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Abstract

In a reconfiguration version of a decision problem Q the input is an instance of Q and two feasible

solutions S and T . The objective is to determine whether there exists a step-by-step transformation

between S and T such that all intermediate steps also constitute feasible solutions. In this work,

we study the parameterized complexity of the Connected Dominating Set Reconfiguration

problem (CDS-R). It was shown in previous work that the Dominating Set Reconfiguration

problem (DS-R) parameterized by k, the maximum allowed size of a dominating set in a reconfigur-

ation sequence, is fixed-parameter tractable on all graphs that exclude a biclique Kd,d as a subgraph,

for some constant d ≥ 1. We show that the additional connectivity constraint makes the problem

much harder, namely, that CDS-R is W[1]-hard parameterized by k + ℓ, the maximum allowed size

of a dominating set plus the length of the reconfiguration sequence, already on 5-degenerate graphs.

On the positive side, we show that CDS-R parameterized by k is fixed-parameter tractable, and in

fact admits a polynomial kernel on planar graphs.
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1 Introduction

In a decision problem Q, we are usually asked to determine the existence of a feasible solution

for an instance I of Q. In a reconfiguration version of Q, we are instead given a source

feasible solution S and a target feasible solution T and we are asked to determine whether it

is possible to transform S into T by a sequence of step-by-step transformations such that

after each intermediate step we also maintain feasible solutions. Formally, we consider a

graph, called the reconfiguration graph, that has one vertex for each feasible solution and

where two vertices are connected by an edge if we allow the transformation between the two
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Figure 1 A graph G with a minimum dominating set of size k = 2 marked in dark blue and the

graph H obtained in the standard reduction from Dominating Set to Connected Dominating

Set. G has a dominating set of size k if and only if H has a connected dominating set of size k + 1.

If p is equal to the pathwidth of G then the pathwidth of H is bounded by 2p + 1.

corresponding solutions. We are then asked to determine whether S and T are connected in

the reconfiguration graph, or even to compute a shortest path between them. Historically,

the study of reconfiguration questions predates the field of computer science, as many classic

one-player games can be formulated as such reachability questions [18,20], e.g., the 15-puzzle

and Rubik’s cube. More recently, reconfiguration problems have emerged from computational

problems in different areas such as graph theory [1,16,17], constraint satisfaction [12,25] and

computational geometry [5,19,23], and even quantum complexity theory [11]. Reconfiguration

problems have been receiving considerable attention in recent literature, we refer the reader

to [24,28,32] for an extensive overview.

In this work, we consider the Connected Dominating Set Reconfiguration problem

(CDS-R) in undirected graphs. A dominating set in a graph G is a set D ⊆ V (G) such that

every vertex of G lies either in D or is adjacent to a vertex in D. A dominating set D is a

connected dominating set if the graph induced by D is connected. The Dominating Set

problem and its connected variant have many applications, including the modeling of facility

location problems, routing problems, and many more.

We study CDS-R under the Token Addition/Removal model (TAR model). Suppose we

are given a connected dominating set D of a graph G, and imagine that a token is placed on

each vertex in D. The TAR rule allows either the addition or removal of a single token at a

time from D, if this results in a connected dominating set of size at most a given bound k ≥ 1.

A sequence D1, . . . , Dℓ of connected dominating sets of a graph G is called a reconfiguration

sequence between D1 and Dℓ under TAR if the change from Di to Di+1 respects the TAR

rule, for 1 ≤ i < ℓ. The length of the reconfiguration sequence is ℓ − 1.

The (Connected) Dominating Set Reconfiguration problem for TAR gets as input

a graph G, two (connected) dominating sets S and T and an integer k ≥ 1, and the task is

to decide whether there exists a reconfiguration sequence between S and T under TAR using

at most k tokens.

Structural properties of the reconfiguration graph for k-dominating sets were studied

in [14,31]. The Dominating Set Reconfiguration problem was shown to be PSPACE-

complete in [15], even on split graphs, bipartite graphs, planar graphs and graphs of bounded

bandwidth. Both pathwidth and treewidth of a graph are bounded by its bandwidth, hence

the Dominating Set Reconfiguration problem is PSPACE-complete on graphs of

bounded pathwidth and treewidth. These hardness results motivated the study of the

parameterized complexity of the problem. It was shown in [26] that the Dominating Set

Reconfiguration problem is W[2]-hard when parameterized by k + ℓ, where k is the bound

on the number of tokens and ℓ is the length of the reconfiguration sequence. However, the

problem becomes fixed-parameter tractable on graphs that exclude a fixed complete bipartite

graph Kd,d as a subgraph, as shown in [22]. Such so-called biclique-free classes are very

general sparse graph classes, including in particular the planar graphs, which are K3,3-free.
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In this work we study the complexity of CDS-R. The standard reduction from Dominat-

ing Set to Connected Dominating Set shows that CDS-R is also PSPACE-complete,

even on graphs of bounded pathwidth (Figure 1). We hence turn our attention to the

parameterized complexity of the problem. We first show that the additional connectivity

constraint makes the problem much harder, namely, that CDS-R parameterized by k + ℓ is

