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1 Abstract

In the present work, the close similarity that exists between Mindlins strain gradient elasticity
and Eringens nonlocal Integro differential model is explored. The methods are studied for
one-dimensional examples. Through the proposed approach a relation between length scales
of nonlocal-differential and gradient elasticity model is arrived. Further, a relation has
also been arrived between the standard and non-standard boundary conditions in both the
cases. C0 based finite element methods are extensively used for the implementation of
integro-differential equations. This results in standard diagonally dominant global stiffness
matrix with off diagonal elements occupied largely by the kernel values evaluated at various
locations. The global stiffness matrix is enriched in this process by nonzero off diagonal
terms and helps in incorporation of the nonlocal effect, there by accounting the long range
interactions. In this case the diagonally dominant stiffness matrix has a band width equal
to influence domain of basis function. In such cases, a very fine discretization with larger
number of degrees of freedom are required to predict nonlocal effect, thereby making it
computationally expensive.

In the numerical examples, both nonlocal-differential and gradient elasticity model are
considered to predict the size effect of tensile bar example. The solutions to integro-
differential equations obtained by using various higher order approximations are compared.
Lagrangian, Bèzier and B-Spline approximations are considered for the analysis. It has been
shown that such higher order approximations have higher inter-element continuity there
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by increasing the band width and the nonlocal character of the stiffness matrix. The ef-
fect of considering the higher-order and higher-continuous approximation on computational
effort is made. In conclusion both the models predict size effect for one-dimensional exam-
ple. Further, the higher-continuous approximation results in less computational effort for
nonlocal-differential model.
Keyword: Eringen nonlocal model, Integro-differential equation, nonlocal-differential model,
Kernel function, Mindlin Gradient elasticity models, length scale.

2 Introduction

The classical continuum theory is based on the assumption that the stress defined at a given
point is related to strain at the same point. The limitations in continuum theories arise from
the facts that, no material is ideal continuum, ignorance of micro-structural details at various
length scales and lastly in not accounting the effect of long range interactions. Moreover,
there exist certain class of problems at macro-scale, like: strain localization in strain softening
material, crack propagation in fracture mechanics, edge effects, stress/strain singularity etc.,
which all cannot be explained using continuum theories and need the description of material
behavior at various scales. The generalized continuum theories introduced to account for
the demerits of continuum theories are: couple stress elasticity [1], Theory of elasticity with
micro-structure [2], micro-polar and micro-morphic theories [3], multi-polar theory [4, 5] and
strain gradient theories [6, 7]. These theories are the mathematical extension of Cosserat
continuum theories [8].

The other class of generalized continuum theories that are of interest are the nonlocal the-
ories. The fundamental works on nonlocal theory are made in the late sixties by [9, 10, 11].
Wherein the inability of local theory to handle singularity problems are overcome through
nonlocal approach. The main idea is to evaluate stress at a point by accounting strain at
all points in the domain. In later days Eringen and co-workers did extensive studies on non-
local theory and simplified the theory to propose nonlocal constitutive model, wherein the
elastic moduli is generalized in order to account the nonlocal effect, see [12, 13, 14, 15]. The
work was further extended by Eringen [16] by deriving the differential form of the integro-
differential equation. Later, Eringen [17] accounted both local and nonlocal constitutive rela-
tion through local-nonlocal constitutive parameter to propose two phase constitutive model.
Such advancements in nonlocal theory enabled the researchers to explore the capabilities of
nonlocal model in fields of fracture mechanics (see [18, 19]), plasticity (see [20, 21, 22, 23])
and also in damage mechanics (see [24, 25, 26]). At the same time, there where other is-
sues associated with the existence and uniqueness of nonlocal solution for boundary value
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problems. In this regard, a strong mathematical basis is derived for the numerical studies of
nonlocal elasticity for instance see [27, 28, 29, 30] for details.
Recently, the capability of nonlocal elasticity theory is further explored in predicting size
effect of nano-materials. In this context, various beam theories (e.g., Euler-Bernoulli, Tim-
oshenko, Reddy, and Levinson beam theories) were reformulated using Eringen’s nonlocal
differential constitutive model by Reddy [31], and analytical solutions for bending, buckling,
and natural vibrations were also presented. Further, various shear deformation beam theo-
ries were also reformulated by Reddy [31]. Nonlocal elastic rod models have been developed
to investigate the small-scale effect on axial vibrations of the nano-rods, see [32, 33, 34].
Pisano and Fuschi [35] obtained closed form solution for a nonlocal elastic bar by consid-
ering two-phase constitutive model. Benvenuti [36] also made analytical study on nonlocal
elastic bar by considering the effect of both material length scale and local-nonlocal param-
eter. In summary, the size effect is predicted for local parameter greater than one with the
condition that the nonlocal solution behaves stiffer than the local solution. Earlier works
on generalized continuum theories were proposed by Cosserat et. al. [8]. The simplification
and physical understanding of Cosserat theories gave rise to various higher order theories.
The difficulty associated with such theories is that the equations are complex together with
large number of unknown elastic coefficients. Which made it difficult and inconvenien to
experimentalists and designers to account for them precisely [37]. Moreover, these theories
are mainly concerned with wave propagation problem and excluding the material instability
effects. Motivated from the studies of discrete dislocation dynamics (DDD) in describing the
plastic deformation [38, 39], Aifantis introduced gradient plasticity formulation [40, 41, 42]
in ascertaining the details of shear band. Fleck et. al. [43] and Gao et. al. [44] proposed
strain gradient plasticity based dislocation theory to measure the size-dependent hardness
measurement at the micro- and nano-scales. Following the success of gradient plasticity the-
ories, Aifantis [41, 45] proposed simple gradient elasticity model by accounting the Laplacian
of strain in the constitutive relations. The model is the special case of the Mindlin gradient
elasticity model. Ru and Aifantis [46] further simplified the model by reducing the fourth or-
der equilibrium equation to two set of second order equation. On the other side, Eringen [21]
also proposed gradient elasticity model by reformulating the integral type of nonlocal elas-
ticity. A mathematical comparison of both Eringen and Aifantis gradient elasticity model is
given in [37]. In summary, Aifantis model is treated as uncoupled model and Eringen model
as coupled model. Recently, Rajagopal and Srinivasa [47] proposed an implicit constitutive
equation. Which covers various strain gradient elasticity models that appeared in literature.
Even though the physics involved in deriving the nonlocal-differential and gradient elasticity
models are different, but they share some commonality for certain class of problems. In
this regard, very recently Benvenuti and Simone [36] carried out mathematical comparison
of both nonlocal-differential and gradient elasticity model by considering one-dimensional

