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Abstract

Topology optimization using gradient search with negative and positive elliptical masks and honeycomb
tessellation is presented. Through a novel skeletonization algorithm for topologies defined using filled and
void hexagonal cells/elements, explicit minimum and maximum length scales are imposed on solid states
in the solutions. An analytical example is presented suggesting that for a skeletonized topology, optimal
solutions may not always exist for any specified volume fraction, minimum and maximum length scales, and
that there may exist implicit interdependence between them. A Sequence for Length Scale (SLS) methodol-
ogy is proposed wherein solutions are sought by specifying only the minimum and maximum length scales
with volume fraction getting determined within a specified range systematically. Through four benchmark
problems in small deformation topology optimization, it is demonstrated that solutions by-and-large satisfy
the length scale constraints though the latter may get violated at certain local sites. The proposed approach
seems promising, noting especially that solutions, if rendered perfectly black and white with minimum length
scale explicitly imposed and boundaries smoothened, are quite close in performance compared to the parent
topologies. Attaining volume distributed topologies, wherein members are more or less of the same thickness,
may also be possible with the proposed approach.

Keywords: Topology optimization; honeycomb tessellation; skeletonization; explicit length scales; elliptical
positive and negative masks.

1 Introduction and Background

Topology optimization formulations, which entail finding optimal continua for given sets of objectives and
constraints, in 2D, are fairly well-developed [1–4]. These include density based [5], phase field [6, 7], level
set [8–10] evolutionary [11, 12] and other approaches with rectangular [5], regular hexagonal [13–18], and in
general, irregular hexagonal and polygonal [19,20] discretization of the design domain. Topology optimization
methods are generalized to cater to a wide range of problems in mechanics, heat transfer, electrothermal,
electrostatic, and other fields [5]. Expectations from a topology optimization formulation are singularity-free
(e.g., free of checkerboard and point-connection patterns), almost perfectly binary, mesh independent designs
that could be attained as computationally efficiently as possible. Formulations that employ rectangular cells
with their densities as design variables often employ filtering (e.g., density based [21, 22], and/or sensitivity
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based [23]) to primarily suppress checkerboard patterns and point connections. Filtering also offers indirect
control on minimum thickness [24] but with regions of gray transitions making it difficult to properly discern
contour boundaries.

To minimize such transitions, numerous projection schemes [25–28] are proposed to attain close to black and
white solutions. Having length scale control in seeking optimal topologies may also be mandatory so that
solutions can be readily fabricated. As with filtering methods, projection techniques also impose length scales
on solutions. Guest et al. [25] employ nodal density values as design variables, and use them to compute element
densities within a specified circular region through projection, to control the minimum length scale. Guest [29]
imposes maximum length scale on solutions via a metric corresponding to the radius of a circular test region.
Other methods that impose control on length scales implicitly/explicitly include (i) the slope-constrained
formulation by Petersson and Sigmund [30] that prevents rapid variation of density, (ii) MOLE method by
Poulsen [31] who demonstrates existence of solutions and uses a global functional formulated to capture the
monotonicity of densities along specific directions, (iii) methods employing level sets that involve use of strain
energy [32], quadratic energy functional [33, 34], and feature control [35] wherein medial surface and signed
distance are used for length scale definitions, (iv) those that involve wavelets [36, 37] and (v) robust topology
optimization formulations [24,38,39]. Global stress based constraint is proposed in [40–42] which implicitly leads
to the length scale control. The method avoids stress concentration points but does not provide explicit length
scale control pertaining to the manufacturing constraints. Also, imposing a maximum length scale constraint
may not be possible, unless a lower bound on stress measure is employed, determining which may not be trivial.
With machinability as focus, Mei et al. [43] propose feature based topology optimization by using concepts
from constructive solid geometry, topological derivatives and a morphing approach. The structure is gradually
constructed to be composed of a finite set of geometric primitives. Decision making in the construction process
is performed via topological derivatives which suggest where to subtract the geometric primitive (material)
from, and the morphing approach which suggests choosing one from a given set of primitives.

Zhang et. al [44] highlight some drawbacks with existing length scale control methods in topology optimization.
Sensitivity filter based, slope constrained based and projection schemes leave gray cells at boundaries between
the solid and void states. Many of these methods are designed to impose only the minimum length scale
on the design. Guest’s approach [29] for maximum length scale control involves a large number of nonlinear
constraints. Approach by Chen et al. [33] offers difficulty in numerical implementation, and also, length scale
control is implicit. Method by Guo et al. [35] is implemented only in the level set setting. Appreciating the
need for implementation of explicit length scale control [4] in a SIMP based formulation, Zhang et. al [44]
skeletonize intermediate topologies using the algorithm by Aichholzer et al. [45]. Gray topologies are first
converted into black and white ones using Otsu’s method [46]. Thereafter, a single cell skeleton is obtained
in a manner that the original topology remains intact. Using each cell in the skeleton, explicit minimum and
maximum length scale measures are formulated as sums of the quadratic terms. Zhou et. al [47] propose a
similar approach that does not require explicit determination of the skeleton of a topology. Lazarov et al. [48]
review recent advances in manufacturable, topology-optimized designs with focus on methods that intend to
restrict the length scales on features from above and below. They note, per [49], that a perfect formulation for
minimum length scale imposition is still being sought. Lazarov and Wang [50] remark that sensitivities related
to changes in the skeleton, as the continuum topology changes, are neglected in [35,44].

Methods on topology optimization that determine cell densities in groups, for instance by using a set of masks,
also exist, e.g., [17, 18, 20, 51–54]. Densities are determined based on whether the cell centroids are inside, or
outside the masks. Number of design variables are significantly lower, allowing optimization algorithms to
deliver optimal solutions faster. In [17, 18,20], negative circular masks are used while in [51], morphable bars,
or, positive bar like masks are employed. A bar used as a positive mask therein, is a union of a rectangle
and semicircles at the two ends. Gradient based searches are performed in [18] and [51]. Hoang and Jang [51]
implement both, minimum and maximum thickness constraints in an explicit manner. Minimum thickness
is achieved by directly setting the lower bound on thickness of the bars. Maximum thickness of each bar
is addressed by limiting volume of the void around the bar, within a test region. Using thickness control,
joint connection and perimeter constraints, Hoang and Jang demonstrate not only dimensional control but
also, they achieve solutions with uniform thickness. Number of constraints are quite large however, and
proportional to the number of bars used. It is noted that use of masks (or morphable bars) as proposed
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herein and Heaviside/Inverse Heaviside projections are similar, as such projections work similar to circular
masks while locally ensuring length-scale on solid/void states. The difference is in the number of masks used,
that they are decoupled from the mesh nodes, and whether the latter are of constant size/shape or varying,
stationary or mobile.

2 Aim, Motivation and Organization

The intent in this paper is to illustrate how negative and positive elliptical masks can be employed to attain
explicit minimum (minls) and/or maximum (maxls) length scales induced over honeycomb meshes. Elliptical
masks offer more versatality in shape control compared to circular masks (e.g., [18]), are less involved, and
easier to implement compared to say, morphable bars [51] wherein density is determined by considering three
separate cases. While the formulation presented is extendable to the use of supershapes [55] or Gielis curves
(generalization of superellipses) which are closed contours exhibiting variable symmetry and assymmetry, and
can be described using a single relation, focus herein is primarily on elliptical masks. Topology optimization
is illustrated via four benchmark examples (Fig. 1), two pertaining to minimization of the mean compliance
(maximization of stiffness) and the others pertaining to small deformation compliant mechanisms wherein the
intended deformation, D, at the output port is maximized. The optimization problems solved, are formulated
as

(a) Beam I: Stiffest continuum sought (b) Beam II: Stiffest continuum sought

(c) Small Displacement Inverter, displacement D along the di-
rection shown maximized. (d) Small Displacement Crimper, displacement D maximized.

Figure 1: Four benchmark examples to demonstrate topology optimization with honeycomb tessellation using negative and positive elliptical
masks.
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minimize:
{xj ,yj ,aj ,bj ,θj},j=1,...,M

Φ =
1

2
fTu (stiff continua) or − S

D
1
2 f

Tu
(compliant mechanisms) (1)

subject to:

(i) Ku = f

(ii) g1 ≡ v − V ∗ =
Ne
∑

i=0

ρi − V ∗ ≤ 0

(iii) gmin(ρ) ≤ ε1

(iv) gmax(ρ) ≤ ε2

(v) ψmin ≤ ψ ≤ ψmax, with ψ = {xj , yj , aj , bj , θj}, j = 1, ...,M,

where the displacement vector u is the response to Ku = f with K as the global linear stiffness matrix assem-
bled using element stiffness matrices Ki = [ρmin + ρi(α, η)(1− ρmin)]K0. ρi(α, η) is the density of the i(th) cell
(section 3), K0 is the stiffness matrix of a solid cell, ρmin is the minimum (specified very small and positive)
density a (void) cell can attain, f is a global force vector of applied loads, S is a scale factor used to adjust the
objective (primarily to adjust magnitudes of sensitivities of the objective), v, the summation of cell densities,
is the continuum volume bounded from above by V ∗ = vfVmax where vf is the volume fraction and Vmax is the
maximum attainable volume1. gmin(ρ) and gmax(ρ) are explicit, global minimum and maximum length scale
measures dependent on densities and bounded by relaxation parameters ε1 and ε2. The last set of inequalities
represent bounds on positions, sizes and orientations of the elliptical masks.

Formulation of explicit length scale measures gmin(ρ) and gmax(ρ) is relatively straightforward if an interme-
diate topology can be converted into its skeletonized form. Let Ω =

⋃

ΩH be the design domain composed
of hexagonal cells ΩH . Let ΩS be a filled hexagonal cell that is a part of the skeleton (see Section A) of an
intermediate topology. With minimum and maximum length scales as minls and maxls respectively, let two
circles CS

min of radius minls and C
S
max of radius maxls respectively be drawn with center as the centroid of ΩS .