W[1]-hard already on 5-degenerate graphs. As 5-degenerate graphs exclude the biclique K6,6

as a subgraph, Dominating Set Reconfiguration is fixed-parameter tractable on much

more general graph classes than its connected variant. To prove hardness we first introduce an

auxiliary problem that we believe is of independent interest. In the Colored Connected

Subgraph problem we are given a graph G, an integer k, and a (not necessarily proper)

coloring c : V (G) → C, for some color set C with |C| ≤ k. The question is whether G contains

a vertex subset H on at most k vertices such that G[H] is connected and H contains at least

one vertex of every color in C (i.e., c(V (H)) = C). The reconfiguration variant Colored

Connected Subgraph Reconfiguration (CCS-R) is defined as expected. We first

prove that CCS-R reduces to CDS-R by a parameter preserving reduction (where k + ℓ is

the parameter) and the degeneracy of the reduced graph is at most the degeneracy of the

input graph plus one. We then prove that the known W[1]-hard problem Multicolored

Clique (see [3] for definitions) reduces to CCS-R on 4-degenerate graphs. The last reduc-

tion has the additional property that for an input (G, c, k) of Multicolored Clique the

resulting instance of CCS-R admits either a reconfiguration sequence of length O(k3), or

no reconfiguration sequence at all. Hence, we derive that both CDS-R and CCS-R are

W[1]-hard parameterized by k + ℓ on 5-degenerate and 4-degenerate graphs, respectively.

The existence of a reconfiguration sequence of length at most ℓ with connected dominating

sets of size at most k can be expressed by a first-order formula of length depending only

on k and ℓ. It follows from [13] that the problem is fixed-parameter tractable parameterized

by k + ℓ on every nowhere dense graph class and the same is implied by [2] for every class

of bounded cliquewidth. Nowhere dense graph classes are very general classes of uniformly

sparse graphs, in particular the class of planar graphs is nowhere dense. Nowhere dense

classes are themselves biclique-free, but are not necessarily degenerate. Hence, our hardness

result on degenerate graphs essentially settles the question of fixed-parameter tractability

for the parameter k + ℓ on sparse graph classes. It remains an interesting open problem to

find dense graph classes beyond classes of bounded cliquewidth on which the problem is

fixed-parameter tractable.

We then turn our attention to the smaller parameter k alone. We show that CDS-R

parameterized by k is fixed-parameter tractable on the class of planar graphs. Our approach

is as follows. We first compute a small domination core for G, a set of vertices that captures

exactly the domination properties of G for dominating sets of sizes not larger than k. The

notion of a domination core was introduced in the study of the Distance-r Dominating

Set problem on nowhere dense graph classes [4]. While the classification of interactions

with the domination core would suffice to solve Dominating Set Reconfiguration on

nowhere dense classes, additional difficulties arise for the connected variant. In a second

step we use planarity to identify large subgraphs that have very simple interactions with the

domination core and prove that they can be replaced by constant size gadgets such that the

reconfiguration properties of G are preserved.

Observe that CDS-R parameterized by k is trivially fixed-parameter tractable on every

class of bounded degree. The existence of a connected dominating set of size k implies that

the diameter of G is bounded by k + 2, which in every bounded degree class implies a bound

on the size of the graph depending only on the degree and k. We conjecture that CDS-R is

fixed-parameter tractable parameterized by k on every nowhere dense graph class. However,

resolving this conjecture remains open for future work (see Figure 2).

IPEC 2020
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Figure 2 The map of tractability for Connected Dominating Set Reconfiguration. The

classes colored in dark green admit an fpt algorithm with parameter k, the classes colored in light

green admit an FPT algorithm with parameter k + ℓ. On the classes colored in red the problem is

W[1]-hard with respect to the parameter k + ℓ.

The rest of the paper is organized as follows. We give background on graph theory and fix

our notation in Section 2. We show hardness of CDS-R on degenerate graphs in Section 3

and show how to handle the planar case in Section 4. Due to space constraints proofs of

results marked with a ⋆ are deferred to the full version of the paper.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] = {1, 2, . . . , n}. We

assume that each graph G is finite, simple, and undirected. We let V (G) and E(G) denote

the vertex set and edge set of G, respectively. An edge between two vertices u and v

in a graph is denoted by {u, v} or uv. The open neighborhood of a vertex v is denoted

by NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood by NG[v] = NG(v) ∪ {v}.

The degree of a vertex v, denoted dG(v), is |NG(v)|. For a set of vertices S ⊆ V (G),

we define NG(S) = {v 6∈ S | {u, v} ∈ E(G), u ∈ S} and NG[S] = NG(S) ∪ S. The

subgraph of G induced by S is denoted by G[S], where G[S] has vertex set S and edge set

{{u, v} ∈ E(G) | u, v ∈ S}. We let G − S = G[V (G) \ S]. A graph G is d-degenerate if every

subgraph H ⊆ G has a vertex of degree at most d. For a set C, we use K[C] to denote the

complete graph on vertex set C. For an integer r ∈ N, an r-independent set in a graph G is

a subset U ⊆ V (G) such that for any two distinct vertices u, v ∈ U , the distance between u

and v in G is more than r. An independent set in a graph is a 1-independent set. A subset of

vertices U in G is called a separator in G if G−U is has more than one connected component.

