced minimum and so is T . �

Next, we would like to prove a Lindenstrauss type theorem for the class of
reduced minimum attaining operators. We need the following results for this
purpose.

Theorem 3.21. [16, Theorem 3.1] Let S, T ∈ C(H1, H2) and D(S) = D(T ).
Then

(1) the operators T̂
1

2 (T − S)Š
1

2 and Ŝ
1

2 (T − S)Ť
1

2 are bounded and

θ(S, T ) = max
{
‖T̂ 1

2 (T − S)Š
1

2‖, ‖Ŝ 1

2 (T − S)Ť
1

2‖
}

(2) if T − S is bounded, then θ(S, T ) ≤ ‖S − T‖.
Theorem 3.22. [16, Theorem 3.5] Let T ∈ C(H1, H2). Then for each ǫ > 0,
there exists S ∈ B(H1, H2) with ‖S‖ ≤ ǫ such that S + T is minimum attaining

and θ(S + T, T ) ≤ ǫ. More over, if m(T ) > 0, then we can choose S to be a rank

one operator.

Theorem 3.23. Let T ∈ C(H1, H2) be densely defined. Then for each ǫ > 0 there

exists S ∈ B(H1, H2) such that

(1) ‖S‖ ≤ ǫ
(2) N(T ) = N(T + S) and
(3) T + S attains reduced minimum.

Moreover, if γ(T ) > 0, then we can choose S to be a rank one operator.

Proof. First assume that γ(T ) > 0. Consider TC := T |C(T ) : N(T )⊥ → H2

is densely defined closed operator. We may assume that 0 < ǫ < γ(T ). By
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Theorem 3.22, there exists S0 ∈ B(N(T )⊥, H2) such that ‖S0‖ ≤ ǫ and TC + S0

is minimum attaining. That is, there exists x0 ∈ D(TC + S0) = D(TC) = C(T )
such that ‖x0‖ = 1 and ‖(TC + S0)(x0)‖ = m(TC + S0). As m(TC) = γ(T ) > 0,
we can choose S0 to be a rank one operator.

For x = u + v ∈ H1 with u ∈ N(T ), v ∈ N(T )⊥, define Sx = S0v. Then
‖Sx‖ = ‖S0v‖ ≤ ‖v‖ ≤ ǫ‖x‖. Thus ‖S‖ ≤ ǫ. Note that S is a rank one operator.

We claim that T + S attains reduced minimum. Note that D(T + S) = D(T ).
Let u ∈ N(T ). Then (T + S)(u) = Tu + Su = 0. Thus N(T ) ⊆ N(T + S) =
{x ∈ D(T ) : Tx+ Sx = 0}. Suppose that x ∈ D(T ) \N(T ). Let x = u+ v with
u ∈ N(T ) and v ∈ N(T )⊥. Then v 6= 0. Also, v ∈ C(T ) as x, u ∈ D(T ). Then

‖(T + S)(x)‖ = ‖Tv + Sv‖
= ‖Tv + S0v‖
≥ ‖Tv‖ − ‖S0v‖
≥ γ(T )‖v‖ − ‖S0‖‖v‖
≥ (γ(T )− ǫ)‖v‖
> 0.

Thus (T + S)(x) 6= 0. Thus x /∈ N(T + S). This show that N(T ) = N(T + S).
Since D(T + S) = D(T ), we have C(T + S) = C(T ) and hence

γ(T + S) = inf {‖(T + S)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= inf {‖(TC + S0)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= ‖(TC + S0)(x0)‖
= ‖(T + S)(x0)‖.

Next suppose that γ(T ) = 0. Let ǫ > 0. Choose x0 ∈ C(T ) such that ‖x0‖ = 1

and ‖Tx0‖ <
ǫ

4
. Then

‖(T +
ǫ

2
I)(x0)‖ ≥ ǫ

2
− ‖Tx0‖ ≥ ǫ

4
.

Hence

0 <
ǫ

4
≤ m(T +

ǫ

2
I) ≤ γ(T +

ǫ

2
).

By above argument, there exists S̃ ∈ B(H1, H2) such that ‖S̃‖ ≤ ǫ

2
and T +

ǫ

2
I + S̃ attains reduced minimum. Then ‖ ǫ

2
I + S̃‖ ≤ ǫ. Take S =

ǫ

2
+ S̃. Then

S satisfies all the stated conditions. �

We have the following consequences.

Theorem 3.24. The following statements holds true;

(1) Γc(H1, H2) is dense in C(H1, H2) with respect to the gap metric θ(·, ·).
(2) Γc(H1, H2) is dense in C(H1, H2) with respect to the metric η(·, ·)
(3) the set of all closed range operators of C(H1, H2) is dense in C(H1, H2)

with respect to the metric θ(·, ·)
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(4) the set of all closed range operators of C(H1, H2) is dense in C(H1, H2)
with respect to the metric η(·, ·).

Proof. Proof of (1): Follows by Theorem 3.23.
Proof of (2): Let ǫ > 0. Then by Theorem 3.23, we can obtain S ∈ B(H1, H2)

with ‖S‖ ≤ ǫ such that N(T ) = N(T + S) and θ(T, T + S) ≤ ǫ. By Theorem
2.19, it follows that η(T + S, T ) = θ(T + S, T ) ≤ ǫ. Hence the claim.

Proof of (3): Since Γc(H1, H2) is a subset of the set of all closed range operators
in C(H1, H2), the conclusion is immediate by (2) above.

Proof of (4): This follows by Proposition 3.5 and (2) above. �

Using the equivalence of the gap metric and the metric induced by the operator
norm on B(H1, H2) we can obtain the following consequences.

Corollary 3.25. The following statements are true.