Let regions Rmin and Rmax be such that Rmin =
⋃

CS
min and Rmax = Ω−

⋃

CS
max. Then, as suggested in [44],

gmin(ρ) and gmax(ρ), slightly adapted, are formulated as

gmin(ρ) =
∑

Rmin

[1− ρi(α, η)]
p ,

and gmax(ρ) =
∑

Rmax

[ρi(α, η)− ρmin]
p , (2)

where p > 0 is a chosen exponent. In [44], this exponent is 2.

Length scale measures in Eq. 2 are effective only when skeletons of the intermediate continuum solutions
do not undergo topological alterations [49]. In this regard, these measures are more restrictive as opposed
to the point-wise measures based on signed distances, proposed in [49]. In Eq. 2, one notes that irrespec-
tive of the value/parity of p, each term within the summation, in gmin(ρ) and gmax(ρ) is non-negative as
ρmin ≤ ρi(α, η) ≤ 1. Thus, gmin(ρ) and gmax(ρ) in constraints (iii) and (iv) in Eq. 1 can never be negative. If
ε1 and ε2 are chosen as zero, an optimal solution of Eq. 1 will lie on the constraint boundaries gmin(ρ) = 0 and
gmax(ρ) = 0 implying that all cells within Rmin must precisely attain their solid states and those within Rmax,
precisely the void states. As perfectly binary solutions are unlikely with gradient based optimization, ε1 and
ε2 must be strictly positive. da Silva et al. [56, 57], in their work on a robust formulation for optimal design
of small deformation compliant topologies addressing stress constraints and manufacturing uncertainty, opine
that in case of ‘near perfect’ 0-1 solutions, extracting a smooth topology is difficult, and that one gets undesir-
able stress distribution along the boundary(ies). They suggest that a thin grey sliver should always be present

1Vmax corresponds to all cells in the domain attaining the solid state.
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between solid and void regions. ε1 and ε2 must therefore not be very close to zero. However, these relaxation
parameters must be adequately small so that gmin(ρ) and gmax(ρ), the otherwise global length scale measures,
are effective locally as well. Choosing ε1 and ε2 a priori may not be straightforward, as they may also depend
on other parameters in Eq. 1, e.g., the upper bound on volume V ∗ (or vf), minimum and maximum length
scales minls and maxls respectively. Moreover, the latter three parameters may themselves be interdependent
and influenced by the skeleton which evolves continuously in topology optimization. While this interrelation
may be apparent and explicable/quantifiable in case of simple examples (as shown later), the three parameters
are usually specified independently/arbitrarily in most previous works on topology optimization with specified
length scales. To our knowledge, situations wherein optimal topologies are not attainable for a given set of
these three (or five) parameters have not been addressed yet.

In what follows, material model with positive and negative elliptical masks is discussed in section 3. To compute
explicit, global length scale measures, a new skeletonization algorithm for intermediate topologies resulting
from hexagonal meshes is developed and presented (Section A). The method is similar to the approach in [58],
but implemented with hexagonal cells and therefore is confined to 2-dimensional cases. Through an analytical
example (Section 4), one observes that, given a skeleton, with regard to Eqs. (1), arbitrarily and independently
specified upper bound on volume (vf), minimum (minls) and maximum (maxls) length scales, may not always
yield a solution. In other words, the three parameters could be interrelated, whether there are changes in the
skeleton or otherwise. We show in section 6.1 that if the formulation in Eq. 1 is employed directly, obtained
solutions are of inferior quality. We attribute this to altering skeletons corresponding to intermediate topologies
and the associated length scale measures in Eq. 2. Realising that these measures are effective only when a
well-defined skeleton exists, and that the upper bound on the volume constraint, minimum and maximum
length scale measures are interrelated, a methodology is proposed in section 5 to attain topological solutions
by specifying only the minimum and maximum length measures, and the initial volume fraction. The final
volume fraction between the specified limits vfmin and vfmax, and tolerances on gmin(ρ) and gmax(ρ) get
computed systematically. Examples are presented and discussed in Sections 6 and 7, and finally conclusions
are drawn.

3 Material Model and Sensitivities

As conventional, gradient-based topology optimization problems are formulated [1–4], consider a design region
(Fig. 2) modeled with Ncells regular hexagonal cells2 wherein, say, the i(th) cell has density ρi such that if
ρi = 1, the cell is regarded solid whereas if ρi = 0, the cell is considered void. Let a set of masks, those
represented by simple (non self-intersecting), closed curves in Fig. 2, be laid over the domain. Influence of the
j(th) mask on density of the i(th) cell is modeled per the logistic approximation of the Heaviside function as

ρij(αj) =

[

1

1 + exp(−αjdij)

]

, (3)

2Hexagonal cell is the same as a hexagonal finite element.
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Figure 2: Masks of arbitrary shapes interacting with the ith hexagonal cell to decide its material status as solid or void

where αj > 0 is a mask specific parameter, and dij is a measure that determines if the i(th) cell, represented
by its centroid (Fig. 2), is enclosed within the j(th) mask or is on its boundary in which case dij ≤ 0, or
otherwise. If αjdij is negative, and of large magnitude, ρij(αj) approaches 0. If αjdij is positive and large,
ρij(αj) approaches 1. This makes the j(th) mask a negative mask as it extracts material off the group of
hexagonal cell(s) it is laid over. If ηj masks of identical shape and size are overlaid precisely, contribution may
be written in product form as

ρij(αj , ηj) =

[

1

1 + exp(−αjdij)

]ηj

. (4)

For Mn unique and non-overlapping negative masks over and/or around the domain, the overall density ρi of
the i(th) cell can be computed as

ρi(αj , ηj) =

Mn
∏

j=1

[

1

1 + exp(−αjdij)

]ηj

. (5)

Indeed, if the i(th) cell (or its centroid) is not enclosed within any mask and if all masks are far away from it,
the cell is solid (ρi(αj , ηj) ≈ 1). If any mask encloses the i(th) cell, ρi(αj , ηj) ≈ 0 and the cell is void. The
above notion could be flipped for positive masks which, when laid over the domain, deliver material to the cells
beneath them. In that case, either αj could be chosen negative, or, for Mp number of unique, non-overlapping
positive masks, Eq. (5) could be modified as

ρi(αj , ηj) =



1−
Mp
∏

j=1

1

1 + exp(−αjdij)





ηj

. (6)

One may consider αj and ηj to be parameters specific to the j(th) mask. Effect of variation in αj and ηj is
illustrated for negative masks in Fig. 3. With ηj increased (e.g., Figs. 3b, 3d), local effect is that of density
erosion, similar to that when erosion filter [26] is used. With αj increased (e.g., Figs. 3c, 3d), cell densities
around and outside the respective masks are close to 1.
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(a) α = 1; η = 1 for all masks (default across subfigures) (b) η = 10 for mask in row 4, column 2

(c) α = 10 for mask in row 4, column 2
(d) α = 10 for mask in row 3, column 3; η = 10 for mask in row
4, column 2

(e) α = 10, η = 10 for mask in row 4, column 2;
α = 10 for mask in row 3, column 3 (f) α and η made to vary randomly to values of 1 and 10

Figure 3: Effect on cell densities when mask parameters αj and ηj are varied individually

Alternatively, αj and ηj may be replaced by two global parameters α and η. Each separate mask is then η iden-

tical masks overlaid precisely. With ρi(αj) =
∏Mn

j=1

[

1
1+exp(−αjdij)

]

(Eq. 5) or ρi(αj) =
[

1−∏Mp

j=1
1

1+exp(−αjdij)

]

(Eq. 6) as definitions of cell densities, exponent η also acts similar to the penalty parameter employed in the
SIMP model [2] of topology optimization. Pertaining to Eq. (5), consider the j(th) mask to be a negative
elliptical mask with

dij =

(

Xij

aj

)2

+

(

Yij
bj

)2

− 1,

where Xij = (xi − xj) cos θj + (yi − yj) sin θj ,

and Yij = −(xi − xj) sin θj + (yi − yj) cos θj , (7)

where (xi, yi) are coordinates of centroid of the i(th) hexagonal cell, (xj , yj) are center coordinates of the
elliptical mask, aj and bj are its semi-major and semi-minor axes lengths, and θj is orientation of the mask in
relation to the horizontal. If {xj , yj , aj , bj , θj} are modeled as topology design variables with ψj representing
any one of them generically, sensitivities, as required by a gradient search, can be computed as

∂ρi(α, η)

∂ψj
= ηαρi(α, η)

[

1− 1

1 + exp(−αdij)

] [

∂dij
∂ψj

]

, (8)

where

∂dij
∂xj

= −2

(

X

aj

)(

cos θj
aj

)

+ 2

(

Y

bj

)(

sin θj
bj

)

,

∂dij
∂yj

= −2

(

X

aj

)(

sin θj
aj

)

− 2

(

Y

bj

)(

cos θj
bj

)

,

∂dij
∂aj

= −2
X2

a3j
;

∂dij
∂bj

= −2
Y 2

b3j
,

and
∂dij
∂θj

= 2
XY

a2j
− 2

XY

b2j
. (9)
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Similar expressions can be obtained for positive elliptical, or circular masks. In case masks are circular, θj = 0

in Eq. 9, and
∂dij
∂θj

is not required. Further, as aj = bj ,
∂dij
∂aj

= −2

(

X2+Y 2

a3j

)

.

4 An analytical example

As one of the motivations for the methodology in section 5, it is shown that given a skeleton, upper bound
on the volume, V ∗, minimum (and/or maximum) length scale measure(s) and even the associated relaxation
parameter(s) may be related in that specifying all of these independently may not always yield a (desirable)
solution. Furthermore, there may exist multiple solutions. Consider Fig. 4 showing an assemblage of three
trusses, all of unit elastic modulus, unit out of plane thicknesses and lengths li =

√
2, i = 1, 2, 3. Let their

in-plane widths be x1, x2 and x3 respectively. Let V ∗ be the upper bound on the summation of xi and xm
be the minimum length scale imposed on them. For a unit force applied as shown, expression for the strain

energy can be obtained, using finite element analysis, or otherwise3, as SE = C
(

x1+x2+x3

x1x2+x1x3

)

where C = 1
2
√
2
.