For s, t ∈ V (G), we say U is an (s, t)-separator in G if there is no path from s to t in G − U .

3 Hardness on degenerate graphs

In this section we prove that CDS-R and CCS-R are W[1]-hard when parameterized

by k + ℓ even on 5-degenerate and 4-degenerate graphs, respectively. Towards that, we

first give a polynomial-time reduction from the W[1]-hard Multicolored Clique prob-

lem to CCS-R on 4-degenerate graphs with the property that for an input (G, c, k) of

Multicolored Clique the resulting instance of CCS-R admits either a reconfiguration

sequence of length O(k3) or no reconfiguration sequence at all. As a result, we conclude
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that CCS-R is W[1]-hard when parameterized by k + ℓ on 4-degenerate graphs. Then, we

give a parameter-preserving polynomial-time reduction from CCS-R to CDS-R. Let us first

formally define the CCS problem.

Colored Connected Subgraph (CCS) Parameter: k

Input: A graph G, a vertex-coloring c : V (G) → C, and k ∈ N such that |C| ≤ k

Question: Is there a vertex subset S ⊆ V (G) of at most k vertices with at least one

vertex from every color class such that G[S] is connected?

Reduction from Multicolored Clique to CCS-R

We now present the reduction from Multicolored Clique to CCS-R, which we believe

to be of independent interest. We can assume, without loss of generality, that for an input

(G, c, k) of Multicolored Clique, G is connected and c is a proper vertex-coloring, i.e.,

for any two distinct vertices u, v ∈ V (G) with c(u) = c(v) we have {u, v} /∈ E(G). Before we

proceed let us define a graph operation.

◮ Definition 3.1. Let G be a graph and let c : V (G) → {1, . . . , k} be a proper vertex coloring

of V (G). Let H be a graph on the vertex set {1, . . . , k}. We define the graph G ↾c H as follows.

We remove all edges {u, v} ∈ E(G) such that c(u) = i and c(v) = j and {i, j} 6∈ E(H). We

subdivide every remaining edge, i.e. for every remaining edge {u, v} we introduce a new

vertex suv, remove the edge {u, v} and introduce instead the two edges {u, suv} and {v, suv}.

We write W (G ↾c H) for the set of all subdivision vertices suv (see Figure 3).

That is, to construct G ↾c H, we first make a subgraph of G by deleting the edges between

different color classes if there are no edges between the “corresponding” vertices in H, and

then subdivide the remaining edges. Let (G, c, k) be the input instance of Multicolored

Clique, where G is a connected graph and c is a proper k-vertex-coloring of G. We construct

an instance (H, ĉ : V (H) 7→ [k + 1], Qs, Qt, 2k) of CCS-R (Qs and Qt are the source and

target sets that we describe later). Note that the bound on the sizes of the solutions in the

reconfiguration sequence is at most 2k.

• •u •

•v •

•

• •

1

2

3

4

(a) A graph G and a proper col-
oring c : V (G) → {1, . . . , 4}.

•

•

•

•

1

2

3

4

(b) A graph H on the
vertex set {1, . . . , 4}.

• •u •

•v •

•

• •

• • •

•

•

suv = w1w2 w3

w4

w5

(c) The graph G ↾c H. Here,
W (G ↾c H) = {w1, . . . , w5}.

Figure 3 Construction of G ↾c H.

IPEC 2020
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We first construct a routing gadget. For 1 ≤ i ≤ k, let T i be the star with vertex set

{1, . . . , k} having vertex i as the center. For any 1 ≤ i ≤ k and 1 ≤ r ≤ 20k, we let H(i,r)

be a copy of the graph G ↾c T i. We let c(i,r) be the the partial vertex-coloring of H(i,r)

that is naturally inherited from G. For an illustration, consider the input instance (G, c, k)

of Multicolored Clique depicted in Figure 3a. Then, T 2 is identical to the graph H

in Figure 3b and Figure 3c represents H(2,r) = G ↾c T 2, for any 1 ≤ r ≤ 20k. Now, for

1 ≤ i ≤ k we define a graph Hi as follows. We use W (H(i,r)) to denote the set of subdivision

vertices in H(i,r). For 1 ≤ r < 20k and all vertices u, v in V (H(i,r)) \ W (H(i,r)), we connect

the copy of the subdivision vertex suv in H(i,r) (if it exists) with the copies of the vertices u

and v in H(i,r+1) (see Figure 4 for an illustration of a portion of H1). We use W (Hi) to

denote the set of subdivision vertices
⋃

r∈[20k] W (H(i,r)).

H(1,1) H(1,2) H(1,3)

• • •

• •

•

• •

• • •

• ••

• • •

• •

•

• •

• • •

• • •

• • •

• •

•

• •

• • •

• • •

Figure 4 Construction of H1 from the instance (G, c) depicted in Figure 3a. The red edges are

some of the “crossing” edges but not all of them.

For each 1 ≤ i ≤ k, we use ci to denote a coloring on V (Hi) that is a union of

c(i,1), c(i,2), . . . , c(i,20k) and we color all the copies of the subdivision vertices using a new

color k + 1. In other words, we know that for each u ∈ V (Hi) we have u ∈ V (H(i,r)), for

some r ∈ {1, . . . , 20k}. Hence, if u ∈ V (H(i,r)) \ W (H(i,r)) then we set ci(u) = c(i,r)(u). For

all suv ∈ W (Hi), we set ci(suv) = k + 1.