3

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
o
w

n
lo

ad
ed

 b
y
 [

U
C

 S
an

ta
 B

ar
b
ar

a 
L

ib
ra

ry
] 

at
 0

2
:5

1
 0

6
 S

ep
te

m
b
er

 2
0
1
7
 



boundary value problem. The work is further extended by Malagaù [48] by exploring the
numerical comparison of both nonlocal-differential and gradient elasticity models for nano
scaled structural problems. Further, the effect of higher-order approximation in terms of
computational efforts is also made. There is also growing interest in research community to
explore the close similarities between the nonlocal-differential and gradient elasticity model.
Moreover, use of C0 based finite element approximations in effective modeling of nano scaled
problems prove to be computationally expensive [48].
In present work we explore the similarity between the Eringen nonlocal-differential and
gradient-elasticity model. A one-dimensional model is considered for the present work. There
are issues associated with Mindlins gradient-elasticity model, with regards to experimental
measure of (i) higher derivative of displacement field related to non-standard boundary
conditions and (ii) specification of material length scale. In present work, such issues are
addressed by comparing the both models. Further, the computation efforts are also explored
by considering higher order approximation and higher continuity approximation. The pa-
per is organized as follows: The various approximations considered in the present work are
discussed in detail in section 3. The higher-continuity approximation is achieved through
the B-spline approximation. In section 4 we review the mathematical formulations of Erin-
gen nonlocal model and present in detail the derivation of nonlocal-differential model. The
simplified version of Mindlin gradient-elasticity model is reviewed in section 5. Further, a
comparison of both the models in terms of boundary conditions and length-scales are made.
Galerkin based weighted residual approach is made use to derive the matrix-vector equation
in both the cases, see Section 6. The results on one-dimensional numerical examples are
presented in last section.

3 Approximation

In numerical approaches the primary variable (displacement) is approximated as a linear
combination of basis functions and coefficients. The basis functions are generally kinemati-
cally admissible functions of polynomial type. A C0 continuous based basis polynomials, i.e.
Lagrange basis, are the most popular one. Bèzier basis are almost identical to Lagrangian
basis, but basis do not interpolate the interior control points. B-spline basis are the gener-
alization of Bèzier basis and have higher order continuity at the inter element boundary. In
the following section Lagrangian, Bèzier and B-spline basis functions are explained in detail.
The rational form of Bèzier and B-spline basis are also discussed.
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3.1 Lagrange polynomial

Given n + 1 data points, i.e. (x0, f0), (x1, f1), ...(xj , fj), ...(xn, fn), such that subsequent
points are not repeated, then an pth degree Lagrange polynomial is constructed as a linear
combination of Lagrange basis polynomials.

L(x) =
n

∑

j=0

fj ℓj(x) (1)

Where Lagrange basis polynomials are obtained as

ℓj(x) =
n
∏

i=0
i 6=j

(x − xi)

(xj − xi)
(2)

with the following Kronecker delta property

ℓj(xk) =
n
∏

i=0
i 6=j

(xk − xi)

(xj − xi)
= δjk =

{

1, if k = j
0, if k 6= j

(3)

which makes sure that the polynomial, L(xk), interpolates all the data points

L(xk) =
n

∑

j=0

fjℓj(xk) =
n

∑

j=0

fjδjk = fk (4)

A Lagrange basis polynomial plotted for degree 1, 2 and 3 is as shown in Fig. ??. The
derivatives of Lagrange basis polynomials are obtained as follows

ℓ′j(x) =

n
∏

i=0
i 6=j

1

(xj − xm)

n
∑

i=0
i 6=j

n
∏

k=0
k 6=i
k 6=j

(x − xk) (5)

3.2 Bèzier and B-spline polynomial

Given n + 1 control points, i.e. P0,P1, ...,Pj, ...,Pn, an pth degree Bèzier polynomial is
constructed as weighted average of all control points

P(x) =

n
∑

j=0

bpj (ξ) Pj (6)
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000 111 −1−1−1

0.50.50.5

0.00.00.0

1.01.01.0

(a) (b) (c)

Figure 1: Lagrange basis polynomial: (a) Linear (b) Quadratic (c) Cubic

Where, bpj (ξ) are the Bernstein basis polynomials defined as

bpj (ξ) =
p!

j! (p− j)!
(1− ξ)p−j ξp (7)

There exists another technique to obtain higher order Bernstein basis polynomial as a com-
bination of lower order Bernstein basis, and is termed as recursive technique [49]

bpj (ξ) = (1− ξ) bp−1
j (ξ) + ξ bp−1

j+1(ξ) (8)

Such techniques are useful in describing the derivatives of Bernstein polynomial and also in
describing the B-spline basis polynomials, which will be discussed next

bp
′

j (ξ) = p
{

bp−1
j−1(ξ)− bp−1

j (ξ)
}

(9)

Let K be a vector containing a non-descending sequence in a parameter space, which are
defined as

K = {ξ1, ξ2, ..., ξnk
}, ξi ∈ R

such that ξi > ξi−1, i = 2, 3, ..., nk

(10)

The vector K and scalar ξi are often termed as knot vector and knots, respectively, in
computational geometry. Once we define the knot vector, the B-spline basis Np

i (ξ) of degree

6
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000 111 0.00.00.0

1.01.01.0

0.5

0.5

0.5

0.5

0.5

0.5

(a) (b) (c)

Figure 2: Bèzier basis polynomial: (a) Quadratic (b) Cubic (c) Quintic

p > 0 are computed from constant basis using the recursive technique

for p = 0; N0
i (ξ) =

{

1 if ξ ∈ [ξi, ξi+1)