Figure 4: An analytical example with three trusses, all of unit out of plane thickness and elastic modulus

4.1 x1, x2, x3 retained in the skeleton

We solve the following optimization problem using the KKT (Karush Kuhn Tucker) stationarity conditions.

minimize:
x1,x2,x3

SE = C

(

x1 + x2 + x3
x1x2 + x1x3

)

subject to:

(i) g1 ≡ x1 + x2 + x3 − V ∗ ≤ 0

(ii) g2 ≡ (xm − x1)
p + (xm − x2)

p + (xm − x3)
p − ε1 ≤ 0

(10)

where p is a natural number. Nature of constraint g2 depends on p. For an odd p, g2 acts as a minimum length
scale constraint while an even p leads to a fixed length scale constraint in this example. In case of the topology
optimization formulation in Eq. 1, gmin(ρ) − ε1 ≤ 0 and gmax(ρ) − ε2 ≤ 0 are more strict compared to g2

3the problem being statically indeterminate, one could solve by assuming horizontal (∆1) and vertical (∆2) displacements
at node (1, 1), compute strains (linearized) and stresses in the three members, strain energy, and then compute ∆1 and ∆2 by
minimizing the total potential.
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in Eq. (10). g2 could become negative, even for the relaxation parameter as 0, with odd p and some (or all)
xi > xm, i = 1, 2, 3.

With the Lagrangian as φ = C
(

x1+x2+x3

x1x2+x1x3

)

+λ1g1+λ2g2, where λ1 and λ2 are Lagrange multipliers, stationarity

conditions for p = 1 and p = 2 are discussed and solved below. For p = 1 we get

∂φ

∂x1
= − C

x21
+ λ1 − λ2 = 0

∂φ

∂x2
= − C

(x2 + x3)2
+ λ1 − λ2 = 0

∂φ

∂x3
= − C

(x2 + x3)2
+ λ1 − λ2 = 0

λ1g1 = 0; λ2g2 = 0. (11)

The conditions obtained from ∂φ
∂x2

= 0 and ∂φ
∂x3

= 0 are identical. We analyse the following cases:

Case I: λ1 6= 0, λ2 = 0:
From Eqs. 11, we have,

x1 =

√

C

λ1
; x2 + x3 =

√

C

λ1
;

g1 = 0 =⇒ 2

√

C

λ1
= V ∗, or,

C

λ1
=
V ∗2

4

so that x1 =
V ∗

2
and x2 + x3 =

V ∗

2
.

For a feasible solution, g2 = 3xm − x1 − x2 − x3 ≤ ε1 must be true. One can conclude that

3xm ≤ V ∗ + ε1. (12)

The above suggests a rather intutive relation between V ∗, xm and ε1. Here, ε1 acts as a relaxation parameter
between V ∗ and xm. A solution for this case is infeasible if inequality (12) is violated.

Case II: λ1 = 0, λ2 6= 0:
Eqs. 11, yield

λ2 =
−C
x21

=
−C

(x2 + x3)2
. (13)

As λ2 is negative, this case does not provide a solution.

Case III: λ1 6= 0, λ2 6= 0:
From Eqs. 11, we have,

λ1 − λ2 =
C

x21
; λ1 − λ2 =

C

(x2 + x3)2
;

g1 = 0 =⇒ x1 + x2 + x3 = V ∗;

g2 = 0 =⇒ 3xm − x1 − x2 − x3 = ε1.

From the above one concludes that

x1 =
V ∗

2
=

3xm − ε1
2

= x2 + x3

and V ∗ = 3xm − ε1. (14)

ε1 works as relaxation parameter for the length scales as can be seen from the relation between x1, xm and ε1.
Eqs. 12 and 14 suggest that for p = 1, V ∗, xm and ε1 are interdependent and hence one may not achieve a

9



solution for an independent choice of these parameters, specifically when V ∗ is chosen less than 3xm − ε1. A
similar analysis, for p = 2, is given below. Stationary conditions are

∂φ

∂x1
= − C

x21
+ λ1 + 2λ2(x1 − xm) = 0

∂φ

∂x2
= − C

(x2 + x3)2
+ λ1 + 2λ2(x2 − xm) = 0

∂φ

∂x3
= − C

(x2 + x3)2
+ λ1 + 2λ2(x3 − xm) = 0

λ1g1 = 0; λ2g2 = 0. (15)

From ∂φ
∂x2

= ∂φ
∂x3

= 0, one realizes that λ2(x2 − x3) = 0. Further, λ1 and λ2 cannot both be 0 since C 6= 0. We
consider the following cases:

Case I: λ1 6= 0, λ2 = 0:
λ2(x2 − x3) = 0 is satisfied. From Eqs. 15, we have,

x1 =

√

C

λ1
; x2 + x3 =

√

C

λ1
;

g1 = 0 =⇒ 2

√

C

λ1
= V ∗, or,

C

λ1
=
V ∗2

4

so that x1 =
V ∗

2
and x2 + x3 =

V ∗

2
;

λ1 =
4C

V ∗2 > 0.

So that the solution is feasible, g2 =
(

xm − V ∗

2

)2
+ (xm − x2)

2 +
(

xm − V ∗

2 + x2
)2 − ε1 ≤ 0 must hold, or,

V ∗

4
−

√
D

4
≤ x2 ≤

V ∗

4
+

√
D

4
where D = −3V ∗2 + 16xmV

∗ − 24x2m + 8ε1. (16)

For realistic bounds on x2, D must be ≥ 0. Thus,

8xm
3

− 2

3

√

6ε1 − 2x2m ≤ V ∗ ≤ 8xm
3

+
2

3

√

6ε1 − 2x2m. (17)

The above suggests, rather intricate, dependence between xm, V ∗ and ε1. Given xm, ε1 depends on it in that
ε1 >

xm
2

3 must hold if V ∗ is to have realistic bounds. Specifically, if ε1 = 0, no solution exists for this case.
Otherwise, V ∗ must be such that it is bounded from both sides by limits depending on xm and ε1.

Case II: λ1 = 0, λ2 6= 0:
As λ2 6= 0, x2 = x3 must hold. Eqs. 15, yield

x1 − xm =
C

2λ2x21
; x2 − xm =

C

8λ2x22
; x2 = x3

so that x1 = xm +
C

2λ2x21
= xm + δ1; x2 = x3 = xm +

C

8λ2x22
= xm + δ2;

g2 = 0 =⇒ C2

4λ22x
4
1

+
C2

32λ22x
4
2

− ε1 = 0

=⇒ λ2 = ± C

2
√
ε1

√

(

1

x41
+

1

8x42

)

. (18)

10



Here, x1, x2 and x3 are all larger than xm as δ1 > 0 and δ2 > 0 for positive λ2. One notes that ε1 must be
strictly positive. Thereafter, a free choice of ε1, howsoever small, can control the magnitude of λ2 and thus
those of δ1 and δ2. Further, that g1 < 0 must be satisfied, V ∗ > 3xm + δ1 + 2δ2 must hold, suggesting again,
dependence between V ∗ and xm.

Case III: λ1 6= 0, λ2 6= 0:
Again, x2 = x3 must hold and further, g1 = g2 = 0 implies x1+2x2 = V ∗ and (x1−xm)2+2(x2−xm)2−ε1 = 0
solving which yields

6x22 − 4V ∗x2 + (3x2m − 2V ∗xm + V ∗2 − ε1) = 0

so that x2 = x3 =
V ∗

3
± 1

12

√

16V ∗2 − 24(3x2m − 2V ∗xm + V ∗2 − ε1) =
V ∗

3
+ δ3. (19)

Discreminant in the above relation must be non-negative which yields

3xm −
√
3ε1 ≤ V ∗ ≤ 3xm +

√
3ε1. (20)

One can solve for λ1 and λ2 in Eqs. 15 to get

λ1 =
C

4(V
∗

3 + δ3)2
− 2λ2(

V ∗

3
+ δ3 − xm)

and λ2 = −9C
V ∗(V ∗ + 12δ3)

8δ3(V ∗ + 3δ3)2(V ∗ − 6δ3)2
. (21)

δ3, which could either be positive or negative, depends on V ∗, xm and ε1. Proper choices, though not indepen-
dent of each other, of the latter three may yield both Lagrange multipliers positive. Eq. 20 however suggests
that xm and V ∗ are related, given ε1.

Intuitively, one observes through Eqs. 10 that for x1, x2 and x3 to concur to the minimum length scale, V ∗

must be larger than 3xm. Further, as SE = C/(x2 + x3) +C/x1, the three in-plane widths may be as large as
possible until a maximum length scale or a resource constraint is imposed, the latter yielding an upper bound
on V ∗. Imposing both, the maximum length scale and resource constraints makes one of the two redundant.