(1) Γ(H1, H2) is dense in B(H1, H2) with respect to the operator norm

(2) the set of all bounded closed range operators is dense in B(H1, H2) with

respect to the operator norm.

4. A Corrected Formula

In [13] an incorrect formula was given for the gap θ(T, nI) between a symmetric,
closed densely defined operator T and nI. In this section we point out the error
and give a correct formula with proof.

Let T ∈ C(H1, H2). Recall that Ť := (I + T ∗T )−1 and T̂ := (I +TT ∗)−1. First
we recall the incorrect formula given in [13].

Let T ∈ C(H) be symmetric. Let n ∈ N be fixed. Then

θ(T, nI) =
1√

1 + n2
.

The correct formula is given in the following Proposition.

Proposition 4.1. Let T ∈ C(H) be symmetric. Let n ∈ N be fixed. Then

θ(T, nI) =
1√

1 + n2
max

{
‖(T − nI)Ť

1

2‖, ‖(T ∗ − nI)T̂
1

2‖
}
.

In particular, if T = T ∗, then

θ(T, nI) =
‖(T − nI)(I + T 2)

−1

2 ‖√
1 + n2

.

Further more, if −1

n
∈ σ(T ), then θ(T, nI) = 1.

Proof. We use the formula in Theorem 2.16. Let S = nI. Then Š
1

2 =
I√

1 + n2
=

Ŝ
1

2 and SŠ
1

2 =
nI√
1 + n2

. Now

SŠ
1

2 Ť
1

2 − Ŝ
1

2T Ť
1

2 =
1√

1 + n2
(nŤ

1

2 − T Ť
1

2 ) =
1√

1 + n2
(nI − T )Ť

1

2 .
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And

T Ť
1

2 Š
1

2 − T̂
1

2SŠ
1

2 =
1√

1 + n2
(T Ť

1

2 − nT̂
1

2 ).

Let A := nŤ
1

2−T Ť
1

2 andB := T Ť
1

2−nT̂
1

2 . Then θ(T, nI) =
1√

1 + n2
max {‖A‖, ‖B‖}.

Note that B∗ = T ∗T̂
1

2 − nT̂
1

2 = (T ∗ − nI)T̂
1

2 . Since ‖B∗‖ = ‖B‖, we get that

θ(T, nI) =
1√

1 + n2
max

{
‖(T − nI)Ť

1

2‖, ‖(T ∗ − nI)T̂
1

2‖
}
.

If T = T ∗, then A = B and hence the formula follows in this case. As A∗ = A
and A is bounded, we have

‖A‖ = sup {|λ| : λ ∈ σ(A)} = sup

{ |n− λ|√
1 + λ2

: λ ∈ σ(T )

}
.

Hence consider the function

f(x) =
|x− n|√
1 + x2

, x ∈ σ(T ) ⊆ R.

If x0 =
−1

n
∈ σ(T ), then we have f(x0) =

√
1 + n2 and hence ‖A‖ ≥

√
1 + n2.

Hence θ(T, nI) = 1. �

The following example illustrates the formula.

Example 4.2. Let H = ℓ2 and D = {(xm) ∈ H : (mxm) ∈ H}. Define T : D →
H by

T (x1, x2, x3, . . . ) = (x1, 2x2, 3x3, . . . ) for all (xm) ∈ D.

Clearly T is densely defined, T = T ∗ and range of T is closed. Let {em : m ∈ N}
be the standard orthonormal basis of H . Then Tem = mem for each m ∈ N.
Hence N ⊆ σp(T ), the point spectrum of T . In fact, we can show that σ(T ) = N.

For each m ∈ N, we have

T 2em = m2em

(I + T 2)(em) = (1 +m2)em

(I + T 2)
1

2 em =
√
1 +m2em

Ť
1

2 em = (I + T 2)
−1

2 em =
1√

1 +m2
em

T Ť
1

2 em =
m√

1 +m2
em.

Now (T − nI)Ť
1

2 em =
m− n√
1 +m2

em for each m ∈ N. Hence

‖(T − nI)Ť
1

2‖ = sup

{ |m− n|√
1 +m2

: m ∈ N

}
= max

{
1,

|n− 1|√
2

}
. (4.1)

Hence θ(T, nI) =
1√

1 + n2
max

{
1,

|n− 1|√
2

}
.
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Note 4.3. For a fixed n ∈ N, the sequence am :=

{ |m− n|√
1 +m2

}
decreases for

m = 1 to n (an = 0) and then increases with lim
m→∞

am = 1.
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OPERATORS THAT ATTAIN REDUCED MINIMUM

S. H. KULKARNI,1 and G. RAMESH2∗

Abstract. Let H1, H2 be complex Hilbert spaces and T be a
densely defined closed linear operator from its domain D(T ), a
dense subspace of H1, into H2. Let N(T ) denote the null space of
T and R(T ) denote the range of T .

Recall that C(T ) := D(T ) ∩ N(T )⊥ is called the carrier space

of T and the reduced minimum modulus γ(T ) of T is defined as:

γ(T ) := inf{‖T (x)‖ : x ∈ C(T ), ‖x‖ = 1}.
Further, we say that T attains its reduced minimum modulus

if there exists x0 ∈ C(T ) such that ‖x0‖ = 1 and ‖T (x0)‖ =
γ(T ). We discuss some properties of operators that attain reduced
minimum modulus. In particular, the following results are proved.
(1) The operator T attains its reduced minimum modulus if and

only if its Moore-Penrose inverse T † is bounded and attains
its norm, that is, there exists y0 ∈ H2 such that ‖y0‖ = 1
and ‖T †‖ = ‖T †(y0)‖.

(2) For each ǫ > 0, there exists a bounded operator S such that
‖S‖ ≤ ǫ and T + S attains its reduced minimum.