0 otherwise

for p > 0; Np
i (ξ) =







(ξ−ξi)
(ξi+p−ξi)

Np−1
i (ξ) +

(ξi+p+1−ξ)

(ξi+p+1−ξi+1)
Np−1

i+1 (ξ) if ξ ∈ [ξi, ξi+p+1)

0 otherwise

(11)

The B-spline basis obtained for an arbitrary knot vector are non-interpolatory in nature. In
order to get interpolatory form, knots are required to be repeated, which is referred to as the
knot multiplicity. In this regard, we introduce an open knot vector containing end knot with
knot multiplicity equal to p+1. Further, B-spline basis includes other important properties
such as

• Partition of unity
∑ncp

i=1N
p
i (ξ) = 1 ∀ ξ ∈ [0, 1)

• Point-wise positive Np
i (ξ) > 0 ∀ ξ ∈ [0, 1)

• Kronecker delta Np
i (ξj) = δij ξj ∈ [ξi, ξi+p+1)

iff the knot multiplicity of ξj equal to p

(12)

The standard geometries, such as a circle or ellipse, are best represented through rational
form. In this regard, we generalize the B-spline referred as nonuniform rational B-splines

7
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(NURBS). The same rational form is applicable even for Bèzier basis also.

Rp
i (ξ) =

Np
i (ξ)wi

∑ncp

j=0N
p
j (ξ)wj

(13)

where wi are the weights associated with the control points. Further, the derivative of the
B-spline basis are given as

dNp
i (ξ)

dξ
=

{ p
(ξi+p−ξi)

Np−1
i (ξ)− p

(ξi+p+1−ξi+1)
Np−1

i+1 (ξ) if ξ ∈ [ξi, ξi+p+1)

0 otherwise
(14)

000 111 0.00.00.0

0.5

0.5

0.5

0.5

0.5

0.5

1.01.01.0

(a) (b) (c)

Figure 3: B-spline basis polynomial: (a) Quadratic (b) Cubic (c) Quintic

4 Nonlocal Formulation

Nonlocal theories accounts for long range interactions unlike conventional continuum theories
which strongly depends on the concepts of contact forces with zero range. Eringen et. al.
[50] simplified nonlocal theories to a great extent and introduced the nonlocal constitutive
models, where the generalized elastic stiffness accounts for nonlocal effect. The work is
further extended by himself [17] and introduced the nonlocal-differential elasticity model. In
the following section the mathematical formulation for the nonlocal constitutive model and
nonlocal-differential elasticity model will be explored in detail.
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4.1 Nonlocal constitutive model

Consider a material body occupying a geometrical region in real number space, Ω ∈ R
3, as

shown in Fig. ??. The surface boundary of the geometrical region is denoted by Γ. Let X
be material position vector of material particle, measured from fixed rectangular coordinate
system. The spatial position vector measured in same frame is x. Then, the infinitesimal
displacement vector u to relate the material and spatial position vector can written as

u = ug on Γu

σ · n = t on Γt

Ω

Γ

Figure 4: 2D elastic body under consideration

u(x) = x − X (15)

The linearized form of Green-Lagrange strain tensor is written as symmetric part of the
displacement gradient termed as infinitesimal strain tensor

ǫ(x) =
1

2

[

∇u+ (∇u)T
]

(16)

Linear elastic theories are based on assumption that the stress at a point is related to the
strain at that point through generalized Hooke’s law given by, see [51]

σ(x) = C : ǫ(x) (17)

Where C is fourth order linear elasticity tensor. Whereas in nonlocal theories, Eringen
proposed the nonlocal constitutive model as, see [50]

σ(x) =

∫

V′

C(x,x′, ℓc) : ǫ(x′) dV′ (18)

Where C(x,x′, ℓc) is termed as generalized elastic stiffness. For homogeneous and isotropic
material, it is reasonable to replace the generalized elastic stiffness as product of Kernel
function and elasticity tensor.

σ(x) =

∫

V′

C α(x,x′, ℓc) : ǫ(x′) dV′ (19)
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Where α(x,x′, ℓc) is the Kernel function and ℓc material length scale. Further, Kernel
function is normalized to result a uniform nonlocal variable for the case of uniform local
variable. In the present work an exponential form of Kernel function chosen given by

α(x,x′, ℓc) =
1

2 ℓc
e−|x−x

′|/ℓc (20)

such that

∫

V′

α(x,x′, ℓc) dv
′ = 1 (21)

In the late 80’s, Eringen proposed two phase constitutive relation by weighting both local
and nonlocal constitutive model as, see [17]

σ(x) = ξ1C : ǫ(x) + ξ2

∫

V′

α(x, x′, ℓc )C : ǫ(x′) dV′ (22)

The weights ξ1 and ξ2 are termed as local and nonlocal constitutive parameters. A complete
local constitutive relation is recovered for the case ξ1 = 0 and ξ2 = 1 and the another
possible case is ξ1 = 0 and ξ2 = 1 corresponds to Eringen nonlocal constitutive relation. The
equilibrium equation obtained for eq. 22 is termed as integro-differential equation.

4.2 Nonlocal-differential elasticity model

A one-dimensional tensile bar, see fig. ??, is considered to derive the differential form of
integro-differential equation. The geometrical detail includes: L: length of the bar, A: uni-
form cross sectional area. Let E represents the material elastic modulus. The bar is subjected
to load (t) at right end and clamped at left end. The achieved external boundary conditions
results in a uniform stress of intensity σ̄ in the bar. The Eringen nonlocal constitutive model
, i.e. eq. 22, can be rewritten as

L

t

x
AE : constant

Figure 5: Homogeneous Linear elastic material

σ(x) = ξ1E ǫ(x) + ξ2E ǫnl(x) (23)
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Where, the nonlocal strain field is defined as

ǫnl(x) =

∫

V′

α( x, x′, ℓc ) ǫ(x
′) dV′ (24)

In the case of tensile bar subjected to concentrated load, i.e. body force equal to zero, the
stress at every cross section is equal to σ̄, i.e. σ(x) = σ̄, by equilibrium. As a result, the eq.
23 is written as

ǭ = ξ1 ǫ(x) + ξ2 ǫnl(x) (25)

Where, ǭ = σ̄/E uniform strain field. In regard to derive differential form of integro-
differential equation, the explicit presence of ǫnl(x) in eq. 25 has to be removed. A two
step procedure is considered to perform the task: (i) multiply the eq. 25 by −ℓ2c

d2

dx2 and (ii)
subtract the latest equation from eq. 25.