4.2 x2 = 0, x1, x3 retained in the skeleton

One notices that x1 cannot be zero as then the inclined members x2 and x3 cannot take the transverse load.
One now considers x2 = 0 so that the skeleton is composed of x1 and x3. Expression for the strain energy is
SE = C/x1 + C/x3. Per the Karush Kuhn Tucker conditions,

∂φ

∂x1
= − C

x21
+ λ1 + 2λ2(x1 − xm) = 0

∂φ

∂x3
= − C

x23
+ λ1 + 2λ2(x3 − xm) = 0

λ1g1 = 0; λ2g2 = 0. (22)

λ1 and λ2 cannot both be zero as C is non-zero. Considering λ1 6= 0 and λ2 = 0, from Eqs. 22,

x1 = x3 =

√

C

λ1
;

g1 = 0 =⇒ 2

√

C

λ1
= V ∗, or,

C

λ1
=
V ∗2

4

so that x1 = x3 =
V ∗

2
and λ1 =

4C

V ∗2 > 0. (23)
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For feasible solution, g2 = 2
(

V ∗

2 − xm
)2 − ε1 ≤ 0 must hold, or,

2

(

xm −
√

ε1
2

)

≤ V ∗ ≤ 2

(

xm +

√

ε1
2

)

, (24)

suggesting dependence of V ∗ on xm and ε1 which, must be non-negative. If λ1 = 0 and λ2 6= 0, from Eqs. 22,

∂φ

∂x1
= − C

x21
+ 2λ2(x1 − xm) = 0 =⇒ x1 − xm =

C

2λ2x21
= δ1

∂φ

∂x3
= − C

x23
+ 2λ2(x3 − xm) = 0 =⇒ x3 − xm =

C

2λ2x23
= δ2

g2 = 0 =⇒ δ21 + δ22 = ε1, or , ε1 =
C2

4x41λ
2
2

+
C2

4x43λ
2
2

or, λ2 = ± C

2
√
ε1

√

(

1

x41
+

1

x43

)

(25)

and hence ε1 must be strictly positive. Further, g1 ≤ 0 implies 2xm + δ1 + δ2 ≤ V ∗ suggesting again, an
interdependence between V ∗, xm and ε1. If λ1 6= 0 and λ2 6= 0, from Eqs. 22, g1 and g2 must both be zero.
Thus,

x1 = V ∗ − x3;

(x1 − xm)2 + (x3 − xm)2 = 2x23 − 2V ∗x3 + (V ∗)2 + 2x2m − 2V ∗xm − ε1 = 0

or, x3 =
V ∗

2
±

√

−(V ∗ − 2xm)2 + 2ε1
2

. (26)

So that x3 has a solution, (V ∗ − 2xm)2 − 2ε1 ≤ 0 must hold, or, 2xm −
√
2ε1 ≤ V ∗ ≤ 2xm +

√
2ε1, suggesting

that V ∗ is bounded by limits that depend on xm and ε1. Note that, ε1 ≥ 0 must hold. For ε1 = 0, V ∗ must
precisely be 2xm. The case wherein x3 = 0, x1, x2 are retained in the skeleton, is identical.

5 Sequence of Length Scales (SLS) Methodology

It may be possible to comprehend the interplay between the resource, length scale constraints and the corre-
sponding tolerance for simpler examples (sections 4.1 and 4.2) but not for more involved problems, as topol-
ogy/skeleton evolves continuously as optimization progresses. When seeking optimal continuum topologies, a
designer may not always have an intuitive notion on upper bound on the continuum volume though the intent
would be to keep it as low as possible. One may, however, prefer to specify the minimum and maximum length
scales, from failure and/or manufacturing viewpoints, more readily. The analytical example above, suggests
strong corelation between upper bound on the volume, length scales, tolerance specified on the corresponding
constraints, and also that there could exist multiple solutions, or possibly none.
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Figure 5: Flow chart for the methodology in Section 5. vfmin and vfmax are specified limits on upper bound of the volume fraction
(chosen as 0.1 and 0.5 in this paper). ∆ε is the specified increment on relaxation parameters (chosen as 10 for Figures 8, 10, and
1 for Figures 13). εint is chosen as tol for the examples.

The methodology proposed (for p = 1 in Eq. 2), rather heuristic, which uses minimum and maximum length
scale measures as design parameters is delineated. Given the design specifications, initial guess on elliptical
masks, a low volume fraction (say vf = 0.2), and low relaxation tolerances (say tol = 1) in Stage I, one first
seeks a topology (skeleton) that optimizes the objective in Eq. 1 with only the volume constraint imposed.
One checks whether the solution satisfies the maximum length scale constraint. If the latter is violated, the
volume fraction vf is reduced as vf = vf − gmax(ρ)

Ncells
(step 3 below) ensuring vf is always larger than its lower

limit, vfmin. The intent in Stage I is to attain a solution with vf low enough so that the maximum length
scale is satisfied. We assume such a solution exists, as demonstrated by Rehmatallah and Swan [59]. We also
expect a topology to be available whose skeleton does not change (significantly, though we allow for it) so
that the length scale measures gmin(ρ) and gmax(ρ) in Eq. 2 are effective (see [49]). With Stage I solution
as the initial guess, which one reckons is better than that wherein elliptical masks of uniform sizes are evenly
placed since the skeleton is relatively well formed, one now imposes all constraints, those on volume, minimum
and maximum length scales and seeks the optimal solution in Stage II. Following possibilities exist for an
intermediate solution in Stage II.
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1. If the volume constraint is satisfied,

(a) If gmin(ρ) < ε1 and gmax(ρ) < ε2, the optimization process is ceased and the Stage II solution is
accepted.

(b) If gmin(ρ) > ε1 and gmax(ρ) < ε2, it is reckoned that the volume fraction is not aqequate. Ac-

cordingly, vf is readjusted as vf = vf + gmin(ρ)
Ncells

. Both, ε1 and ε2 are incremented marginally
(εi = εi + 1, i = 1, 2) and an optimal solution is sought again.

(c) If gmin(ρ) < ε1 and gmax(ρ) > ε2, the volume fraction can be lowered, as, further reduction of
gmax(ρ) will only reduce the overall continuum volume. Accordingly, vf is readjusted as vf =

vf − gmax(ρ)
Ncells

, ε1 and ε2 are incremented (εi = εi + 1, i = 1, 2), and the optimization process is
commenced again.

(d) If gmin(ρ) > ε1 and gmax(ρ) > ε2, one chooses to keep vf unaltered, and rather, increments both
ε1 and ε2 (εi = εi + ∆ε, i = 1, 2), envisaging that any of the above three cases will be met within
subsequent stage(s) in optimization.

2. If the volume constraint is not satisfied in stage II, vf is increased marginally and an optimal solution is
sought again.

The overall notion is that in stage I, an optimal topology with well formed skeleton is available satisfying the
maximum length scale constraint whereas in Stage II, length scale measures in Eq. 2 are used more effec-
tively while also addressing the underlying yet non-apparant interdependence between the design parameters
vf,minls,maxls and relaxation parameters. In case positive elliptical masks are employed, after each opti-
mization step, one checks for existence of connectivity singularities, i.e., dangling appendages and/or islands.
Cells with negligible strain energy densities, and masks enclosing them are identified, and such masks are
removed. A flow chart is depicted in Figure 5. One must note that gmin(ρ) and gmax(ρ) are global length scale
measures in that while it may be possible for minimum and maximum length scale constraints in Eqs. 1 to be
satisfied with reference to the obtained relaxation parameters after stage II, locally, these constraints may still
get violated, as observed in some solutions (section 6).
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(a) α = 4, Vf = 0.3, BWI = 0.05 (b) α = 6, Vf = 0.3, BWI = 0.04 (c) α = 8, Vf = 0.3, BWI = 0.04

(d) α = 4, Vf = 0.3, BWI = 0.11
g1 = −24.4, gmin(ρ) = 33.3, minls = 1.52

(e) α = 6, Vf = 0.3, BWI = 0.09
g1 = −11.0, gmin(ρ) = 87.1, minls = 1.52

(f) α = 8, Vf = 0.3, BWI = 0.06
g1 = −15.0, gmin(ρ) = 4.5, minls = 1.52

(g) α = 4, Vf = 0.2, BWI = 0.11
g1 = 98.1, gmin(ρ) = 214.2, minls = 1.52

(h) α = 6, Vf = 0.2, BWI = 0.1
g1 = 215.3, gmin(ρ) = 375.8, minls = 1.52

(i) α = 8, Vf = 0.2, BWI = 0.08
g1 = 48.6, gmin(ρ) = 144.2, minls = 1.52

(j) α = 4, Vf = 0.3, BWI = 0.15
g1 = 612.9, gmin(ρ) = 804.7, minls = 1.9

(k) α = 6, Vf = 0.3, BWI = 0.09
g1 = 142.6, gmin(ρ) = 272.4, minls = 1.9

(l) α = 8, Vf = 0.3, BWI = 0.07
g1 = 229.5, gmin(ρ) = 480.3, minls = 1.9

(m) α = 4, Vf = 0.4, BWI = 0.10
g1 = 42.8, gmin(ρ) = 179.3, minls = 1.9

(n) α = 6, Vf = 0.4, BWI = 0.08
g1 = 21.8, gmin(ρ) = 179.9, minls = 1.9

(o) α = 8, Vf = 0.4, BWI = 0.06
g1 = −9.9, gmin(ρ) = 12.1, minls = 1.9

Figure 6: Topological Solutions for Example I: Solutions are obtained using 20 × 10 negative elliptical masks as design variables.
Domain of size 100 × 46 unit2 is discretized via 150 by 80 regular honeycomb mesh. Cell size (radius of the circumcircle) is 0.38
mm. A minimum length scale (blue circles as insets) of 2minls mm is imposed. For all solutions, η = 3, and maximum number
of function evaluations is 400. Solutions are obtained for different α and upper bounds on the volume constraint. Values of the
volume constraint g1 and minimum length scale constraint gmin(ρ) are depicted below each solution, wherever imposed. Exponent
for the constraints, p = 2 (Eqs. 2). No maximum length scale is imposed on any problem.
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6 Examples

We solve the first two examples (Fig. 1) by imposing minimum length scale, and then both length scales
respectively. Thereafter, we solve all four examples using the SLS methodology with both, negative and
positive elliptical masks.