1. Introduction

Let H1 and H2 be complex Hilbert spaces and T : H1 → H2 be
a bounded linear operator. We say T to be norm attaining if there
exists x0 ∈ H1 such that ‖x0‖ = 1 and ‖Tx0‖ = ‖T‖. The norm
attaining operators are well studied in the literature by several authors
(see [22] for details and references there in). A well known theorem in
this connection is the Lindestrauss theorem which asserts the denseness
of norm attaining operators in the space of bounded linear operators
between two Hilbert spaces with respect to the operator norm (see for
example, [6] for a simple proof of this fact).
A natural analogue for this class of operators is the class of minimum

attaining operators. Recall that a bounded operator T : H1 → H2 is
said to be minimum attaining, if there exists x0 ∈ H1 with ‖x0‖ = 1

2010 Mathematics Subject Classification. 47A05, 47A10, 47A55, 47A58.
Key words and phrases. densely defined operator, closed operator, reduced mini-

mum modulus, minimum modulus, minimum attaining operator, reduced minimum
attaining operator, gap metric, carrier graph topology, Moore-Penrose inverse.
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such that ‖Tx0‖ = m(T ), the minimum modulus of T . This class
of operators was first introduced by Carvajal and Neves in [5] and
several basic properties were also studied in the line of norm attaining
operators.
A Lindenstrauss type theorem for minimum attaining operators is

proved in [16]. Moreover, rank one perturbations of closed operators is
also discussed.
In this article, we define operators that attain the reduced minimum

modulus and establish several basic properties of such operators. We
prove that if a densely defined closed operator T attains its reduced
minimum, then its Moore-Penrose inverse T † is bounded and attains
its norm. It turns out that this class is a subclass of minimum attain-
ing operators as well as the class of closed range operators. Finally, we
observe that this class is dense in the class of densely defined closed
operators with respect to the gap metric as well as with respect to the
carrier graph topology (see [13] for details). We prove several conse-
quences of this result.
In the second section we summarize without proofs the relevant ma-

terial on densely defined closed operators, the gap metric and the car-
rier graph topology. In the third section we define the reduced mini-
mum attaining operators, prove some of the basic and important prop-
erties of such operators and compare with those of minimum attaining
operators. In proving most of our results, we make use of the corre-
sponding result for minimum attaining operators, which can be found
in [16] and [11].

2. Preliminaries

Through out we consider infinite dimensional complex Hilbert spaces
which will be denoted by H,H1, H2 etc. The inner product and the
induced norm are denoted by 〈·〉 and ||.||, respectively. The closure of
a subspace M of H is denoted by M . We denote the unit sphere of M
by SM = {x ∈ M : ‖x‖ = 1}.
Let T be a linear operator with domain D(T ), a subspace of H1 and

taking values in H2. If D(T ) is dense in H1, then T is called a densely

defined operator.
The graph G(T ) of T is defined by G(T ) := {(Tx, x) : x ∈ D(T )} ⊆

H1 ×H2. If G(T ) is closed, then T is called a closed operator. Equiva-
lently, T is closed if and only if if (xn) is a sequence in D(T ) such that
xn → x ∈ H1 and Txn → y ∈ H2, then x ∈ D(T ) and Tx = y.
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For a densely defined operator, there exists a unique linear operator
(in fact, a closed operator) T ∗ : D(T ∗) → H1, with

D(T ∗) := {y ∈ H2 : x → 〈Tx, y〉 for allx ∈ D(T ) is continuous} ⊆ H2

satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗).
We say T to be bounded if there exists M > 0 such that ‖Tx‖ ≤

M‖x‖ for all x ∈ D(T ). Note that if T is densely defined and bounded
then T can be extended to all of H1 in a unique way.
By the closed graph Theorem [21], an everywhere defined closed op-

erator is bounded. Hence the domain of an unbounded closed operator
is a proper subspace of a Hilbert space.
The space of all bounded linear operators between H1 and H2 is

denoted by B(H1, H2) and the class of all densely defined, closed lin-
ear operators between H1 and H2 is denoted by C(H1, H2). We write
B(H,H) = B(H) and C(H,H) = C(H).
If T ∈ C(H1, H2), then the null space and the range space of T

are denoted by N(T ) and R(T ) respectively and the space C(T ) :=
D(T )∩N(T )⊥ is called the carrier of T . In fact, D(T ) = N(T )⊕⊥C(T )
[2, page 340].

Let TC := T |C(T ). As C(T ) = N(T )⊥ (see [13, Lemma 3.3] for
details), T ∈ C(N(T )⊥, H2).
Let S, T ∈ C(H) be operators with domains D(S) and D(T ), respec-

tively. Then S+T is an operator with domainD(S+T ) = D(S)∩D(T )
defined by (S + T )(x) = Sx+ Tx for all x ∈ D(S + T ). The operator
ST has the domain D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and is defined
as (ST )(x) = S(Tx) for all x ∈ D(ST ).
If S and T are closed operators with the property that D(T ) ⊆ D(S)

and Tx = Sx for all x ∈ D(T ), then T is called the restriction of S
and S is called an extension of T . We denote this by T ⊆ S.
An operator T ∈ C(H) is said to be normal if T ∗T = TT ∗, self-

adjoint if T = T ∗, symmetric if T ⊆ T ∗, positive if T = T ∗ and
〈Tx, x〉 ≥ 0 for all x ∈ D(T ).
Let V ∈ B(H1, H2). Then V is called an isometry if ‖V x‖ = ‖x‖ for

all x ∈ H1 and a partial isometry if V |N(V )⊥ is an isometry. The space

N(V )⊥ is called the initial space or the initial domain and the space
R(V ) is called the final space or the final domain of V .
If M is a closed subspace of a Hilbert space H , then PM denotes the

orthogonal projection PM : H → H with range M , and SM denotes
the unit sphere of M .
Here we recall definition and properties of the Moore-Penrose inverse