Now, define a graph R, which is super graph of H1 ∪ . . . ∪ Hk, as follows. For 1 ≤ i < k

and all vertices u and v, we connect the copy of the subdivision vertex suv in H(i,20k) (if it

exists) with the copies of the vertices u and v in H(i+1,1) (see Figure 5 for an illustration).

H(2,20k) H(3,1)

• • •

• •

•

• •

• ••

•
•

• • •

• •

•

• •

• •

•

Figure 5 Illustration of the subgraph of R induced on V (H(2,20k)) ∪ V (H3,1) constructed from

the instance (G, c, k) depicted in Figure 3a. The red edge are some of the “crossing edges”.

We additionally introduce two subgraphs H0 and Hk+1. The graph H0 is obtained by sub-

dividing each edge of a star on vertex set {v1, . . . , vk} centered at v1. Here we use w2, . . . , wk

to denote the subdivision vertices. Similarly, the graph Hk+1 is obtained by subdividing each
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edge of star on {x1, . . . , xk} centered at xk. Here y1, . . . , yk−1 denote the subdivision vertices.

Let c0 and ck+1 be the colorings on {v1, . . . , vk, w2, . . . , wk} and {x1, . . . , xk, y1, . . . , yk−1},

respectively, defined as follows. For all 1 ≤ i ≤ k, c0(vi) = i and ck+1(xi) = i. For all

2 ≤ i ≤ k, c0(wi) = k + 1 and for all 1 ≤ i ≤ k − 1, ck+1(yi) = k + 1. Observe that we may

interpret H0 as K[{v1, . . . , vk}] ↾c0
T 0 and Hk+1 as K[{x1, . . . , xk}] ↾ck+1

T k+1, where T 0

and T k+1 are two trees on vertex set {1, . . . , k}, with E(T 0) = {{1, i} : 2 ≤ i ≤ k} and

E(T k+1) = {{k, i} : 1 ≤ i ≤ k − 1}.

Finally, for each 2 ≤ i ≤ k, we connect the “subdivision vertex” wi (adjacent to v1 and vi)

to all vertices v ∈ V (H(1,1)) colored 1 or i, i.e., with c(1,1)(v) ∈ {1, i}. For each subdivision

vertex sab ∈ W (H(k,20k)), we connect sab to xk and xi, where k = ck(a) = c(k,20k)(a) and

i = ck(b) = c(k,20k)(b). Recall that sab is adjacent to a vertex of color k and a vertex of

color i, for some i < k. This completes the construction of H (see Figure 6). We define

ĉ : V (H) 7→ [k + 1] to be the union of c0, . . . , ck+1. We define the starting configuration Qs

as the set {v1, . . . , vk, w2, . . . , wk} and the target configuration Qt as the set {x1, . . . , xk,

y1, . . . , yk−1}.

•

•

•

•

•

•

•

v1

v2

v3

v4

w2

w3

w4

H(1,1) H(4,20k)

• • •

• •

•

• •

• • •

• ••

• • •

• •

•

• •

•

• • •

•

•

•

•

•

•

•

x1

x2

x3

x4

y1

y2

y3

Figure 6 Illustration of connection between H0 and R, and Hk+1 and R from the instance

(G, c, k) depicted in Figure 3a. The red edge are some of the “crossing edges” between H0 and H1,

and Hk and Hk+1.

◮ Proposition 3.2. The sets Qs and Qt are solutions of size 2k − 1 of the CCS instance

(H, ĉ, 2k).

We now consider the instance (H, ĉ, Qs, Qt, 2k) of the CCS-R problem. Before we analyze

the reconfiguration properties of H, let us verify that H is 4-degenerate.

◮ Lemma 3.3. The graph H is 4-degenerate.

Proof. We iteratively remove minimum degree vertices and show that we can always remove

a vertex of degree at most 4 in each step.

Every subdivision vertex w ∈ W (Hi) for 1 ≤ i ≤ k has degree at most 4; it has 4

neighbors in V (Hi) ∪ V (Hi+1).

After removal of all subdivision vertices the degree of the remaining vertices of each Hi

is at most one. That is, a vertex in H(1,1) may have a neighbor in {w2, . . . , wk}.

After the removal of V (H1) ∪ . . . V (Hk), the degree of all vertices except v1 and xk is at

most 2.

Finally we remove v1 and xk.

This completes the proof. ◭

IPEC 2020
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◮ Lemma 3.4 (⋆). If there exists a k-colored clique in G then there is reconfiguration sequence

of length O(k3) from Qs to Qt in (H, ĉ, 2k).

Proof sketch. Informally, in every step our solution consists of vertices corresponding to

a clique and at most k vertices from the subdivision vertices present in the clique. The

reconfiguration sequence checks whether all the edges between the clique vertices are present.

We aim to shift the connected vertices of Qs through the subgraphs H1, . . . , Hk (in

that order) to maintain connectivity and eventually shift all the tokens to Qt. For each

ui ∈ V (G), 1 ≤ j ≤ k and 1 ≤ r ≤ 20k, we use u
(j,r)
i to denote the copy of ui in H(j,r).