6.1 Results without the SLS methodology

It is known that the design space for stiffness maximization problems for η > 1 is non-convex [60]. With the
flexibility-stiffness multi-criteria formulations, optimal topologies of compliant mechanisms also depend on the
initial guess [61, 62]. With many parameters associated with the Material Mask Overlay Strategy [18], final
solutions are expected to be influenced by these. For the examples presented, we standardize the parameters
as follows. Maximum dimension of a (rectangular) region is chosen as 100 units. Number of elliptical (circular)
masks along each axis is the rounded off value of the length along that axis over 5 (or 3), the number of design
variables per mask. η is chosen as 3. No filtering is performed for all examples generated. Before commencing
optimization for which the fmincon routine of MATLABTM is employed, all masks are distributed evenly as
in Fig. 3. Maximum possible dimension of the semi-major (aj) or minor (bj) axis is mR = 10 units. For
negative masks, minimum dimensions correspond to the minimum length scale, minls while for positive masks,
minimum dimensions are chosen close to 0. For negative masks, this is equivalent to imposing a minimum
length scale on the void state. Initial values of aj and bj are set to mR

4 units, and initial orientation θj to 0
degrees. With the above standardization, parameter α still remains a free choice along with upper bound on
the continuum volume, minimum and maximum length scales. One realizes [18] that optimal topologies may
depend on α and the way it is chosen to vary during optimization, e.g., as in continuation methods. One also
notes that a high α yields solutions close to the ideal 0− 1 topologies. We employ a BWI (black and white)
index [24, 26] to evaluate how far solutions are from the originally intended 0-1 topologies. A lower BWI
indicates that a topology is closer to the 0− 1 solution. BWI is given as

BWI =
4
∑Ncells

i=1 ρi(α, η)[1− ρi(α, η)]

Ncells
(27)

We solve the first two examples (Fig. 1a and 1b) without the SLS methodology in section 5 to illustrate
that if the volume fraction vf , minimum (minls) and maximum (maxls) length scales are specified arbitrarily
and independently, a (desirable) solution may not always be possible. The first example is of a compliance
minimization problem for a cantilever system fixed at the left vertical boundary. A force of 3 units along the
downward vertical direction is applied at the right bottom corner (Fig. 1a). Solutions for Example I in Figs. 6
are obtained for a domain size of 100× 46 unit2 using 150×80 cells in a honeycomb mesh with 20×10 negative
elliptical masks spread evenly over the domain as the initial guess. Solutions for different α, volume fraction
and minimum length scale constraints are presented. Maximum length scale constraint is not imposed on any
solution for this example. Generated topologies are arranged such that along a row, they have the same volume
and minimum length scale constraints, while those along the column correspond to the same value of α.

Figs. 6a-6c are topologies generated for a volume fraction vf = 0.3 with no minimum length scale constraint
imposed. As α increases, the black and white index, BWI or the gray scale indicator decreases. Increasing
α results in closer to the ideal, black and white solutions, as expected. Topologies also change. Members
are relatively well formed and straight. However, members have uneven thicknesses and hence, imposition
of only the volume constraint may result in some constituents having undesirable dimensions that are not
manufacturable and/or are prone to failure.

Figs. 6d-6f are solutions corresponding to the same specifications as in Figs. 6a-6c respectively but with
an additional, minimum length scale constraint, minls, of 1.52 units. In these, both, the volume (g1) and
minimum length scale (gmin(ρ)) constraints are considered satisfied as g1 and gmin(ρ) are either small positive
or negative values. For the solution in Fig. 6e, gmin(ρ) is higher. Decrease in BWI with increase in α is
consistent. Solutions in Figs. 6d-6f have more members (topologies have relatively more holes) in comparison
to their counterparts in Figs. 6a-6c. Members are almost straight with some possessing certain, although small,

16



curvature and also, some undulations along their boundaries. Some of these solutions could be sub-optimal,
perhaps, due to imposition of the explicit minimum length scale via the structural skeleton, which changes
continuously as optimization progresses.

(a) Vf = 0.20, BWI = 0.06 (b) Vf = 0.30, BWI = 0.04 (c) Vf = 0.40 BWI = 0.05

(d) Vf = 0.20, minls = 3cs, maxls = 7cs,
BWI = 0.08, gmin(ρ) = 18.2, gmax(ρ) =
0.82

(e) Vf = 0.30, minls = 3cs, maxls = 7cs,
BWI = 0.08, gmin(ρ) = 45.5, gmax(ρ) =
40.2

(f) Vf = 0.40, minls = 3cs, maxls = 7cs,
BWI = 0.12, gmin(ρ) = 12.0, gmax(ρ) =
33.71

(g) Vf = 0.20, minls = 4cs, maxls = 7cs,
BWI = 0.10, gmin(ρ) = 174.9, gmax(ρ) =
4.00

(h) Vf = 0.30, minls = 4cs, maxls = 7cs,
BWI = 0.1, gmin(ρ) = 32.9, gmax(ρ) =
38.7

(i) Vf = 0.40, minls = 4cs, maxls = 7cs,
BWI = 0.11, gmin(ρ) = 157.5, gmax(ρ) =
150.5

(j) Vf = 0.20, minls = 5cs, maxls = 7cs,
BWI = 0.10, gmin(ρ) = 703.2, gmax(ρ) =
27.2

(k) Vf = 0.30, minls = 5cs, maxls = 7cs,
BWI = 0.11, gmin(ρ) = 181.1, gmax(ρ) =
29.3

(l) Vf = 0.40, minls = 5cs, maxls = 7cs,
BWI = 0.08, gmin(ρ) = 78.2, gmax(ρ) =
51.3

Figure 7: Topological Solutions for Example II: Solutions are obtained using negative circular masks as design variables. Domain
of size 100× 46 unit2 is discretized via 200 by 80 regular honeycomb mesh. Cell size (radius of the circumcircle) used is cs = 0.288
units. Both, minimum (2minls) and maximum (2maxls) length scales are imposed, as multiples of the cell size. For all solutions,
α = 6, η = 3, p = 2 (Eqs. 2) and maximum number of function evaluations is 400. Values of the minimum (gmin(ρ)) and maximum
length scale constraints gmax(ρ) are depicted. The volume constraint (g1) is 0 or negative in all cases. Circles on top right represent
the dimensions of the length scales imposed.

Fig. 6g-6i represent solutions for the same specifications as Fig. 6d-6f respectively, but for a lower volume
fraction of 0.2. High positive values of g1 and gmin(ρ) imply that solutions do not satisfy the volume or
minimum length scale constraints respectively. Members are not well formed, some having slight curvature
and most having undulating contours with cells at the boundaries, mostly in gray states. Cells at the member
boundaries, if attaining their filled states, will contribute to lowering of gmin(ρ) to a desirable value. But, this
seems in direct conflict with the volume constraint g1 as it will increase. Numerical investigations reveal for
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this example that optimization often converges to infeasible topologies even if maximum number of function
evaluations is increased. Fig. 6j-6o are solutions for the same specifications as Fig. 6d-6f respectively but
for higher values of the minimum length scale and volume fraction. While in the latter set (Fig. 6d-6f),
the volume and minimum length scale constraints are considered satisfied, in Figs. 6j-6l, values of g1 and
gmin(ρ) are high suggesting that increasing the minimum length scale for constant volume fraction may lead
to infeasible solutions. One may expect that a higher volume fraction may help in achieving the minimum
length scale, which is verified through the solution in Fig. 6o, especially, in comparison to that in Fig. 6l.
Similar observation can be made by comparing the solutions in Figs. 6j and 6k to solutions in Figs. 6m
and 6n respectively. The above suggests an implicit, conflicting dependence between constraints involving the
minimum length scale and the volume fraction permitted.

Example II is a compliance minimization problem for a beam with roller supports allowing movement along
the vertical axis (line of symmetry) at the left boundary, and a roller support allowing movement along the
horizontal axis at the right bottom corner. A force of 2 units along the negative vertical direction is applied
at the left bottom corner node as illustrated in Fig. 1b. Topologies for Example II in Fig. 7 are obtained over
a domain of 100× 46 unit2 using a 200×80 mesh with 20×10 negative elliptical masks spread evenly over the
domain for the initial guess, with α = 6 and η = 3. A relatively high α is chosen to seek close to black and
white solutions. Topologies for different volume fractions, minimum and maximum length scales are presented.
The arrangement in Fig. 7 is such that all solutions in a row have the same length scales while those in the
same column have the same volume fraction. gmin(ρ) and gmax(ρ) represent the final minimum and maximum
length scale values respectively. The maximum length scale is held constant at 2maxls = 2× 7cs, where cs is
the cell size given by radius of the circumscribing circle of the hexagonal cell, while the minimum length scale
is increased as one moves down the column.

Fig. 7a-7c are solutions obtained with only the volume fraction specified, and no length scale imposed. Increase
in volume fraction leads to increase in member thickness and/or addition of new members (holes) to the solution.
Members are straight and well formed though their thicknesses vary, as expected, since no explicit control is
imposed on them. Figs. 7d-7f present solutions for the same specifications as for Figs. 7a-7c respectively
but with the imposition of minimum length scale constraint of 2× 3cs and maximum length scale constraints
of 2 × 7cs where cs, the cell size, is 0.288 units. For the solution in Fig. 7d, both minimum and maximum
length scales are (close to) satisfied. For those in Figs. 7e and 7f, gmin(ρ) and/or gmax(ρ) is relatively high.
Further, more members, undulating contours, dangling appendages, and local islands appear with increase in
the specified volume fraction. These appendages and islands have negligible strain energy densities, and do
not contribute to the stiffness of the continua. Therefore, the obtained structures are sub-optimal. Comparing
solutions obtained with a volume fraction of vf = 0.2 (Figs. 7d, 7g and 7j), with increase in the minimum
length scale, values of gmin(ρ) increase. All solutions are free from appendages and islands. An increase in
vf may not always result in a drop of gmin(ρ) as one would expect but may also lead to higher number of
branches in the solution and a higher gmin(ρ). This can be observed by comparing solutions in Figs. 7d and
7h to solutions in Figs. 7e and 7i respectively. Both, the volume and explicit minimum length scale constraints
seem to be in conflict in that a low volume fraction may not help in achieving the minimum length scale while
a high fraction could lead to suboptimal solutions with connectivity degeneracies like the appendages and/or
islands.

Most solutions in Figures 6-7 are sub-optimal possibly because of imposition of the minimum/ maximum length
scale constraints on illformed skeletons, which change continuously throughout optimization thereby hindering
the removal of unnecessary branches/appendages from the solution. This, along with boundary undulations,
makes it difficult for the optimization process to converge to better solutions. One way to address the issue is
to allow the development of a primitive, well formed skeleton before imposing length scale constraints. This
notion is adopted in the construction of Stage I of the proposed methodology.
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6.2 Results with the SLS methodology

(a) Example I: cs = 0.38 units. minls = 4cs units, maxls = 7cs
units. Post optimization, Φ = 752.5, gmin(ρ) = 38.9, gmax(ρ) =
32.2, vf = 0.28; BWI = 0.05.