−ℓ2c
d2ǭ

dx2
= −ℓ2c ξ1

d2ǫ(x)

dx2
− ℓ2c ξ2

d2ǫnl(x)

dx2
(26)

where,

d2ǫnl(x)

dx2
= − 1

ℓ2c
ǫ(x) +

1

ℓ2c
ǫnl(x) (27)

Including eq. 27 into eq. 26 results

−ℓ2c
d2ǭ

dx2
= −ℓ2c ξ1

d2ǫ(x)

dx2
+ ξ2ǫ(x) − ξ2 ǫnl(x) (28)

Subtracting eq. 28 from eq. 25 gives

(ξ1 + ξ2) ǫ(x) − ℓ2c ξ1
d2ǫ(x)

dx2
= ǭ − ℓ2c

d2ǭ

dx2
(29)

The eq. 29 is the differential form in terms of ǫ(x) for the replacement of eq. 23. The
differential form is classified into three category depending upon the type of solution, see
[52], and are listed in Table 1. Further, it is suggested to consider ξ1 > 0 to get meaning full
solution to the differential form, see [53, 54, 36]

Polianin and Manzhirov [52] obtained analytical solutions for eq. 29. Benvenuti and si-
mone [36] extended the same work for nano scale-problems. The analytical solution obtained
predict the size effect correctly following the constraints: (i) The local solution is recovered
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Type ξ1 + ξ2 solution

01 = 0 polynomial

02 < 0 harmonic

03 > 0 exponential

Table 1: Types of differential form

for vanishing length scale and (ii) the nonlocal solution is stiffer than the local one. The
first condition is ensured by allowing ξ1 + ξ2 = 1, see [36]. The nonlocal solution can be
made either stiffer or flexible than local solution depending on the value of ξ1, i.e. ξ1 < 1
corresponds to flexible solution and a stiffer solution is obtained for ξ1 > 1. In the case of
flexible solution, the size effect is not predicted correctly for the increasing value of ξ1, see
[35, 36]. Hence, the nonlocal parameter values: ξ1 + ξ2 = 1 and ξ1 ≥ 1, are considered to
simplify the eq. 29 , see [52, 53, 54, 36] for more details.

E ǫ(x) − ℓ2c E ξ1
d2ǫ(x)

dx2
= σ̄ (30)

The equilibrium equation of one-dimensional problem is given by

dσ̄

dx
= 0 (31)

Including eq. 30 into eq. 31 results an higher order differential equation in-terms of displace-
ment

E
d

dx

{

du(x)

dx

}

− E ℓ2c ξ1
d3

dx3

{

du(x)

dx

}

= 0 (32)

The boundary conditions derived are as follows, see Appendix 8 for derivation

EAℓc
d

dx

{

du(0)

dx

}

− EA

{

du(0)

dx

}

= − t

ξ1
(33)

EAℓc
d

dx

{

du(L)

dx

}

+ EA

{

du(L)

dx

}

=
t

ξ1
(34)

A Neumann type of boundary conditions are arrived with eq. 33 referring to constraint (or
internal) force at the right end and eq. 34 to external force at the left end of tensile bar.
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5 Strain Gradient Elasticity Formulation

In this section, we present the strain gradient elasticity formulation [2]. Wherein, the features
of micro-structure is accounted by introducing kinematics at micro-scale, i.e. by considering
the micro-deformation and gradient of micro-deformation. The strong form of the Mindlin
model is derived by using principle of virtual work. In order to explore the capability of
model a simplified version is considered. In regard to implementation the simplified model is
derived for one-dimensional case and comparison with Eringen nonlocal-differential elasticity
model is made.

5.1 Kinematics at macro- and micro-scale

Consider a material body Ω as shown in Fig. ??. The surface boundary of the Ω is denoted
by Γ. Let X and x be macro and spatial position vector of macro-material particle. Then,
the infinitesimal macro-displacement vector and macro-strain tensor is given in eqs. 15 and
16

The classical theories fail to account information available at micro-structure, as the ma-
terial are not continuous at micro-structure. One of the early attempts includes the work
done by Mindlin [2]. Wherein micro-structure features are accounted in deriving three-
dimensional linear theory of elasticity. Let us assume that, within each macro-material
point there exist a micro-region denoted by Ω′. Further, X ′ and x′ be material and spatial
position vector of micro-material particle such that the origin is fixed in the particle. Then,
the micro-displacement vector (u′) is given by

u′(x′,x) = x′ −X ′ (35)

The explicit depends of micro-displacement with micro-coordinate (x′) makes further for-
mulation complex. In this regard, the micro-displacement is approximated accurately as
product of functions explicitly depend on x′ and x as given below

u′(x) = x′ψ(x) (36)

Where,

ψ(x) =
∂u′

∂x′ (37)

is termed as micro-deformation. Further, relative deformation, γ(x), as difference of macro-
displacement gradient and micro-deformation and also a micro-deformation gradient, κ(x),
is given by

γ(x) = ∇u(x)−ψ(x) (38)

13
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κ(x) = ∇ψ(x) (39)

5.2 Principle of virtual work

The strain energy density stored by a system in undergoing deformation is given in eq. 40,
considering u and ψ as independent variable at macro- and micro-scale. Further, eq. 41
gives the virtual work of internal forces.