Let C = {u1, . . . , uk} be a k-colored clique in G such that c(ui) = i, for all 1 ≤ i ≤ k. To

prove the lemma, we need to define a reconfiguration sequence starting from Qs and ending

at Qt such that the cardinality of any solution in the sequence is at most 2k. First we

define k “colored” trees T̂1, . . . , T̂k each on 2k − 1 vertices, and then prove that there are

reconfiguration sequences from Qs to V (T̂1), V (T̂i) to V (T̂i+1) for all 1 ≤ i < k, and V (T̂k)

to Qt.

We start by defining T̂1, . . . , T̂k. For each 1 ≤ i ≤ k, Ci = {u
(i,1)
1 , . . . , u

(i,1)
k } and

Si = {z ∈ V (H(i,1)) : NH(i,1)(z) ∩ Ci = 2}. That is, for each 1 ≤ j ≤ k and j 6= i,

s
u

(i,1)
i

u
(i,1)
j

∈ Si (the subdivision vertex on the edge u
(i,1)
i u

(i,1)
j is in Si), and |Si| = k − 1. In

other words, Ci contains the copies of the vertices of the clique C in H(i,1) and Si contains

subdivision vertices corresponding to k − 1 edges in the clique incident on the ith colored

vertex of the clique, such that H[Ci ∪ Si] is a tree. Now, define T̂i = H[Ci ∪ Si]. It is easy to

verify that ĉ(Ci ∪ Si) = {1, . . . , k + 1} and hence Ci ∪ Si = V (T̂i) is a solution to the CCS

instance (H, ĉ, 2k). Let Ts = H[Qs] and Tt = H[Qt]. Note that Ts and Tt are trees on 2k − 1

vertices.

Case 1: Reconfiguration from Qs to V (T̂1). Informally, we move to T̂1 by adding a token

on u
(1,1)
i and then removing tokens from vi for i in the order 2, . . . , k, 1 (for a total of

2k token additions/removals). Finally, we move the tokens from {w2, . . . , wk−1} to S1 in

2(k − 1) steps. The length of the reconfiguration sequence is 2k + 2(k − 1) = 4k − 2.

Case 2: Reconfiguration from V (T̂i) to V (T̂i+1). First we define 20k trees P1, . . . P20k,

each on 2k − 1 vertices such that for all 1 ≤ r ≤ 20k, (i) V (Pr) ⊆ V (H(i,r)), and

(ii) T̂i = P1. Then we give a reconfiguration sequence from V (Pr) to V (Pr+1) for all

r ∈ [20k − 1] and a reconfiguration sequence from V (P20k) to V (T̂i+1).

Recall that C = {u1, . . . , uk} is a k-colored clique in G such that c(ui) = i for all 1 ≤ i ≤ k.

For 1 ≤ r ≤ 20k, let Cr
i = {u

(i,r)
1 , . . . , u

(i,r)
k } and Sr

i = {z ∈ V (H(i,r)) : NH(i,r)(z) ∩ Cr
i =

2}. That is, for each 1 ≤ j ≤ k and j 6= i, s
u

(i,r)
i

u
(i,r)
j

∈ Sr
i (i.e, the subdivision vertex

on the edge u
(i,r)
i u

(i,r)
j is in Sr

i ) and |Sr
i | = k − 1. Let Pr = H[Cr

i ∪ Sr
i ]. Notice that for

all r ∈ [20k], Pr is a tree on 2k − 1 vertices. Moreover, for each 1 ≤ r ≤ 20k, V (Pr) is a

solution to the CCS instance (H, ĉ, 2k). By arguments similar to those given for Case 1,

one can prove that there is a reconfiguration sequence of length 4k − 2 from V (Pr) to

V (Pr+1), for all 1 ≤ r < 20k.

For the reconfiguration sequence from V (P20k) to V (T̂i+1) we refer the reader to the

complete proof in the full version of the paper.

Case 3: Reconfiguration from V (T̂k) to V (Tt). The arguments for this case are similar

to those given in Case 1, we therefore omit the details. ◭

◮ Lemma 3.5 (⋆). If there is a reconfiguration sequence from Qs to Qt then there is a

k-colored clique in G.

◮ Theorem 3.6. CCS-R parameterized by k + ℓ is W[1]-hard on 4-degenerate graphs.
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Reduction from CCS-R to CDS-R

We give a polynomial-time parameter-preserving reduction from CCS-R to CDS-R that

is fairly straightforward. Let (G, c, Qs, Qt, k) be an instance of CCS-R. Let c : V (G) 7→

{1, . . . , k′}, where k′ ≤ k. We construct a graph H as follows. For each 1 ≤ i ≤ k′, we

add a vertex di and connect di to all the vertices in c−1(i). Next, for each 1 ≤ i ≤ k′,

we add a pendant vertex xi (i.e., {di, xi} is an edge). Let D = {d1, . . . , dk′}. We output

(H, Qs ∪ D, Qt ∪ D, k + k′) as the new CDS-R instance.

◮ Lemma 3.7. If G is a d-degenerate graph then H is a (d + 1)-degenerate graph.