(or generalized inverse) of a densely defined closed operator that we
need for our purpose.
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Definition 2.1. (Moore-Penrose Inverse)[2, Pages 314, 318-320] Let
T ∈ C(H1, H2). Then there exists a unique operator T † ∈ C(H2, H1)
with domainD(T †) = R(T )⊕⊥R(T )⊥ and has the following properties:

(1) TT †y = P
R(T ) y, for all y ∈ D(T †)

(2) T †Tx = PN(T )⊥ x, for all x ∈ D(T )

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore-Penrose inverse or the
generalized inverse of T .
The following property of T † is also well known. For every y ∈ D(T †),
let

L(y) :=
{
x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| for all u ∈ D(T )

}
.

Here any u ∈ L(y) is called a least square solution of the operator
equation Tx = y. The vector T †y ∈ L(y), ||T †y|| ≤ ||x|| for all x ∈
L(y) and it is called the least square solution of minimal norm. A
different treatment of T † is given in [2, Pages 336, 339, 341], where it
is called “the Maximal Tseng generalized Inverse”.

Theorem 2.2. [2, Page 320] Let T ∈ C(H1, H2). Then

(1) D(T †) = R(T )⊕⊥ R(T )⊥, N(T †) = R(T )⊥ = N(T ∗)
(2) R(T †) = C(T )
(3) T † ∈ C(H2, H1)
(4) T † is continuous if and only R(T ) is closed
(5) T †† = T
(6) T ∗† = T †∗

(7) N(T ∗†) = N(T )
(8) T ∗T and T †T ∗† are positive and (T ∗T )† = T †T ∗†

(9) TT ∗ and T ∗†T † are positive and (TT ∗)† = T ∗†T †.

Definition 2.3. [6] Let T ∈ B(H1, H2). Then T is said to be norm

attaining if there exists x0 ∈ SH1
such that ‖Tx0‖ = ‖T‖.

We denote the set of all norm attaining operators between H1, H2

by N (H1, H2) and N (H,H) by N (H).

Definition 2.4. [2, 7, 24] Let T ∈ C(H1, H2). Then

m(T ) := inf {‖Tx‖ : x ∈ SD(T )}
γ(T ) := inf {‖Tx‖ : x ∈ SC(T )},

are called the minimum modulus and the reduced minimum modulus

of T , respectively. The operator T is said to be bounded below if and
only if m(T ) > 0.

Remark 2.5. If T ∈ C(H1, H2), then
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(a) m(T ) ≤ γ(T ) and equality holds if T is one-to-one
(b) m(T ) > 0 if and only if R(T ) is closed and T is one-to-one

Proposition 2.6. [2, 10] Let T ∈ C(H1, H2). Then the following state-

ments are equivalent;

(1) R(T ) is closed
(2) R(T ∗) is closed

(3) T0 := T |C(T ) has a bounded inverse

(4) γ(T ) > 0
(5) T † is bounded. In fact, ‖T †‖ = 1

γ(T )

(6) R(T ∗T ) is closed
(7) R(TT ∗) is closed.

Remark 2.7. If T ∈ C(H) and T−1 ∈ B(H), then m(T ) = 1
‖T−1‖

, by (5)

of Proposition 2.6.

Theorem 2.8. [21, theorem 13.31, page 349][3, Theorem 4, page 144]
Let T ∈ C(H) be positive. Then there exists a unique positive operator

S such that T = S2. The operator S is called the square root of T and

is denoted by S = T
1

2 .

Theorem 2.9. [3, Theorem 2, page 184] Let T ∈ C(H1, H2). Then

there exists a unique partial isometry V : H1 → H2 with initial space

R(T ∗) and range R(T ) such that T = V |T |.

Remark 2.10. For T ∈ C(H1, H2), the operator |T | := (T ∗T )
1

2 is called
the modulus of T . Moreover, D(|T |) = D(T ), N(|T |) = N(T ) and

R(|T |) = R(T ∗). As ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ), we can conclude
that m(T ) = m(|T |), and γ(T ) = γ(|T |).
Definition 2.11. [21, page 346] Let T ∈ C(H). The resolvent of T is
defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is invertible and (T − λI)−1 ∈ B(H)}
and

σ(T ) : = C \ ρ(T )
σp(T ) : = {λ ∈ C : T − λI : D(T ) → H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.

Definition 2.12. [10, Page 267] Let T ∈ C(H). Then the numerical

range of T is defined by

W (T ) :=
{
〈Tx, x〉 : x ∈ SD(T )

}
.
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The following Proposition is proved in [17, Chapter 10] for regular
(unbounded) operators between Hilbert C∗-modules, which is obviously
true for densely defined closed operators in a Hilbert space.

Proposition 2.13. [23, Lemma 5.8] Let T ∈ C(H). Let QT := (I +

T ∗T )−
1

2 and FT := TQT . Then

(1) QT ∈ B(H) and 0 ≤ QT ≤ I
(2) R(QT ) = D(T )
(3) (FT )

∗ = FT ∗

(4) ‖FT‖ < 1 if and only if T ∈ B(H1, H2)

(5) T = FT (I − F ∗
TFT )

− 1

2

(6) QT = (I − F ∗
TFT )

1

2 .

The operator FT is called the bounded transform of T or the z-transform
of T .

Lemma 2.14. [8, 9, 19] Let T ∈ C(H1, H2). Denote Ť = (I + T ∗T )−1

and T̂ = (I + TT ∗)−1. Then

(1) Ť ∈ B(H1), T̂ ∈ B(H2)

(2) T̂ T ⊆ T Ť , ||T Ť || ≤ 1

2
and Ť T ∗ ⊆ T ∗T̂ , ||T ∗T̂ || ≤ 1

2
.