W = W( ǫ, γ, κ ) (40)

δW = τ : δǫ + α : δγ + µ
... δκ (41)

Where, τ , α and µ are Cauchy stress, relative stress and double stress which are the energy
conjugate of deformation. Including eq. 38 into eq. 41 results

δW = σ : ∇δu − α : δψ + µ
...∇δψ (42)

Where,

σ = τ +α (43)

is termed as total stress. By making use of rule of differentiation eq. 42 is further simplified
as

δW = ∇ · (σ · δu ) − (∇ · σ ) · δu − α : δψ + ∇ · (µ : δψ ) − (∇ · µ ) : δψ (44)

Then, the total strain energy obtained by a system is given by

δW i =

∫

Ω

δW dΩ (45)

Including eq. 44 in eq. 45 and also making use of divergence theorem the final form is given
in eq.46.

δW i = −
∫

Ω

{ (∇ · σ ) · δu } dΩ −
∫

Ω

{ (α + ∇ · µ ) : δψ} dΩ +

∫

Γ

n · (σ · δu ) dΓ +
∫

Γ

n · (µ : δψ ) dΓ (46)

Let, b and t be the body force per unit volume and surface traction per unit area associated
with virtual variable δu. Similarly, allowing Φ and T as double force per unit volume and

14
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double force per unit area for virtual variable δψ. Then, the virtual work done by the
external forces is expressed as

δWe =

∫

Ω

b · δu dΩ +

∫

Γ

t · δu dΓ +

∫

Ω

Φ : δψ dΩ +

∫

Γ

T : δψ dΓ (47)

The principle of virtual work states that for given system in equilibrium the total work done
by all internal and external forces vanishes for any virtual displacement which is consistent
with constraint, i.e.

δW i − δWe = 0 (48)

Including eqs. 46 and 47 into eq. 48 and splitting the equation into macro- and micro-parts
results in two equilibrium equation and concerned traction boundary conditions.

∇ · σ + b = 0 (49)

α+∇ · µ+Φ = 0 (50)

σ · n = t (51)

µ · n = T (52)

In order give more insight into Mindlin higher order theory we restrict theory stating that
macro- and micro-deformation coincides which results into the following mathematical rela-
tions

∇u = ψ (53)

i.e. γ = 0 & κ = ∇ǫ (54)

Wherein, the relative deformation vanishes. Accordingly, the strain energy density becomes
explicit function of ǫ and ∇ǫ only

W = W(ǫ,∇ǫ) (55)

δW = σ : δǫ+ µ
... ∇δǫ (56)
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The total stress becomes equal to the Cauchy stress, i.e. σ = τ . Further, we also state that
the virtual work done higher order stress, in particular the domain part, is not accounted
for simplicity in implementation, i.e. eq. 46 modified as

δW i = −
∫

Ω

{ (∇ · σ ) · δu } dΩ +

∫

Γ

n · (σ · δu ) dΓ +

∫

Γ

n · (µ : δǫ ) dΓ (57)

The virtual work done by external forces remains same as eq. 47 excluding only the double
force per unit volume term. Then including the δW i and δWe into eq. 48 results into same
equilibrium equation, eq. 49 and traction boundary conditions, eqs. 51-52. The simplified
Mindlin higher order theory discussed is closely related to the Casal’s anisotropic model for
linear elasticity, see [55].

5.3 Simplified Mindlin higher order model for one-dimension

A one-dimensional example is considered to demonstrate the simplified version of Mindlin
higher order model, see Fig. ??. The total work done by system due to internal and external
forces are given in eq. 58, wherein the contribution of higher order stress is limited to surface
boundary integral

W =
1

2

∫ L

0

Aσ(x) ǫ(x) dx + Aµ(x) ǫ(x)

∣

∣

∣

∣

Γ

(58)

Further, the constitutive relation given by Casal’s for Cauchy and double stress are assumed
in the present work [55]

σ(x) = E
du(x)

dx
− Eℓg

2

c

d2

dx2

{

du(x)

dx

}

(59)

µ(x) = Eℓg
2

c

d

dx

{

du(x)

dx

}

(60)

Wher, ℓgc is the material length scale associated with gradient theory. Including the eqs.
59-60 into eq. 58 and equating virtual work done by all forces to zero results in following
equation.

∫ L

0

[

EA
d

dx

{

du(x)

dx

}

− EAℓg
2

c

d3

dx3

{

du(x)

dx

}]

δu(x) dx −
[

EA

{

du(x)

dx

}

− EAℓg
2

c

d2

dx2

{

du(x)

dx

}]

δu(x)

∣

∣

∣

∣

Γ

+

[

EAℓg
2

c

d

dx

{

du(x)

dx

}]

dδu(x)

dx

∣

∣

∣

∣

Γ

= 0(61)
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Here, treating δu(x) and dδu(x)
dx

as a independent variable. Then, the above equation gives
following equilibrium equation, eq. 62, and boundary conditions, eqs 63-66.

EA
d

dx

{

du(x)

dx

}

− EAℓg
2

c

d3

dx3

{

du(x)

dx

}

= 0 in (0, L) (62)

EA

{

du(x)

dx

}

− EAℓg
2

c

d2

dx2

{

du(x)

dx

}

= t on Γt (63)

EAℓg
2

c

d

dx

{

du(x)

dx

}

= T on Γ∗
t (64)

u(x) = ug on Γu (65)

du(x)

dx
=

(

du

dx

)

g

on Γ∗
u (66)

Comparing the nonlocal-differential and gradient elasticity model the following remarks are
made:

Remark 1. The constitutive relation derived in both cases, i.e. eqs. 30 and 59, remain
same with ℓgc = ℓc

√
ξ1. The length scale (ℓc) in nonlocal theory accounts for the influence

region and magnitude of nonlocal effect. Whereas, the length scale (ℓgc) in strain gradient
theory is related to micro-structural dimension. In earlier cases, for continuous material the
ℓgc is evaluated by related it to the size of representative volume element (RVE). Later it is
observed that for strain softening material the approach becomes meaningless [37]. Further,
various advanced experiments are suggested to evaluate ℓgc . But with proposed approaches it
is possible to quantify ℓgc through ℓc.