Proof. For each vertex v ∈ V (G), dH(v) = dG(v) + 1. Thus, after removing V (G) and

{xi : 1 ≤ i ≤ k′}, the remaining graph is edgeless. ◭

It is easy to verify that for any reconfiguration sequence Qs = R1, . . . , Rℓ = Qt of the

instance (G, c, Qs, Qt, k) of CCS-R, Qs ∪D = R1 ∪D, . . . , Rℓ ∪D = Qt ∪D is a reconfiguration

sequence of the instance (H, Qs ∪ D, Qt ∪ D, k + k′) of CDS-R. Now we prove the reverse

direction.

◮ Lemma 3.8. If (H, Qs ∪ D, Qt ∪ D, k + k′) is a yes-instance then (G, c, Qs, Qt, k) is a

yes-instance.

Proof. Notice that the set D is contained in any connected dominating set of H. Moreover

for any minimal connected dominating set Z in H, Z ∩ {xi : 1 ≤ i ≤ k′} = ∅, H[Z \ D] is

connected, and Z \ D contains a vertex from c−1(i) for all 1 ≤ i ≤ k′ (recall that G is a

subgraph of H). Therefore, by deleting D from each set in a reconfiguration sequence of

(H, Qs ∪ D, Qt ∪ D, k + k′), we get a valid reconfiguration sequence of (G, c, Qs, Qt, k). This

completes the proof. ◭

Thus, by Theorem 3.6, we have the following theorem.

◮ Theorem 3.9. CDS-R parameterized by k + ℓ is W[1]-hard on 5-degenerate graphs.

4 Fixed-parameter tractability on planar graphs

This section is devoted to proving that CDS-R under TAR parameterized by k is fixed-

parameter tractable on planar graphs. In fact, we show that the problem admits a polynomial

kernel. Recall that a kernel for a parameterized problem Q is a polynomial-time algorithm

that computes for each instance (I, k) of Q an equivalent instance (I ′, k′) with |I ′|+k′ ≤ f(k)

for some computable function f . The kernel is polynomial if the function f is polynomial.

We prove that for every instance (G, S, T, k) of CDS-R, with G planar, we can compute

in polynomial time an instance (G′, S, T, k) where |V (G′)| ≤ h(k) for some polynomial h,

G′ planar, and where there exists a reconfiguration sequence under TAR from S to T in G

(using at most k tokens) if and only if such a sequence exists in G′.

Our approach is as follows. We first compute a small domination core for G, that is, a set

of vertices that captures exactly the domination properties of G for dominating sets of sizes

not larger than k. While the classification of interactions with the domination core would

suffice to solve Dominating Set Reconfiguration, additional difficulties arise for the

connected variant. In a second step we use planarity to identify large subgraphs that have

very simple interactions with the domination core and prove that they can be replaced by

constant size gadgets such that the reconfiguration properties of G are preserved.
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4.1 Domination cores

◮ Definition 4.1. Let G be a graph and let k ≥ 1 be an integer. A k-domination core is a

subset C ⊆ V (G) of vertices such that every set X ⊆ V (G) of size at most k that dominates C

also dominates G.

It is not difficult to see that Dominating Set is fixed-parameter tractable on all graphs

that admit a k-domination core of size at most f(k) that is computable in time g(k) · nc, for

any computable functions f, g and constant c. This approach was first used (implicitly) in [4]

to solve Distance-r Dominating Set on nowhere dense graph classes. In case k is the size

of a minimum (distance-r) dominating set, one can establish the existence of a linear size

k-domination core on classes of bounded expansion [6] (including the class of planar graphs)

and a polynomial size (in fact an almost linear size) k-domination core on nowhere dense

graph classes [8,21]. If k is not minimum, there exist classes of bounded expansion such that

a k-domination core must have at least quadratic size [7]. The most general graph classes that

admit k-domination cores are given in [9]. Moreover, Dominating Set Reconfiguration

and Distance-r Dominating Set Reconfiguration are fixed-parameter tractable on all

graphs that admit small (distance-r) k-domination cores [22,30].

◮ Lemma 4.2. There exists a polynomial h such that for all k ≥ 1, every planar graph G

admits a polynomial-time computable k-domination core of size at most h(k).

The lemma is implied by Theorem 1.6 of [21] by the fact that planar graphs are nowhere

dense. We want to stress again that the polynomial size of the k-domination core results

from the fact that k may not be the size of a minimum dominating set, if k is minimum we

can find a linear size core. Explicit bounds on the degree of the polynomial can be derived

from [27,29], but we refrain from doing so to not disturb the flow of ideas.

The following lemma is immediate from the definition of a k-domination core.

◮ Lemma 4.3. If C is a k-domination core and D is a dominating set of size at most k that

contains a vertex set W ⊂ D such that N [D] ∩ C = N [D \ W ] ∩ C = C, then D \ W is also

a dominating set.

◮ Definition 4.4. Let G be a graph and let A ⊆ V (G). The projection of a vertex v ∈ V (G)\A

into A is the set N(v) ∩ A. If two vertices u, v have the same projection into A we write

u ∼A v.

Obviously, the relation ∼A is an equivalence relation. The following lemma is folklore,

one possible reference is [10].