One of the most useful and well studied metric on C(H1, H2) is the
gap metric. Here we give some details.

Definition 2.15 (Gap between subspaces). [10, page 197] Let H be a
Hilbert space and M,N be closed subspaces of H . Let P = PM and
Q = PN . Then the gap between M and N is defined by

θ(M,N) = ‖P −Q‖.
If S, T ∈ C(H1, H2), then G(T ), G(S) ⊆ H1 × H2 are closed sub-

spaces. The gap between G(T ) and G(S) is called the gap between
T and S. For a deeper discussion on these concepts we refer to [10,
Chapter IV] and [1, page 70].
We have the following formula for the gap between two closed oper-

ators;

Theorem 2.16. [15] Let S, T ∈ C(H1, H2). Then the operators T̂
1

2SŠ
1

2 ,

T Ť
1

2 Š
1

2 , SŠ
1

2 Ť
1

2 and Ŝ
1

2T Ť
1

2 are bounded and

θ(S, T ) = max
{∥∥∥T Ť 1

2 Š
1

2 − T̂
1

2SŠ
1

2

∥∥∥ ,
∥∥∥SŠ 1

2 Ť
1

2 − Ŝ
1

2T Ť
1

2

∥∥∥
}
. (2.1)

On B(H), the norm topology and the topology induced by the gap
metric are the same. This can be seen from the following inequalities.
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Theorem 2.17. [18, Theorem 2.5] Let A,B ∈ B(H). Then

θ(A,B) ≤ ‖A− B‖ ≤
√
1 + ‖A‖2

√
1 + ‖B‖2 θ(A,B).

We remark that though the above result is stated for operators de-
fined on a Hilbert space, it remains true for operators defined between
two different Hilbert spaces.

Definition 2.18. Let T ∈ C(H1, H2). Define the Carrier Graph of T
by

GC(T ) := {(x, Tx) : x ∈ C(T )} ⊆ H1 ×H2.

For S, T ∈ C(H1, H2), the gap between GC(S) and GC(T ) is denoted
by,

η(S, T ) = ‖PGC(S) − PGC(T )‖.
The topology induced by the metric η(·, ·) on C(H1, H2) is called the
Carrier Graph Topology.
To compute the η(S, T ) we can use the following formula;

Theorem 2.19. Let T, S ∈ C(H1, H2). Then

|η(T, S)− θ(N(T ), N(S))| ≤ θ(T, S) ≤ η(T, S) + θ(N(T ), N(S)).

If N(T ) = N(S), by Theorem 2.19, we can conclude that η(S, T ) =
θ(S, T ). For the details of this metric we refer to [13].

3. Main Results

In this section we define reduced minimum modulus attaining oper-
ators and discuss their properties. Recall that T ∈ C(H1, H2) is called
minimum attaining if there exists x0 ∈ SD(T ) such that ‖Tx0‖ = m(T ).
In particular, if T ∈ B(H1, H2), then T is minimum attaining if there
exists x0 ∈ SH1

such that ‖Tx0‖ = m(T ).
We denote the class of minimum attaining densely defined closed op-

erators between H1 and H2 by Mc(H1, H2) and Mc(H,H) by Mc(H).
The class of bounded minimum attaining operators is denoted byM(H1, H2)
and M(H,H) by M(H).
We propose the following definition;

Definition 3.1. We say T ∈ C(H1, H2) to be reduced minimum attain-

ing if there exists x0 ∈ SC(T ) such that ‖Tx0‖ = γ(T ).

The class of reduced minimum attaining densely defined closed lin-
ear operators between H1 and H2 is denoted by Γc(H1, H2). If H1 =
H2 = H , then we write Γc(H1, H2) by Γc(H). The class of bounded
operators which attain the reduced minimum is denoted by Γ(H1, H2)
and Γ(H,H) is denoted by Γ(H).
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Theorem 3.2. Let T ∈ C(H1, H2). Then T attains its reduced mini-

mum if and only if T † is bounded and attains its norm.

Proof. Suppose T attains its reduced minimum. Then there exists x0 ∈
C(T ) such that ‖x0‖ = 1 and ‖T (x0)‖ = γ(T ). We must have γ(T ) > 0
as otherwise x0 ∈ N(T ) will imply x0 = 0, a contradiction. This implies
that T † is bounded. Let y0 = T (x0)/‖T (x0)‖ = T (x0)/γ(T ). Then
‖y0‖ = 1 and

‖T †(y0)‖ = ‖T †T (x0)‖/γ(T ) = ‖x0‖/γ(T ) = 1/γ(T ) = ‖T †‖.
Thus T † attains its norm.
Conversely assume that T † is bounded and attains its norm. Then

there exists y0 ∈ H2 such that ‖y0‖ = 1 and ‖T †(y0)‖ = ‖T †‖. Let
y0 = u + v where u ∈ R(T ) and v ∈ R(T )⊥. Suppose v 6= 0. Then
‖u‖ < 1. Hence

‖T †‖ = ‖T †(y0)‖ = ‖T †(u)‖ ≤ ‖T †‖‖u‖ < ‖T †‖,
a contradiction. This implies that v = 0, hence y0 ∈ R(T ). Thus there
exists x0 ∈ C(T ) such that y0 = T (x0). Then x0 = T †(y0), hence
‖x0‖ = ‖T †‖. Let z0 = x0/‖x0‖. Then z0 ∈ C(T ), ‖z0‖ = 1 and

‖T (z0)‖ = ‖y0‖/‖x0‖ = 1/‖T †‖ = γ(T ).