Remark 2. The equation of motion derived remains identical for both the approaches. Look-
ing carefully into eq. 62 the first term correspond to equation of motion of axial bar and
second term is related to equation of motion of beam bending, with moment of inertia equal
to Aℓg

2

c . In terms computational difficulty, nonlocal theory includes integral form of equa-
tion of motion and gradient theory includes fourth order differential equation for simple one
dimensional example.
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Remark 3. The conditions arrived through nonlocal theory gives only the details of Neumann
boundary condition. Whereas, the virtual work approach made use in gradient theory provides
information on both Dirichlet and Neumann boundary conditions. Wherein, higher order
derivative of the displacement is related to nonstandard force and displacement fields. These
higher order terms need to evaluated experimentally and uniquely defined at boundary. Such
difficulties are avoided by comparing the Neumann boundary condition arrived in both the
case. By comparing the eqs.34 and 64, a relation for double traction is obtained as

T = ℓc t − EAℓcξ1
du(L)

dx
(67)

6 Galerkin based weighted residual method

In the present work, we carry out numerical study of both integro-differential and gradient
elasticity model. In this regard, we considered Galerkin based weighted residual approach
to derive the matrix-vector form of the governing equation.

6.1 Integro-differential equation

The strong form of a nonlocal boundary value problem considering Dirichlet and Neumann
type boundary conditions can be stated as follows: Find the displacement u(x) : Ω 7→ R

3

such that the following equilibrium equation is satisfied.

∇ · σ + b = 0 in Ω (68)

given u = ug on Γu (69)

σ · n = t on Γt (70)

σ(x) = ξ1C : ǫ(x) + ξ2

∫

V′

α(x, x′, ℓc )C : ǫ(x′) dV′ (71)

where b denotes body force. Consider a finite dimensional trial space S
h and test space V

h

such that Sh ⊂ S and V
h ⊂ V. Where S and V are the infinite dimension trial and test

space. Then we can say

S
h = {uh ∈ H1(Ω) | uh = ug on Γu } (72)

V
h = {wh ∈ H1(Ω) | wh = 0 on Γu } (73)
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where H1(Ω) is a Hilbert space controlling regularity of the trial and the test fields. The
interest is to find a finite dimensional trial field, uh ∈ S

h , such that it holds for all choices
of finite dimensional test function, wh ∈ V

h , following the integral equation
∫

Ω

∇wh : σ dΩ =

∫

Ω

wh · b dΩ+

∫

Γt

wh · t dΓt ∀ wh ∈ V
h (74)

Including eq. 71 in eq. 74, the integral equation can written as

ξ1

∫

Ω

∇wh : C : ǫ dΩ + ξ2

∫

Ω

∇wh : C :

{
∫

Ω′

1

2lc
e−

|x−x
′|

lc ǫ(x ′) dΩ′

}

dΩ =

∫

Ω

wh · b dΩ +

∫

Γt

wh · t dΓt ∀ wh ∈ V
h (75)

Galerkin based weighted residual approach illustrate to discretize the global domain into
elements and approximate the trial and test field variables over an each element.

uh
e =N eue & ∇uh

e = Beue (76)

wh
e =N ewe & ∇wh

e = Bewe

Where N e and Be are the basis function and their derivative. The final form of integral
equation after considering the divergence theorem and traction boundary condition is

weT

{

ξ1

∫

Ωe

BT (xe)CB(xe) dΩe + ξ2

∫

Ωe

Nel′
∑

∫

Ωe′
BT (xe)C

1

2lc
e

−|xe−x
e′ |

lc B(xe′) dΩe′ dΩe

}

ue

= weT

{

∫

Ωe

NT (xe) b dΩe +

∫

Γe
t

NT (xe) t dΓe
t

}

(77)

weT
{

ξ1K
e
l + ξ2K

ee′

nl

}

ue = weTf e ∀ we (78)

equation 78 is the matrix-vector form of the integral equation, where Ke
l and Kee′

nl are the
elemental stiffness matrix for the local and nonlocal case. The only difference observed
with nonlocal stiffness is having extra spatial integral equation requiring an extra elemental
looping in an computation scheme. At the end, matrix-vector form has to hold for all possible
choices of we resulting force equilibrium equation as

{

ξ1K
e
l + ξ2K

ee′

nl

}

ue = f e (79)

equation 79 is the discrete form equilibrium of forces obtained for each element and an
assembly over each element results in global equation.
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6.2 Mindlin simplified elasticity model

The strong form of a boundary value problem considering Dirichlet and Neumann boundary
conditions are given in eqs. 62 to 66. Consider a finite dimensional trial space S

h and test
space V

h, given by

S
h =

{

uh(x) ∈ H2
0(0, L)

∣

∣

∣

∣

uh = ug on Γu &
duh

dx
=

(

du

dx

)

g

on Γ∗
u

}

(80)

V
h =

{

wh(x) ∈ H2
0(0, L)

∣

∣

∣

∣

wh = 0 on Γu &
dwh

dx
= 0 on Γ∗

u

}

(81)

A strong requirement of C1 continuity on trail and test field variables is ensured while
choosing approximation. The integral equation can be written as

∫ L

0

{

dwh(x)

dx

}

EA

{

duh(x)

dx

}

dx +

∫ L

0

d2wh(x)

dx2
EAℓg

2

c

d2uh(x)

dx2
dx =

wh(x)

∣

∣

∣

∣

Γt

t +
dwh(x)

dx

∣

∣

∣

∣

Γt∗

T (82)

In the next step, the trial and test fields are approximated over each element as given below

uh
e (x) =N

eue,
duh

e(x)

dx
= Beue &

d2uh
e(x)

dx2
= Ceue (83)

wh
e (x) =N

ewe,
dwh

e (x)

dx
= Bewe &

d2wh
e (x)

dx2
= Cewe (84)

Where, N e, Be and Ce are the basis function, first and second derivatives of the basis
function associated with test and trial filed variables. Including the eqs. 83 to 84 into eq.
82, the integral equation can be written as
{
∫ xe+1

xe

BeT EABe dx +

∫ xe+1

xe

CeT EAℓg
2

c C
e dx

}

ue =

{

N eT
∣

∣

∣

∣

Γt

t+BeT
∣

∣

∣

∣

Γt∗

T

}

(85)

By making use of eq. 67 to replace the double traction, the integral equation is written as
{
∫ xe+1

xe

BeT EABe dx +

∫ xe+1

xe

CeT EAℓg
2

c C
e dx +

∫

Γt∗

BeT EAℓcξ1B
e dx

}

ue =

{

N eT
∣

∣

∣

∣

Γt

+ BeT
∣

∣

∣

∣

Γt∗

ℓc

}

t (86)
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{

Ke +Ke
∗ +K

Γe

∗

}

ue = f e (87)

The explicit presence of double traction is completely removed and the term KΓe

∗ included
in domain integration. A careful measure is taken to evaluate KΓe

∗ only at boundary points.
Further, the external force, f e, is modified accordingly.