(b) Example II: cs = 0.28 units. minls = 4cs units, maxls =
7cs units. Post optimization, Φ = 1462.7, gmin(ρ) = 81.8,
gmax(ρ) = 78.8, vf = 0.33; BWI = 0.04.

(c) Example III: cs = 0.38 units. minls = 4cs units, maxls =
6cs units. Post optimization, Φ = −0.174, gmin(ρ) = 22.6,
gmax(ρ) = 13.4, vf = 0.17; BWI = 0.03.

(d) Example IV: cs = 0.38 units. minls = 4cs units, maxls =
6cs units. Post optimization, Φ = −0.077, gmin(ρ) = 64.4,
gmax(ρ) = 35.6, vf = 0.29; BWI = 0.05.

Figure 8: Topologies generated with Negative Elliptical Masks with the methodology in Section 5. Circles (blue/green) in the inset
represent the (minimum/maximum) length scales

(a) (b)

(c) (d)

Figure 9: Respective solutions in Fig. 8 depicted with Negative masks

The four examples in Fig. 1 are solved with the methodology in section 5 for α = 6 and η = 3. Mesh sizes
are 150 × 80 for Example I, 200 × 80 for Example II, and 150 × 75 for both compliant mechanism problems
(Examples III and IV). Except for Example II wherein the cell size(cs) is 0.28 units, in all other examples, the
cell size is 0.38 units. In all examples, values of other variables are kept the same as those used for Examples
I and II in section 6.1, however, specifications for minls and maxls vary. Example I and II are solved with
the starting volume fraction of 0.2 while those on compliant mechanisms are solved with the starting vf of
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0.3. S (Eq. 1) for Examples I and II is set as 1, and for Examples III and IV, it is set as 106. Maximum
number of function evaluations for each optimization step in Fig. 5 is set to 100. All examples are solved
with both, negative (Fig. 8) and positive (Fig. 10) elliptical masks. Values of the objective, gmin(ρ), gmax(ρ),
final volume fraction, tolerance values, and the black and white measures BWI are all indicated below each
solution. Corresponding topologies are shown with negative masks in Fig. 9 and positive masks in Fig. 11.

In Example I with negative masks (Fig. 8a), minimum and maximum length scales seem to be achieved within
a tolerance ε1 = ε2 = ε = 39. In Example II (Fig. 8b), the tolerance value suggested by the methodology is
relatively high (ε = 82). In the compliant inverter problem (Example III) solved with negative masks (Fig. 8c),
minimum and maximum length scales are quite close to each other, in an attempt to seek ‘volume-distributed’
solutions. Members seem more or less of uniform thickness with length scales achieved within a tolerance of
ε = 23. Similar is the case for the solution of Example II (Fig. 8b) although boundaries seem undulating
suggesting that number of elliptical masks defining those boundaries are not adequate (see Fig. 9b). In
Example IV, one notices through visual inspection that the minimum length scale is not quite satisfied locally
at two sites, one around the hinge and the second around the smaller void at the top right corner. This could
be attributed to gmin(ρ) being a global measure and/or high relaxation parameter. Observing the solutions
with negative masks (Fig. 9), nearly all masks contribute in defining the respective topologies in that only a
few masks are outside the specified domain.

(a) Example I: cs = 0.38 units. minls = 4cs units,
maxls = 7cs units. Post optimization, Φ = 654.1,
gmin(ρ) = 37.4, gmax(ρ) = 35.3, vf = 0.35; BWI =
0.06.

(b) Example II: cs = 0.28 units. minls = 4cs units,
maxls = 5cs units. Post optimization, Φ = 1075.9,
gmin(ρ) = 296.4, gmax(ρ) = 214.6, vf = 0.4; BWI =
0.06.

(c) Example III: cs = 0.38 units. minls = 4cs units,
maxls = 6cs units. Post optimization, Φ = −0.181,
gmin(ρ) = 55.9, gmax(ρ) = 34.5, vf = 0.18; BWI =
0.05.

(d) Example IV: cs = 0.38 units. minls = 4cs units,
maxls = 6cs units. Post optimization, Φ = −0.079,
gmin(ρ) = 61.6, gmax(ρ) = 161.7, vf = 0.31; BWI =
0.09.

Figure 10: Topologies generated with Positive Elliptical Masks with the methodology in Section 5. Circles (blue/green) in the inset
represent the (minimum/maximum) length scales

When observing topologies with positive masks, in Example I (Fig 10a), minimum and maximum length scales
are achieved within a tolerance of ε = 38. In Example II, (Fig 10b), however, this is not the case. A single
member at bottom center of the topology, and oriented close to 120o with respect to the horizontal violates
the minimum thickness specified. Values of gmin(ρ) and gmax(ρ) are quite high (see discussion). For the
compliant inverter problem (Fig 10c), a higher tolerance (ε = 56) is required by the proposed methodology
though members seem more or less to be of uniform thickness. In Example IV (Fig 10d), the minimum length
scale is not achieved locally, near the hinge, just like the corresponding solution with negative masks (Fig 8d).
Boundary undulations are also observed, possibly due to the use of few positive masks (Fig. 11d). One notes
that in case of positive masks, mask deletion is implemented in that final solutions for Examples I-IV require
130, 134, 17 and 58 masks respectively in comparison to 200 for all, specified initially.
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(a) (b)

(c) (d)

Figure 11: Respective topologies in Fig. 10 depicted with Positive Elliptical masks

7 Discussion

Per [31], mesh independence is guaranteed if minimum length scale is imposed when seeking optimal topologies.
In this paper, minimum and maximum length scales are imposed explicitly, on skeletonized (solid phase)
intermediate topologies. It is shown via an analytical example (Section 4) that an arbitrary set of specified
volume fraction (vf), and minimum length scale (minls) may not always yield a solution for a given skeletonized
topology, or even if the skeleton changes. Rather, parameters vf , minls and maxls tend to be interdependent.
The SLS methodology suggested in Section 5 employs a two-stage heuristic approach to attain optimal solutions.
In stage I, topologies are sought under only the volume constraint, and the volume fraction is lowered (if
required) in sub-stages until the maximum length scale criterion is satisfied implicitly. With the stage I
solution as the initial guess and skeleton well-formed, in stage II, all constraints are imposed, and solutions are
sought by altering the volume fraction systematically in a manner that the explicit length scale constraints are
satisfied within some tolerance which, is increased marginally within each sub-stage in optimization. Solutions
are obtained with negative/positive elliptical masks that determine the material densities of hexagonal cells
in groups over which they lay. Small deformation examples are used, and it is observed that minimum and
maximum length scales are achieved by-and-large even if the length scale constraints are ’skeleton-based’ and
less restrictive in that they are not imposed more strictly and locally to keep the number of constraints to a
minimum.

In Example II generated using positive elliptical masks (Fig. 10b), there exists a thin slender member that
does not satisfy the minimum length scale. The member is defined by a single positive mask (Fig. 11b). It is
reckoned that use of less number of masks, or high α could be the cause as sensitivities are close to zero and
thus masks may not respond readily [18]. With the solution in Figure 10b as the initial guess, optimization is
performed again with continuation on α, that is, α is increased in steps from 2 till 30. The obtained solution
is shown in Fig. 12a. The minimum length scale gmin(ρ) reduces significantly, and the strain energy reduces
from Φ = 1075.9 to Φ = 1055.9.

In Example IV, with both negative and positive masks (Fig. 8d and 10d respectively), local hinges are observed.
Also, in Figure 8d, minimum length scale is not satisfied at the top right corner, below the small void. Using
the same rational as above, continuation is performed on α, which is increased from 2 to 50 gradually, with
the initial guess as that in Fig. 8d. The solution is shown in Fig. 12b wherein hinges are more pronounced
and are more in number. Value of the objective is marginally increased from Φ = −0.077 to Φ = −0.071.
The above suggests that continuation with the setting in Fig. 5 may not always help in achieving the desired
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length scales. A (set of) well-posed length scale constraint(s) should be effective in imposing the desired
length scales, irrespective of the objective function used. Noting that ε1 must be strictly positive (Section
4) and that gmin(ρ) = 4.5 is quite low for this example, even though the minimum length-scale constraint in
Eq. 1 is satisfied mathematically, the optimization algorithm seems to exploit the loophole, that multi-criteria
formulations in compliant mechanisms are prone to yielding local hinges [63]. Another reason for appearance of
hinge(s) is that the proposed approach controls length scales on only the solid and not the void states. Lazarov
et al. [48] state that length scale imposition on only one of the phases does not guarantee manufacturability in
that it may not be possible to avoid hinges when designing small displacement compliant mechanisms. They
recommend explicit length scale control on both phases.

(a) (b)

Figure 12: (a) Example II in Figure 10b revisited with continuation on α from 2 to 30. gmin(ρ) = 35.5, gmax(ρ) = 276.7. Φ = 1055.9
(b) Example IV in Figure 8d revisited with continuation on α from 2 to 51. gmin(ρ) = 4.5, gmax(ρ) = 73.5. Φ = −0.071.

To study the role of parameters ε1 and ε2, specifically their initial values and the way they are varied in
intermediate stages, we solve the four benchmark problems again with negative elliptical masks. With all
respective parameters identical, we commence these examples with ε1 = ε2 = 1. Maximum number of function
evaluations permitted for each optimization stage (Figure 5) is 30 (as opposed to 100 for examples in Figures
8 and 10) after which, both, ε1 and ε2 are incremented by 1. As mentioned earlier, the aim is to keep ε1
and ε2 as low as possible, though strictly positive. Final respective solutions are shown in Figure 13. In the
same figure, along the right column are shown the same solutions with cells marked with blue squares and red
circles. Cells enclosed within the blue squares are those that are supposed to have the densities of the solid
state. Those enclosed within the red circles are reckoned to stay void in accordance with the maximum length
scale constraint.