◮ Lemma 4.5. Let G be a planar graph and let A ⊆ V (G). Then there exists a constant c

such that there are at most c·|A| different projections to A, that is, the equivalence relation ∼A

has at most c · |A| equivalence classes.

4.2 Reduction rules

Let G be an embedded planar graph. We say that a vertex v touches a face f if v is drawn

inside f or belongs to the boundary of f or is adjacent to a vertex on the boundary of f . We

fix two connected dominating sets S and T of size at most k. We will present a sequence of

lemmas, each of which implies a polynomial-time computable reduction rule that allows us to

transform G to a planar graph G′ that inherits its embedding from G, with S, T ⊆ V (G′) and

that has the same reconfiguration properties with respect to S and T as G. To not overload
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notation, after stating a lemma with a reduction rule, we assume that the reduction rule is

applied until this is no longer possible and call the resulting graph again G. We also assume

that whenever one or more of our reduction rules are applicable, then they are applied in

the order presented. We will guarantee that S and T will always be connected dominating

sets of size at most k, hence, after each application of a reduction rule, we can recompute a

k-domination core in polynomial time. This yields only polynomial overhead and allows us to

assume that we always have marked a k-domination core C of size at most h(k) as described

in Lemma 4.2. This allows us to state the lemmas as if G and C are fixed. Without loss of

generality we assume that C contains S and T .

◮ Definition 4.6. A set W ⊆ V (G) \ C of vertices is irrelevant if there is a reconfiguration

sequence from S to T in G if and only if there is a reconfiguration sequence from S to T in

G − W .

◮ Definition 4.7. Let u, v ∈ V (G) be distinct vertices. We call the set D(u, v) := (N(u) ∩

N(v)) ∪ {u, v} the diamond induced by u and v. We call |N(u) ∩ N(v)| the thickness

of D(u, v).

◮ Lemma 4.8. If G contains a diamond D(u, v) of thickness greater than 3k, then at least

one of u or v must be occupied by a token in every reconfiguration sequence from S to T .

Proof. Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T and u, v 6∈ Si

for some 1 ≤ i ≤ t. Then every s ∈ Si can dominate at most 3 vertices of N(u) ∩ N(v):

•u

•v

s• • • • •

Figure 7 A vertex s ∈ Si can dominate at most 3 vertices of N(u) ∩ N(v).

otherwise u, v, s together with 3 vertices of N(u) ∩ N(v) different from u, v and s would form

a complete bipartite graph K3,3. ◭

◮ Lemma 4.9. If G contains a diamond D(u, v) of thickness greater than 3k, then we can

remove all internal edges in D(u, v), i.e., edges with both endpoints in N(u) ∩ N(v).

Proof. Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T . According to

Lemma 4.8, for each 1 ≤ i ≤ t, Si ∩ {u, v} 6= ∅. Hence all vertices of N(u) ∩ N(v) are always

dominated by at least one of u or v, say by u. Moreover, having tokens on more than one

vertex of N(u) ∩ N(v) will never create connectivity via internal edges that is not already

there via edges incident on u. In other words, for any connected dominating set S of G, if an

edge yz is used for connectivity, where y, z ∈ N(u) ∩ N(v), then the edge can be replaced by

the path yuz or the path yvz (depending on which of u or v is in S). ◭

As described earlier, we now apply the reduction rule of Lemma 4.9 until this is no longer

possible, and name the resulting graph again G. As we did not make use of the properties of

a k-domination core in the lemma, it is sufficient to recompute a k-domination core C after

applying the reduction rule exhaustively. In the following it may be necessary to recompute

it after each application of a reduction rule. We will not mention these steps explicitly in the

following.
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◮ Lemma 4.10 (⋆). If G contains a diamond D(u, v) of thickness greater than 4|C| + 3k + 1

then G contains an irrelevant vertex.

We may in the following assume that G does not contain diamonds of thickness greater

than 4|C| + 3k + 1.

◮ Corollary 4.11. If a vertex v ∈ V (G) has degree greater than (4|C| + 3k + 1) · k, then the

token on v is never lifted throughout a reconfiguration sequence.

Proof. Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G and

assume there is Si with v 6∈ Si. The dominating set Si has at most k vertices and must

dominate N(v). Hence, there must be one vertex u ∈ Si that dominates at least a 1/k

fraction of N(v), which is larger than 4|C| + 3k + 1. Then there is a diamond D(u, v) of

thickness greater than 4|C| + 3k + 1, which does not exist after application of the reduction

rule of Lemma 4.10. ◭

According to Corollary 4.11, the only vertices that can have high degree after applying

the reduction rules are vertices that are never lifted throughout a reconfiguration sequence.

This gives rise to another reduction rule that is similar to the rule of Lemma 4.9.

◮ Lemma 4.12. Assume v is a vertex of degree greater than (4|C| + 3k + 1) · k. Then we

may remove all edges with both endpoints in N(v).

Proof. Let G′ be the graph obtained from G by removing all edges with both endpoints

in N(v). We claim that reconfiguration between S and T is possible in G if and only if it is

possible in G′. The fact that S and T are in fact connected dominating sets in G′ is implied

by the argument below.

Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G. We claim that

the same sequence is a reconfiguration sequence in G′. According to Corollary 4.11, v ∈ Si

for all 1 ≤ i ≤ t. This implies that Si is connected in G′ for all 1 ≤ i ≤ t, as all x, y ∈ Si

that are no longer connected by an edge in G′ but were connected in G are connected via a

path of length 2 using the vertex v. It is also easy to see that Si is a dominating set in G′,

as all vertices that are no longer dominated by s ∈ Si in G are still dominated by v. Observe

that this in particular implies that S and T are connected dominating sets in G′. Vice versa,

if S = S1, . . . , St = T is a reconfiguration sequence from S to T in G′, this is trivially also a

reconfiguration sequence in G. ◭

The following reduction rule is obvious.

◮ Lemma 4.13. If a vertex v has more than k + 1 pendant neighbours, i.e., neighbors of

degree exactly one, then it suffices to retain exactly k + 1 of them in the graph.

◮ Lemma 4.14. There are at most c|C| · (4|C| + 3k + 1) vertices of V (G) \ C that have 2

neighbours in C, where c is the constant of Lemma 4.5.

Proof. According to Lemma 4.5 there are at most c|C| different projections to C. Each

projection class that has at least 3 representatives has size at most 2, as otherwise we would

find a K3,3 as a subgraph, contradicting the planarity of G. Consider a class with a projection

of size 2 into C. Denote these two vertices of C by u and v. If this class has more than

4|C|+3k+1 representatives, then D(u, v) is a diamond of thickness greater than 4|C|+3k+1,

which cannot exist after exhaustive application of the reduction rule of Lemma 4.10. ◭
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We now come to the description of our final reduction rule. Let D denote the set of

vertices containing both C and all vertices of V (G) \ C having at least two neighbors in C. In

other words, V (G) \ D contains all those vertices in V (G) \ C that have exactly one neighbor

in C. According to Lemma 4.14 at most c|C| · (4|C| + 3k + 1) vertices have two neighbors

in C, hence |D| ≤ c|C| · (4|C| + 3k + 1) + |C| =: p.

◮ Lemma 4.15 (⋆). Assume there are two vertices u and v with degree greater than 4p +

(4|C| + 3k + 1) · k + 1. Let P be a maximum set of vertex-disjoint paths of length at least 2

that run between u and v using only vertices in V (G) \ D. If |P| > 4p + (4|C| + 3k + 1) · k + 1,

then there is G′ such that the instances (G, S, T, k) and (G′, S, T, k) are equivalent, G′ is

planar, and |V (G′)| < |V (G)|.

◮ Theorem 4.16. CDS-R under TAR parameterized by k admits a polynomial kernel on

planar graphs.

Proof. Our kernelization algorithm starts by computing (in polynomial time) a k-domination

core C of size at most h(k) as described in Lemma 4.2. Without loss of generality we assume

that C contains S and T . After each application of a reduction rule, we recompute the core,

giving a polynomial blow-up of the running time. We are left to prove that each reduction

rule can be implemented in polynomial time and that we end up with a polynomial number

of vertices. It is clear that the reduction rules of Lemma 4.10, Lemma 4.12 and Lemma 4.13

can easily be implemented in polynomial time. The reduction rule of Lemma 4.15 is slightly

more involved, however, we can use a standard maximum-flow algorithm to compute in

polynomial time a maximum set of vertex-disjoint paths in a subgraph of G. It remains to

bound the size of G. Recall that we call D the set of all vertices C and of all vertices of

V (G) \ C that have at least 2 neighbors in C. It follows from Lemma 4.14 that D has size at

most c|C| · (4|C| + 3k + 1) + |C| =: p, where c is the constant of Lemma 4.5. We are left to

bound the number of vertices in V (G) \ C having exactly one neighbour in C (recall that

each vertex in V (G) \ C has at least one neighbour in S ∪ T ⊆ C).

Let p′ = (4p + (4|C| + 3k + 1) · k + 1) · (4|C| + 3k + 1) · k + k + 1, which is still a polynomial

in k. Towards a contradiction, assume that there exists an equivalence class Q in ∼C with a

projection of size one containing more than p′ vertices. Let u ∈ C denote the projection of

the aforementioned class. Due to Lemma 4.13, we know that at most k + 1 of the vertices

in Q are pendant, i.e., adjacent to only u in G. Since we cannot apply the reduction rule of

Lemma 4.12 any more, we know that there are no edges with both endpoints in Q. Hence,

all but k + 1 vertices of Q must be adjacent to at least one other vertex in V (G) \ C. Let

R = NG(Q) \ {u} denote this set of neighbours. No vertex in R can be adjacent to more

than 4|C| + 3k + 1 vertices of Q, as we cannot apply the reduction rule of Lemma 4.10. The

vertices of R must be dominated by S, and cannot be dominated by u, as otherwise two

neighbours of u would be connected. Hence, there is v ∈ S different from u that dominates

at least a 1/k fraction of R. This implies the existence of at least 4p + (4|C| + 3k + 1) · k + 1

vertex-disjoint paths of length at least 2 that run between u and v. But in this case, the

reduction rule of Lemma 4.15 is applicable. Therefore, we conclude that Q cannot exist,

obtaining a bound on the size of all equivalence classes of ∼C , as needed. ◭
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