7 Numerical Examples

In order to explore the capabilities of integro-differential and gradient elasticity theory in
predicting the size effect, a simple one dimensional example is considered. Further, the effect
of considering higher order and higher continuity approximation in terms of computation
effort is also made. In this regard, three different approximations: Lagrangian basis, Bèzier
basis and B-spline basis, are considered for the analysis. The purpose of the study is to
see how each approximation is able to capture the size effect with h− and p− refinements.
Which of the basis is computationally expensive. In the end comparisons of both theories
are made.

7.1 Integro-differential model

A tensile bar fixed on left end and subjected to an axial force at the right end is considered
for the analysis, see Fig. ??. The model parameters considered are: modulus of elasticity is
E = 200GPa, cross sectional area is A = 10mm2 and the length of the bar is L = 100mm.
The point force at the right free end of the bar is taken as F = 100N. The length scale and
nonlocal parameter is taken equal to ℓc = 0.01L and ξ1 = 2, see [36, 48] for more information.

In traditional case the band width of global stiffness matrix is related to the influence domain
of approximation. Whereas in nonlocal theories such matrix is enriched. In the sense the
support length of Kernel function increases the band width of matrix. For example, if the
support length of Kernel function is taken equal to finite element size then the traditional
stiffness matrix is recovered. As Kernel values on neighbor element is zero. In this regard,
the minimum size of finite element is taken less than the support length of Kernel function.

Fig. ?? illustrates plot of normalized strain versus position along longitudinal direction
obtained for Lagrange approximation. Further, an increase in order of polynomial from lin-
ear to quintic, i.e. p− refinement, and increase in degrees of freedom from 25 to 100 degrees
of freedom, i.e. h− refinement, are explored. Lagrangian approximation predicts the size
effect for both cases of h− refinement and p− refinement. But the limitations are (i) C0

based finite element method requiring a larger number of nodes to predict size effect resulting
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computational approach expensive and (ii) oscillations in the solution is associated with C0

continuity at inter element boundary.

Bèzier basis posses better continuity within the element than Lagrangian as they be-
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Figure 6: Lagrangian approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof
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long to family of splines. Moreover, the basis are point-wise positive and do not satisfy the
Kronecker delta property at interior control points. However there is no much change is
observed in predicting the size effect, see Fig. ??. Thus, clearly indicating that to predict
the size effect, one way is to improve the continuity at the inter element boundary.

Fig. ?? illustrate the p− and h− refinement results for the case of B-spline approximation.
This shows that the size effect is predicted for higher continuity approximation and proves to
be computationally less expensive. In the sense, an increase in the inter-element continuity
results in the following changes (i) increase in the global number of elements for fixed global
number of nodes and (ii) an increase in the size of overlapping element stiffness matrix.
For example, let NN, NE and p be the global number of nodes, global number of elements
and order of polynomial. Then, the NE required for C0 approximation is (NN-1)/p and for
Cp−1 approximation is NN-p. Thus, an higher continuity approximation result in increased
NE for given NN. Further, the size of global stiffness matrix is fixed to size NNxNN. Then
for higher continuity approximation, the increased elements is accommodated by increasing
the size of overlapping element stiffness matrix. Which can be treated as a non-locality
introduced through numerical approach. In that way the global stiffness matrix is further
enriched along with nonlocal theory. Which allowed to predict the size effect correctly and
with less computational effort.

7.2 Gradient elasticity model

In the next case, a gradient elasticity results will be explored for one dimensional example
and also compared with nonlocal results. The input parameter considered earlier is retained
for present case also. The other parameter need to be evaluated is length scale and it is
given by ℓgc = ℓc

√
ξ1. In terms of implementation point view, the difficulty is associated

with generating higher order approximation and finding higher derivative of approximation.
Unlike spending large amount of time in evaluating the double integration in the case of
nonlocal theory. Moreover, the study also includes exploring effect higher order and higher
continuity approximation on computational time.

Fig. ?? illustrates plot of normalized strain versus position along longitudinal direction
obtained for Lagrange approximation. Further p− refinement, order varying form 3 to 11,
and h− refinement, dofs varying from 25 to 100, results are explored. These figures depicts
that the gradient theory predicts the size effect and therefore they can act as replacement
for nonlocal theories. A similar results are observed for Bèzier approximation, see Fig. ??.
Comparing the nonlocal and gradient results, the oscillation of the solution is absent with
latter case. The reason is associated with governing equation derived seeking for both dis-
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Figure 7: Bèzier approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof

placement and derivative of the displacement be very smooth function.
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Figure 8: B-spline approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof

In the next case the gradient elasticity results are explored by improving the continuity
of approximation through B-spline. The p− refinement, order varying form 4 to 20, and h−
refinement, dofs varying from 25 to 100, results are obtained as shown in Fig. ??. Comparing
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Figure 9: Lagrangian approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof

the Figs. ?? and ?? following conclusions are made

1. A very large order of approximation is required to predict the size effect for the case
of B-spline than the Lagrange approximation. The issue is associated with boundary
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Figure 10: Bèzier approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof

oscillation which are completely absent for Lagrange approximation. Therefore, consid-
ering higher continuity approximation proves computational expensive than Lagrange
approximation.
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2. Moreover, in the case of nonlocal theories oscillation is observed for Lagrange approx-
imation than higher continuity approximation. But a reverse case is seen for gradient
elasticity model.
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Figure 11: B-spline approximation results for: (a) 25 Dof (b) 50 Dof and (c) 100 Dof
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8 Conclusion