There is a topological change when comparing the solutions for Example I, in Figures 8a and 13a. In the
latter, the final volume fraction vf , gmin(ρ) and gmax(ρ) are all lower. Topologies for Example II remain the
same, in Figures 8b and 13c, even though vf , gmin(ρ) and gmax(ρ) are all lower. Solutions for Example III
are identical (Figures 8c and 13e) with vf , gmin(ρ) and gmax(ρ) comparable. Topologies for Example IV, in
Figures 8d and 13g, are significantly different. For the latter solution, even though gmin(ρ) and gmax(ρ) are
significantly higher, local regions all seem to satisfy the minimum length scale constraint, not the case with
the solution in Figure 8d. This seems to suggest that lower values of ε1 and ε2 are no guarantee for better
solutions when one considers local length scales, especially with reference to the solution in Figure 12b.

gmin(ρ) and gmax(ρ), as modeled in Eq. 2, are ’skeleton-dependent’ global length scale measures on solid
states, which by themselves, cannot guarantee local length scale control as expected. Nevertheless, the used
length scale measures, along with the proposed 2-stage methodology by and large, do address length scale
issues to a significant extent, if not comprehensively, as evident via the right column in Figure 13. Very few
cells (those whose centroids lie within blue squares or red circles), especially at continuum boundaries and
mostly localized, violate the length scale constraints.

Need for incrementing ε1 and ε2 is justified via the convergence histories in Figure. 14, of the respective
solutions in Figures 13a-13g. In Figures 14b, 14c and 14d, gmin(ρ), gmax(ρ) and vf stablize after 1300, 1000,
and in between 600-900 function evaluations respectively. If ε1 and ε2 are not incremented, the minimum
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and/or maximum length scales constraints may be violated. It is only after ε1 = ε2 > max(gmin(ρ), gmax(ρ))
that constraints get satisfied. Especially, for Example IV (Figure 14d), after 900 evaluations, gmax(ρ) gets
lowered further. In all convergence histories, there is significant variation in gmin(ρ), and it is only towards the
end that the minimum length scale measure gets lowered than the relaxation parameter. gmax(ρ) gets lowered
relatively much earlier. Only for Example IV does gmax(ρ) increase to almost the same value as gmin(ρ) after
400 evaluations. Values of the objective stablize fairly early (600, 1200, 500 and 400 evaluations respectively).

(a) Example I: cs = 0.38 units. minls = 4cs units, maxls =
7cs units. Post optimization, Φ = 1073.6, gmin(ρ) = 24.5,
gmax(ρ) = 7.4, vf = 0.22;

(b) Number of (i) filled cells (ρ > 0.99): 1734, (ii) blue cells: 29,
(iii) red cells: 36, skeletal cells: 360.

(c) Example II: cs = 0.28 units. minls = 4cs units, maxls =
7cs units. Post optimization, Φ = 1814.7, gmin(ρ) = 49.79,
gmax(ρ) = 48.9, vf = 0.26;

(d) Number of (i) filled cells (ρ > 0.99): 2589, (ii) blue cells: 294
(iii) red cells: 9, skeletal cells: 531.

(e) Example III: cs = 0.38 units. minls = 4cs units, maxls =
6cs units. Post optimization, Φ = −0.185, gmin(ρ) = 19.13,
gmax(ρ) = 30.7, vf = 0.19;

(f) Number of (i) filled cells (ρ > 0.99): 1240, (ii) blue cells: 12,
(iii) red cells: 75, skeletal cells: 267.

(g) Example IV: cs = 0.38 units. minls = 4cs units, maxls =
6cs units. Post optimization, Φ = −0.068, gmin(ρ) = 86.00,
gmax(ρ) = 70.44, vf = 0.29;

(h) Number of (i) filled cells (ρ > 0.99): 1497, (ii) blue cells: 42,
(iii) red cells: 178, skeletal cells: 424.

Figure 13: Topologies generated with Negative Elliptical Masks with the SLS methodology. Circles (blue/green) in the inset
represent the (minimum/maximum) length scales. Design specifications are identical to those for Figure 8. Commencing values
ε1 = ε2 = 1. On the right column, cells in the respective topologies violating length scale constraints are shown with red circles
and blue squares. Red circles represent cells violating the maximum length scale constraint. Blue squares enclose cells that should
have density one, as required by the minimum length scale constraint.
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(a) Example I: Convergence history.
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(b) Example II: Convergence history.
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(c) Example III: Convergence history.
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(d) Example IV: Convergence history.

Figure 14: Convergence histories for the topologies in Figure. 13.

While many solutions in Figs. 8, 10 and 13 have well defined boundaries, in some cases, e.g., in Figs. 8b
and Fig. 10d boundaries are undulated and have gray cells. Bare essential post processing which involves
removal of void cells followed by smoothing of boundaries (meshes with any element type and howsoever fine
will contain boundary notches once the void cells are removed) cannot be avoided if the obtained solutions are
to be manufactured. Boundary smoothing [18, 20] is employed in the past with honeycomb meshes to address
such undulations. Gray cells at mask boundaries are treated as filled. Such mask-based methods are capable
of yielding crisp boundaries at any stage of topology optimization, an attribute that can be exploited to solve
more involved problems, e.g., ones involving contact interactions [64, 65]. An added advantage with imposing
length scales explicitly is that given a skeleton of any solution, cells which should be filled and void are known
precisely, e.g, Fig. 13. As an example, solutions in Figs. 8 and Fig. 10 are shown in perfect 0-1 state, with
imposed minimum length scales and smoothened boundaries in Fig. 15. Undulations get reduced with the
possibility of length scale definitions becoming better, e.g., in Figs. 15d and 15h wherein hinges seem to satisfy
the minimum length scale. Respective change (increase) in the objective is marginal.
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(a) Smoothened solution for 8a.
Φ = 779.3.

(b) Smoothened solution for 8b.
Φ = 1495.2.

(c) Smoothened solution for 8c.
Φ = −0.172.

(d) Smoothened solution for 8d.
Φ = −0.075.

(e) Smoothened solution for 10a.
Φ = 671.8.

(f) Smoothened solution for 10b.
Φ = 1092.9.

(g) Smoothened solution for 10c.
Φ = −0.178.

(h) Smoothened solution for 10d.
Φ = −0.077.

Figure 15: Perfectly solid-void solutions with smoothened boundaries (steps = 20) and imposed minimum length scales.

8 Closure

This paper investigates the role of elliptical masks, both negative and positive, in small deformation topology
optimization. Explicit, skeleton-based, length scales are imposed on solid states of the topologies defined by
a group of hexagonal cells. To impose length scales explicitly, a novel skeletonization algorithm for hexagonal
tessellation is presented and employed. Noting that there may exist an implicit interdependence between
the volume fraction, minimum and maximum length scales, and that the length scale measures used work
well only with well formed skeletons, a two-stage methodology that involves obtaining solutions by solving
a sequence of optimization problems is proposed wherein length scales are specified as design parameters,
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and volume fraction and relaxation parameters are determined systematically. It is intended for the volume
fraction to be as low as possible in order that length scales on the void states could be controlled indirectly.
The procedure, though heuristic, yields solutions wherein length scales on solid states are satisfied by-and-
large. However, certain sites may remain thinner or thicker than specified which is expected as the length
scale constraints imposed are global in nature. While one demonstrates feasibility of attaining the desired
length scales with the proposed methodology on bench mark problems, desirable solutions may not always be
attainable. Investigations are planned in future for an improved approach to control length scales on solid
and void states more strictly/directly so that the obtained topologies with elliptical masks and honeycomb
tessellation could be fabricated readily with concurrent, advanced manufacturing technologies. Better and
effective, easy to implement, length scale measures are sought that are independent of topological skeletons.
The proposed method is also computationally expensive and future effort will be geared towards making it
more efficient.

9 Replication of Results

Results presented herein may be replicated by making modifications to the base MATLAB code provided
in [18], and description on the SLS methodology and skeletonization in this paper. The corresponding author
may be contacted in case there are additional queries.
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Appendix A Skeletonization with honeycomb meshes

To implement explicit length scale constraints on the solid states, a new algorithm for skeletonization of
intermediate topologies obtained from honeycomb meshes is described. As cells enclosed within, on (the
boundary), or outside the masks are precisely known, cell densities are known in their true 0-1 forms. A
thresholding procedure to convert a gray scale solution into a binary one, as in [44], is not required.

The skeleton, or, medial topological contour of a domain with void and filled regions is a (set of) curve(s) of
unit cell thickness that captures topology of the domain such that each cell on the curve separates at least
two void boundaries. Topology with the filled and void cells at any step of the algorithm is referred to as the
configuration topology. Each iteration in the algorithm consists of three main steps, (a) contour detection, (b)
contour refinement and (c) skeleton point retention. There are certain cases under which the iterative process
fails to give the desired result. Such cases, and the method to get the desired skeleton is also discussed. The
overall notion is that one expands the voids continuously while retaining the path of collision between void
boundaries. The stage just before the void boundaries merge into each other is one where the curve(s) thus
generated form(s) the skeleton for the structure.

The proposed algorithm makes use of only the local information around a concerned cell, that is, information
about its immediate neighbors. This makes the algorithm suitable for generic use. Also, the algorithm uses
properties of neighboring cell arrangement which remain unchanged under rotation and reflection, taking care
of multiple cases all at once, thus making it efficient.

A.1 Contour cell detection

A contour cell is a filled cell present at the interface between filled regions and voids, or, between independent
voids. In essence, the contour represents void boundaries. Cells are segregated into two categories, boundary
and interior cells. Any cell surrounded by six neighboring cells is an interior cell, else, it is categorized as a
boundary cell. An interior cell with density one, is part of the contour if at least one of its immediate neighbors
is void, while a boundary cell, which is at the domain boundary, is part of the contour if its cell density is one.