Thus T attains the reduced minimum modulus. �

Corollary 3.3. Let T ∈ C(H1, H2). Suppose T is one-to-one. Then

the following are equivalent.

(1) T ∈ Mc(H1, H2)
(2) T ∈ Γc(H1, H2)
(3) T † ∈ B(H2, H1) and attains its norm.

Proof. Since T is injective, N(T ) = {0}. Hence C(T ) = D(T ) and
γ(T ) = m(T ). This shows equivalence of (1) and (2). Equivalence of
(2) and (3) follows from Theorem 3.2. �

Lemma 3.4. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and only if

TC ∈ Mc(N(T )⊥, H2).

Proof. The proof follows from the fact that m(TC) = γ(T ). �

Proposition 3.5. Let T ∈ Γc(H1, H2). Then R(T ) is closed.

Proof. This follows from Theorem 3.2 and Proposition 2.6. �

Example 3.6. (1) All orthogonal projections on a Hilbert space
attain their reduced minimum

(2) An operator with non closed range cannot attain its reduced
minimum.
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Proposition 3.7. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and

only if |T | ∈ Γc(H1).

Proof. By definition D(|T |) = D(T ) and N(|T |) = N(T ). Hence
C(|T |) = C(T ). Also, ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ). Thus
T ∈ Γc(H1, H2) if and only if |T | ∈ Γc(H1). �

Proposition 3.8. [14, Proposition 4.2] Let T = T ∗ ∈ C(H). Then

γ(T ) = d(0, σ(T ) \ {0}).
Lemma 3.9. (1) Let T ∈ C(H) be self-adjoint. Then m(T ) =

d(0, σ(T ))
(2) If T ∈ C(H1, H2), then m(T ) ∈ σ(|T |). In particular, if H1 =

H2 = H and T ≥ 0, then m(T ) ∈ σ(T ).

Proof. Proof of (1): If T is not invertible, then 0 ∈ σ(T ) and T is not
bounded below. Hence in this case m(T ) = 0 = d(0, σ(T )).
Next assume that 0 /∈ σ(T ). Since σ(T ) is closed ([23, Proposition

2.6, Page 29]), we can conclude that d(0, σ(T )) > 0. Also, as T−1 ∈
B(H), T must be bounded below. Hence m(T ) > 0. In this case,
m(T ) = γ(T ). Now, by Proposition 3.8, we have m(T ) = γ(T ) =
d(0, σ(T ) \ {0}) = d(0, σ(T )).
Proof of (2): Note that |T | ≥ 0 and by (1), we have that m(T ) =

m(|T |) = d(0, σ(|T |)). Since, σ(|T |) is closed, we can conclude that
m(T ) ∈ σ(|T |). If H1 = H2 = H and T ≥ 0, then we have |T | = T .
Hence in this case the result follows. �

Remark 3.10. Let T ∈ C(H) be normal. Then we can prove the formula
m(T ) = d(0, σ(T )). First note that the crucial point in proving this
in the self-adjoint case is Proposition 3.8. This is proved for normal
operators in [12, Theorem 4.4.5]. Now following along the similar lines
of Proposition 3.9, we can obtain the formula.

Proposition 3.11. Let T = T ∗ ∈ C(H). Then T ∈ Γc(H) if and only

if either γ(T ) or −γ(T ) is an eigenvalue of T . In particular, if T ≥ 0,
then T ∈ Γc(H) if and only if γ(T ) is an eigenvalue of T .

Proof. We have by Lemma 3.4, that T ∈ Γc(H) if and only if TC ∈
M(N(T )⊥). As N(T )⊥ is a reducing subspace for T , TC is self-adjoint.
Now, TC ∈ M(N(T )⊥) if and only either m(TC) or −m(TC) is an
eigenvalue for TC and hence for T . Since m(TC) = γ(T ), the conclusion
follows. In particular, if T ≥ 0, the eigenvalues of T are positive, so we
can conclude that T ∈ Γc(H) if and only if γ(T ) ∈ σp(T ). �

Proposition 3.12. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and

only if T ∗T ∈ Γc(H1).
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Proof. By Theorem 3.2, T ∈ Γc(H1, H2) if and only if R(T ) is closed
and T † ∈ N (H2, H1). This is equivalent to the condition that (T ∗)† =
(T †)∗ ∈ N (H1, H2). This is in turn equivalent to the fact that (T †)(T †)∗ ∈
N (H2). But (T †)(T †)∗ = (T ∗T )†, by Theorem 2.2. Thus by Theorem
3.2, T ∗T ∈ Γc(H1). �

Proposition 3.13. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and

only if T ∗ ∈ Γc(H2, H1).

Proof. If T ∈ Γc(H1, H2), then R(T ) is closed and so is R(T ∗). Also,
we have γ(T ) = γ(T ∗). By Theorem 3.2, T † ∈ N (H2, H1). Also,
(T †)∗ ∈ N (H1, H2), by [4, Proposition 2.5]. Note that (T †)∗ = (T ∗)†, by
Thoerem 2.2. Hence by Theorem 3.2 again, T ∗ ∈ Γc(H2, H1). Applying
the same result for T ∗ and observing that T ∗∗ = T , we get the other
way implication. �

Remark 3.14. The above result need not hold for minimum attaining
operators. Let H = ℓ2 and {en : n ∈ N} denote the standard orthonor-
mal basis for H . That is en(m) = δnm, the Dirac delta function. Define
operators D,R : H → H by

Den =
1

n
en,

Ren = en+1 for each n ∈ N.