In the present work the nonlocal-differential form of integro-differential equation and Mindlin
higher order gradient elasticity model is reviewed for the case of one-dimensional example.
The difficulties associated with higher order model is the experimental evaluation of ma-
terial length scale and higher order boundary conditions. But the similarity exist between
the nonlocal differential form and gradient elasticity model provide solution in such case. In
the sense that a relation is derived between length scales, i.e. ℓc and ℓgc , and the traction
boundary conditions, i.e. t and T . In terms implementation, both nonlocal-differential form
and gradient elasticity models are considered to predict the size effect of one-dimensional
example. Further we considered higher order and higher continuity approximations for the
study. In the first case of nonlocal differential model, C0 continuous approximation proves
to be computationally expensive. The setback of such approach is, C0 continuity at inter-
element boundary. Which introduces the oscillation in the solution and requiring very large
element discretization. Whereas higher continuity approximation proves to be less expen-
sive. In second case of gradient elasticity model, higher continuity approximation proves
to be computationally expensive. As boundary oscillation will be present and vanishes for
very large order of approximation. whereas, C0 continuous approximation proves to be less
expensive. The conclusion is, higher continuous approximation are best suited for integral
form of governing equation and higher order approximation is best suited for differential
form of governing equation.
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Appendix A Deriving the boundary conditions

In order derive the boundary condition for differential form of integro-differential equation,
we recall the eq. 29 once again and write in more compact form as follows

ǫ(x) =
ξ1
ξ2

[

S(x) − ℓ2c
d2S(x)
dx2

]

(88)

Where,

S(x) =
ǭ

ξ1
− ǫ(x) (89)

Including the eq. 88 in to nonlocal strain eq. 24 results

ǫnl(x) =
ξ1
ξ2
Snl(x) − ξ1 ℓ

2
c

ξ2

∫ L

0

α(x, x′, ℓc)
d2S(x′)

dx′2
dx′ (90)
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The chosen Kernel function, eq. ??, is a symmetric and discontinuous function at point x.
Thus, it is possible to split the function into two parts at x. Accordingly, the integration
also split into two integrals.

α(x, x′, ℓc) =







1
2 ℓc

e−(x−x′)/ℓc for x ≥ x′

1
2 ℓc

e−(x′−x)/ℓc for x′ ≥ x
(91)

ǫnl(x) =
ξ1
ξ2
Snl(x) − ξ1 ℓ

2
c

ξ2

[
∫ x

0

α(x, x′, ℓc)
d2S(x′)

dx′2
dx′ +

∫ L

x

α(x, x′, ℓc)
d2S(x′)

dx′2
dx′

]

(92)

Using the rule of integration, i.e. the domain integration is divided into domain and boundary
part, the above equation is simplified as follows

ǫnl(x) =
ξ1
ξ2

Snl(x) − ξ1 ℓ
2
c

ξ2

[

α(x, x′, ℓc)
dS(x′)

dx′

∣

∣

∣

∣

x′=x

x′=0

− dα(x, x′, ℓc)

dx′
S(x′)

∣

∣

∣

∣

x′=x

x′=0

+

∫ x

0

d2α(x, x′, ℓc)

dx′2
S(x′) dx′ + α(x, x′, ℓc)

dS(x′)

dx′

∣

∣

∣

∣

x′=L

x′=x

− dα(x, x′, ℓc)

dx′
S(x′)

∣

∣

∣

∣

x′=L

x′=x

+

∫ L

x

d2α(x, x′, ℓc)

dx′2
S(x′) dx′

]

(93)

The first and second derivative of the Kernel function are as given below

dα(x, x′, ℓc)

dx′
=







1
2 ℓ2c

e−(x−x′)/ℓc for x ≥ x′

− 1
2 ℓ2c

e−(x′−x)/ℓc for x′ ≥ x
(94)

d2α(x, x′, ℓc)

dx′2
= 1

2 ℓ3c
e−|x−x′|/ℓc ∀ x′ (95)

Making use of eqs. 94 to 95 into eq. 93 results

ǫnl(x) = − ξ1 ℓ
2
c

ξ2

[

α(x, x′, ℓc)
dS(x′)

dx

∣

∣

∣

∣

x′=x

x′=0

− 1

ℓc
α(x, x′, ℓc) S(x′)

∣

∣

∣

∣

x′=x

x′=0

+

α(x, x′, ℓc)
dS(x′)

dx

∣

∣

∣

∣

x′=L

x′=x

+
1

ℓc
α(x, x′, ℓc) S(x′)

∣

∣

∣

∣

x′=L

x′=x

]

(96)
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Another interesting property of Kernel function is the Dirac delta value at x′ = x.

i.e. α(x, x, ℓc) = δ(x, x, ℓc) = 1 (97)

Making use of Dirac delta value and applying the integrand values, the equation is further
simplified as

ǫnl(x) =
ξ1
ξ2

S(x) +
ℓc
2

ξ1
ξ2

[

α(x, 0, ℓc)

{

dS(0)
dx

− 1

ℓc
S(0)

}

−

α(x, L, ℓc)

{

dS(L)
dx

+
1

ℓc
S(L)

} ]

(98)

Using eq. 89 the final form can be written as

ξ1 ǫ(x) + ξ2 ǫnl(x) = ǭ+
ℓc ξ1
2

[

α(x, 0, ℓc)

{

dS(0)
dx

− 1

ℓc
S(0)

}

−

α(x, L, ℓc)

{

dS(L)
dx

+
1

ℓc
S(L)

} ]

(99)

The eq. 99 looks similar to eq. 25 excluding the presence of second term in right hand side.
In order retain the similarity between those equations, the condition arrived are

dS(0)
dx

− 1

ℓc
S(0) = 0 (100)

dS(L)
dx

+
1

ℓc
S(L) = 0 (101)

Expressing in terms of strain results

dǫ(0)

dx
− ǫ(0)

ℓc
= − 1

ℓc ξ1
ǭ (102)

dǫ(L)

dx
+

ǫ(L)

ℓc
=

1

ℓc ξ1
ǭ (103)
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