Contour detection is achieved by summing the density values of neighboring cells and detecting the density
of the cell itself. If the sum of values of neighboring cell densities is below six and the cell itself is filled, the
latter is recognized as a contour cell. The topology thus created by the contour cells is referred as the contour
topology. The next step, contour refinement, makes use of only the contour topology and does not require
information about the configuration topology.
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A.2 Contour refinement

A contour cell is considered unnecessary if removing it from the contour does not alter the contour topology.
Herein, we determine unnecessary cells on the contour and remove them. We explore immediate neighbors of
a contour cell to determine the latter’s importance on the contour. To distinguish between different configura-
tions, we define a property of a contour cell called its character χ. χ of a cell is a vector containing six entries
displaying the number of surrounding contour cells around each node of the cell. Hence, entries of χ ranges
between 1 and 3. An example is shown in Fig. 16, where highlighted (gray) cells are part of the contour. Also,
all possible local configuration topologies which can lead to the local contour topology in Fig. 16 are presented
in Fig. 17 where filled cells are highlighted in black and void cells in white.

Figure 16: Character vector χ for a contour cell surrounded by 2 contour cells.
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Figure 17: Possible configuration topologies associated with contour topology in Fig. 16

Vector χ is rotation variant but sum of its elements (Sχ) for a contour cell is dependent only on the number of
neighboring contour cells and independent of their specific arrangement. This property can be verified through
the reasoning that when a contour cell is added adjacent to the reference cell, irrespective of the former’s
specific position, Sχ for the reference cell increases by 2. This is because, each neighboring cell shares two
nodes with the reference cell and therefore, adding a contour cell in the neighborhood increases the value of
elements of χ corresponding to the shared nodes by 1 each. Noting that a contour cell with zero surrounding
contour cells has Sχ = 6 and the observation above, the number of surrounding contour cells (NSe) for a
contour cell can be given by:

NSe = (Sχ − 6) /2. (28)

Contour cells are categorized based on the number of surrounding contour cells. For any contour cell, count of
surrounding contour cells ranges from 0 to 5, therefore producing six possible cases. Amongst these, the case
with 0 neighboring contour cells refers to a filled cell surrounded by void and hence has to be retained in the
skeleton. The case of 1 neighboring contour cell can represent the end of a branch in the skeleton, hence, it
also has to be retained. We now consider remaining 4 unique cases.

A.2.1 Case I: Two surrounding contour cells

All possible configurations of two contour cells around a reference contour cell can be distinguished into two
types, type (A) and type (B). In type (A), the two contour cells are neighboring cells (Fig. 18a) while in type
(B), the two cells are placed separate from each other (Fig. 18c). The possible local configuration topologies
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associated with contour topologies in Fig. 18a and 18c are presented in Fig. 18b and 18d respectively. All
possible contour topologies of type (A) are rotations of the configuration in Fig. 18a. Similarly, all possible
contour topologies of type (B) are rotations or reflections of the configurations in Fig. 18c and Fig. 16.

(a) Type (A) contour topology: (2+0)

1

2
3

4

5
6

(b) Possible configuration topology for contour topology in Fig. 18a

(c) Type (B) contour topology: (1+1)
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(d) Possible configuration topologies for contour topology in Fig. 18c

Figure 18: Case I: Possible contour topologies of a reference cell surrounded by 2 contour cells and corresponding configuration
topologies.

One observes that removing the reference cell i from contour in type (A) configurations does not alter the
topology of the contour. This is because removing the cell does not connect two regions which were initially
seperated by the contour. Thus, the reference cell in type (A) is removed and its density is changed to 0 only
during the skeletonization process. Reference cells in type (B) configurations are retained on the contour at
this stage.

It is not necessary to distinguish between all possible configurations but to only categorise contour cells into
type (A) or type (B) to determine their importance on the contour. This is achieved by counting the number
of entries as 1 in χ. For type (A) configurations, number of entries as 1 in χ is 3 while for type (B) it is 2.

A.2.2 Case II: Three surrounding contour cells

All possible configurations of three contour cells around a reference contour cell can be distinguished into 3
types, type (A), type (B) and type (C). In type (A), three contour cells are consecutively placed as illustrated
in Fig. 19a. In type (B), two of the three cells are immediate neighbors while the third is placed separate from
the two (Fig. 19c). In type (C), all three cells are positioned seperate from each other (Fig. 19e). All local
configuration topologies associated with contour topologies in Fig. 19a and 19c are presented in Fig. 19b and
19d respectively while Fig. 19f only presents three of the seven possible configuration topologies associated with
the contour topology in Fig. 19e. Remaining four configuration topologies are rotations of the configuration
topologies presented. All possible contour topologies of type (A) and type (C) are rotations of the topology
in Fig. 19a and Fig. 19e respectively. Likewise, all possible contour topologies of type (B) are rotations or
reflections of the one in Fig. 19c.

Applying the same reasoning as in Case I, cell i in type (A) is an unnecessary cell on the contour, and therefore
is removed with its density changed to 0 only within the skeletonization process. Cells in configurations type
(B) and type (C) are retained on the contour for this step. To identify reference cells in configuration type
(A), one makes use of the same method as in Case I. Count of entries as 1 in χ for type (A), (B) and (C)
configurations is 2, 1 and 0 respectively.
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(a) Type (A) contour topology: (3+0)
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(b) Possible configuration topology for contour topology in Fig. 19a

(c) Type (B) contour topology: (2+1)
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(d) Possible configuration topologies for contour topology in Fig. 19c
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(e) Type (C) contour topology:
(1+1+1)
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(f) Some possible configuration topologies for contour topology in Fig.
19e

Figure 19: Case II: Possible contour topologies of a reference cell surrounded by 3 contour cells and corresponding configuration
topologies.

A.2.3 Case III: Four surrounding contour cells

All possible configurations of four contour cells around a reference contour cell can be distinguished into 3
types, type (A), type (B) and type (C). In type (A), the four contour cells are consecutive cells as illustrated
in Fig. 20a. In type (B), three of the four are consecutive cells while the fourth is placed separately (Fig. 20c).
In type (C), the four cells are divided into two pairs of neighboring cells and pairs are placed seperate from
each other (Fig. 20e). All local configuration topologies associated with contour topologies in Figs. 20a, 20c
and 20e are presented in Figs. 20b, 20d and 20f respectively. All possible contour topologies of type (A) and
type (C) are rotations of the topology in Fig. 20a and Fig. 20e respectively. Similarly, all possible contour
topologies of type (B) are rotations or reflections of the topology in Fig. 20c.

As in Case I, cell i in configuration type (A) is unnecessary, and therefore is removed with its density changed
to 0 within the skeletonization process. Reference cells in configuration type (B) and type (C) are retained.
To identify the reference cells in configuration type (A), one counts entries as 1 in χ for type (A), (B) and (C)
configurations which are 1, 0 and 0 respectively.

A.2.4 Case IV: Five surrounding contour cells

Notwithstanding rotational symmetry, there is only one way to arrange five contour cells around a reference
contour cell (Fig. 21). Also, there is a unique configuration topology presented in Fig. 21b associated with the
configuration topology in Fig. 21a. As in Case I, cell i in the given configuration is irrelevant to the contour,
and therefore is removed with its density changed to 0 locally, within the skeletonization procedure.
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(a) Type (A) contour topology: (4+0)
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(b) Possible configuration topology for contour topology in Fig. 20a
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(c) Type (B) contour topology: (3+1) (d) Possible configuration topologies for contour topology in Fig. 20c
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(e) Type (C) contour topology: (2+2)
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(f) Possible configuration topologies for contour topology in Fig. 20e

Figure 20: Case III: Possible contour topologies of a reference cell surrounded by 4 contour cells and corresponding configuration
topologies.

A.3 Skeleton point retention

After the contour is refined, the next step is to expand the void boundaries and retain necessary cells on the
contour. To identify these, we use the fact that any closed contour topology of unit cell thickness homeomorphic
to a circle has local contour topology of Case I, type (B). As contour refinement step eventually yields a contour
topology of unit thickness, any contour cell with local contour topology, post contour refinement, other than
the above signifies an intersection between two or more closed curves each of which is homeomorphic to a circle.
Such cells need to be retained to preserve the original topology. Also, any contour cell with a local contour
topology pertaining to Case I, type (B) and having physical voids on both sides has to be retained. This is
because, removing such a point will connect two voids, and alter the parent topology. Contour cells with local
contour topology of Case I, type B having atleast one neighboring cell with density 1 and not part of the
contour are removed from the contour and their densities locally set to 0. The iterative process is continued
until two consecutive iterations produce the same contour.

A.4 Special cases

At the end of the iterative process, one checks for cells with density 1 which are not part of the contour
topology. If such cells exist, there are filled regions left and voids are yet to expand to produce the skeleton of
the domain. Such conditions arise when there are multiple void boundaries collapsing at a single cell, leading to
a structure in which the iterative process fails. Fig. 23 illustrates one such case where a filled cell, highlighted
in black, is surrounded by contour cells, in gray, in a way that all contour cells have 3 neighboring contour cells
and hence, are retained on the contour during the iterative process. All such cases that the iterative process
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(a) Type (A) contour topology: (5+0)
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(b) Possible configuration topology for contour topology in Fig. 21a

Figure 21: Case IV: Possible contour topologies of a reference cell surrounded by 5 contour cells and corresponding configuration
topologies.

Figure 22: Schematic of the skeletonization process

fails to identify are treated as special cases.

A special case is generated when a filled region is enclosed by an even number of contour cells with precisely
one branch of contour attached to every contour cell as in Fig. 23. To address all such cases, filled cells are
forcefully made part of the contour and then, the contour refinement process is implemented. The end result
thereafter is the desired skeleton. A flow chart describing the complete skeletonization algorithm is shown in
Fig. 22. Examples of skeletonization are depicted in Fig. 24.
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Figure 23: A special case in skeletonization

(a) Skeleton (Solution Fig. 8 a.) (b) Skeleton (Solution Fig. 8 b.) (c) Skeleton (Solution Fig. 8 c.) (d) Skeleton (Solution Fig. 8 d.)

(e) Skeleton (Solution Fig. 10 a.) (f) Skeleton (Solution Fig. 10 b.) (g) Skeleton (Solution Fig. 10 c.) (h) Skeleton (Solution Fig. 10 d.)

Figure 24: Examples of skeletonization.
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