Let T = RD. Since R is an isometry, we have m(T ) = m(D) =

d(0, σ(D)) = inf
{ 1

n
: n ∈ N

}
= 0. Since 0 /∈ σp(D), D is not minimum

attaining. Thus T is not minimum attaining. But, N(T ∗) = span{e1}.
So m(T ∗) = 0 and T ∗ ∈ M(H). Note that T ∗T = D2 cannot have
closed range since D is compact. Equivalently, R(T ) is not closed,
whence T cannot attain its reduced minimum by Theorem 3.2.

Proposition 3.15. Let T ∈ C(H1, H2). If T ∈ Γc(H1, H2), then T ∈
Mc(H1, H2).

Proof. First assume that T is one-to-one. Then γ(T ) = m(T ). Hence if
T ∈ Γc(H1, H2), then clearly T ∈ Mc(H1, H2). If T is not one-to-one,
then N(T ) 6= {0}. Hence in this case m(T ) = 0 and there exists a
0 6= x ∈ N(T ) such that Tx = 0. Hence clearly T ∈ Mc(H1, H2). This
completes the proof. �

Proposition 3.16. [11, Proposition 3.5] Let T ∈ C(H) be positive.

Then

m(T ) = inf {〈Tx, x〉 : x ∈ SD(T )}.
In particular, if T ∈ C(H1, H2), then m(T ∗T ) = m(T )2.
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Proposition 3.17. Let T ∈ C(H) be positive. Then

γ(T ) = inf {〈Tx, x〉 : x ∈ SC(T )}.

In particular, if T ∈ C(H1, H2), then γ(T ∗T ) = γ(T )2.

Proof. Since, TC is positive, we have by Proposition 3.16,

γ(T ) = m(TC) = inf {〈TCx, x〉 : x ∈ SC(T )}
= inf {〈Tx, x〉 : x ∈ SC(T )}. �

Further, if T ∈ C(H1, H2), then T ∗T ∈ C(H1) is positive. Thus by
applying the above formula for T ∗T and by the definition of γ(T ), we
get the conclusion.

Remark 3.18. If T ∈ C(H) be positive. Then the following statements
are equivalent (see [11, Proposition 3.8]):

(1) T ∈ Mc(H)
(2) m(T ) is an eigenvalue of T
(3) m(T ) is an extreme point of W (T ).

In general if T ∈ Γc(H) and is positive, then γ(T ) need not be an
extreme point of the numerical range of T . To see this, consider the op-
erator T on C3, whose matrix with respect to the standard orthonormal

basis of C3 is




0 0 0
0 1

2
0

0 0 1


. It can be easily computed that γ(T ) = 1

2
,

which is not an extreme point of W (T ) = [0, 1], but m(T ) = 0, which
is an extreme point of W (T ).

Proposition 3.19. Let T ∈ C(H1, H2) and FT be the bounded trans-

form of T . Then

(1) γ(FT ) =
γ(T )√

1 + γ(T )2

(2) m(FT ) =
m(T )√

1 +m(T )2
.

Proof. Proof of (1): In view of Proposition 3.17 it is enough to show

that γ(F ∗
TFT ) =

γ(T ∗T )

1 + γ(T ∗T )
. First we note that F ∗

TFT = T ∗T (I +

T ∗T )−1 = I − (I + T ∗T )−1. Using the formula in Proposition 3.8, we
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get

γ(F ∗
TFT ) = d(0, σ(F ∗

TFT ) \ {0})
= inf { µ

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= inf {1− 1

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= 1− sup { 1

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= 1− 1

1 + inf {µ : µ ∈ σ(T ∗T ) \ {0}}

=
γ(T ∗T )

1 + γ(T ∗T )
.

Hence we can conclude that γ(FT ) =
γ(T )√

1 + γ(T )2
.

Proof of (2): To prove this we need to use (1) of Lemma 3.9 and
follow the similar steps as above. �

Proposition 3.20. Let T ∈ C(H1, H2). Then T ∈ Γc(H1, H2) if and

only if FT ∈ Γ(H1, H2).

Proof. In view of Proposition 3.12, it suffices to show that T ∗T ∈
Γc(H1) if and only if F ∗

TFT ∈ Γ(H1). First, note that (FT )
∗ = FT ∗ . If

T ∗T ∈ Γc(H1), there exists x0 ∈ SC(T ∗T ) such that T ∗Tx0 = γ(T ∗T )x0.
Then we have

F ∗
TFTx0 =

(
I − (I + T ∗T )−1

)
x0

=
γ(T ∗T )

1 + γ(T ∗T )
x0

=
γ(T )2

1 + γ(T )2
x0

= γ(FT )
2x0

= γ(F ∗
TFT )x0.

This shows that F ∗
TFT ∈ Γ(H1).

To prove the converse, suppose F ∗
TFT ∈ Γ(H1). Then F ∗

TFT =
FT ∗FT = T ∗T (I+T ∗T )−1 ∈ Γ(H1). Thus there exists x0 ∈ N((FT )

∗FT )
⊥ =

N(FT )
⊥ = N(T )⊥ such that T ∗T (I + T ∗T )−1x0 = γ(FT ∗FT )x0. By

Proposition 3.19, we can obtain that

(I − (I + T ∗T )−1)(x0) =
(
1− (

1

1 + γ(T )2
)
)
(x0).
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Equivalently, (I + T ∗T )−1(x0) =
1

1 + γ(T )2
x0. That is x0 ∈ R

(
(I +

T ∗T )−1
)
= D(I + T ∗T ) = D(T ∗T ). It follows that (I + T ∗T )(x0) =

(1 + γ(T )2)(x0) or T ∗Tx0 = γ(T ∗T )x0, concluding T ∗T attains its
reduced minimum and so is T . �

Next, we would like to prove a Lindenstrauss type theorem for the
class of reduced minimum attaining operators. We need the following
results for this purpose.

Theorem 3.21. [16, Theorem 3.1][20, Remark 3.7] Let S, T ∈ C(H1, H2)
and D(S) = D(T ). Then

(1) the operators T̂
1

2 (T − S)Š
1

2 and Ŝ
1

2 (T − S)Ť
1

2 are bounded and

θ(S, T ) = max
{
‖T̂ 1

2 (T − S)Š
1

2‖, ‖Ŝ 1

2 (T − S)Ť
1

2‖
}

(2) if T − S is bounded, then θ(S, T ) ≤ ‖S − T‖.
Theorem 3.22. [16, Theorem 3.5] Let T ∈ C(H1, H2). Then for each

ǫ > 0, there exists S ∈ B(H1, H2) with ‖S‖ ≤ ǫ such that S + T is

minimum attaining and θ(S+T, T ) ≤ ǫ. More over, if m(T ) > 0, then
we can choose S to be a rank one operator.

Theorem 3.23. Let T ∈ C(H1, H2) be densely defined. Then for each

ǫ > 0 there exists S ∈ B(H1, H2) such that

(1) ‖S‖ ≤ ǫ
(2) N(T ) = N(T + S) and
(3) T + S attains reduced minimum.

Moreover, if m(T ) > 0, then we can choose S to be a rank one operator.

Proof. First assume that γ(T ) > 0. Consider TC := T |C(T ) : N(T )⊥ →
H2 is densely defined closed operator. We may assume that 0 < ǫ <
γ(T ). By Theorem 3.22, there exists S0 ∈ B(N(T )⊥, H2) such that
‖S0‖ ≤ ǫ and TC + S0 is minimum attaining. That is, there exists
x0 ∈ D(TC + S0) = D(TC) = C(T ) such that ‖x0‖ = 1 and ‖(TC +
S0)(x0)‖ = m(TC + S0). As m(TC) = γ(T ) > 0, we can choose S0 to
be a rank one operator.
For x = u + v ∈ H1 with u ∈ N(T ), v ∈ N(T )⊥, define Sx = S0v.

Then ‖Sx‖ = ‖S0v‖ ≤ ‖v‖ ≤ ǫ‖x‖. Thus ‖S‖ ≤ ǫ. Note that S is a
rank one operator.
We claim that T + S attains reduced minimum. Note that D(T +

S) = D(T ). Let u ∈ N(T ). Then (T + S)(u) = Tu + Su = 0.
Thus N(T ) ⊆ N(T + S) = {x ∈ D(T ) : Tx+ Sx = 0}. Suppose that
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x ∈ D(T )\N(T ). Let x = u+ v with u ∈ N(T ) and v ∈ N(T )⊥. Then
v 6= 0. Also, v ∈ C(T ) as x, u ∈ D(T ). Then

‖(T + S)(x)‖ = ‖Tv + Sv‖
= ‖Tv + S0v‖
≥ ‖Tv‖ − ‖S0v‖
≥ γ(T )‖v‖ − ‖S0‖‖v‖
≥ (γ(T )− ǫ)‖v‖
> 0.

Thus (T + S)(x) 6= 0. Thus x /∈ N(T + S). This show that N(T ) =
N(T + S). Since D(T + S) = D(T ), we have C(T + S) = C(T ) and
hence

γ(T + S) = inf {‖(T + S)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= inf {‖(TC + S0)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= ‖(TC + S0)(x0)‖
= ‖(T + S)(x0)‖.

Next suppose that γ(T ) = 0. Let ǫ > 0. Choose x0 ∈ C(T ) such

that ‖x0‖ = 1 and ‖Tx0‖ <
ǫ

4
. Then

‖(T +
ǫ

2
I)(x0)‖ ≥ ǫ

2
− ‖Tx0‖ ≥ ǫ

4
.

Hence
0 <

ǫ

4
≤ m(T +

ǫ

2
I) ≤ γ(T +

ǫ

2
).

By above argument, there exists S̃ ∈ B(H1, H2) such that ‖S̃‖ ≤ ǫ

2
and T +

ǫ

2
I + S̃ attains reduced minimum. Then ‖ ǫ

2
I + S̃‖ ≤ ǫ. Take

S =
ǫ

2
+ S̃. Then S satisfies all the stated conditions. �

We have the following consequences.

Theorem 3.24. The following statements holds true;

(1) Γc(H1, H2) is dense in C(H1, H2) with respect to the gap metric

θ(·, ·).
(2) Γc(H1, H2) is dense in C(H1, H2) with respect to the metric

η(·, ·)
(3) the set of all closed range operators of C(H1, H2) is dense in

C(H1, H2) with respect to the metric θ(·, ·)
(4) the set of all closed range operators of C(H1, H2) is dense in

C(H1, H2) with respect to the metric η(·, ·).
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Proof. Proof of (1): Follows by Theorem 3.23.
Proof of (2): Let ǫ > 0. Then by Theorem 3.23, we can obtain

S ∈ B(H1, H2) with ‖S‖ ≤ ǫ such that N(T ) = N(T +S) and θ(T, T +
S) ≤ ǫ. By Theorem 2.19, it follows that η(T+S, T ) = θ(T+S, T ) ≤ ǫ.
Hence the claim.
Proof of (3): Since Γc(H1, H2) is a subset of the set of all closed range

operators in C(H1, H2), the conclusion is immediate by (2) above.
Proof of (4): This follows by Proposition 3.5 and (2) above. �

Using the equivalence of the gap metric and the metric induced by the
operator norm on B(H1, H2) we can obtain the following consequences.

Corollary 3.25. The following statements are true.

(1) Γ(H1, H2) is dense in B(H1, H2) with respect to the operator

norm

(2) the set of all bounded closed range operators is dense in B(H1, H2)
with respect to the operator norm.
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