
ar
X

iv
:2

00
6.

10
59

2v
1

 [
cs

.C
C

]
 1

8
Ju

n
20

20

On the complexity of detecting hazards∗

Balagopal Komarath

Saarland University

Germany

bkomarath@rbgo.in

Nitin Saurabh†

Technion - IIT

Israel

nitinsau@cs.technion.ac.il

June 19, 2020

Abstract

Detecting and eliminating logic hazards in Boolean circuits is a fun-
damental problem in logic circuit design. We show that there is no
O(3(1−ǫ)n poly(s)) time algorithm, for any ǫ > 0, that detects logic haz-
ards in Boolean circuits of size s on n variables under the assumption
that the strong exponential time hypothesis is true. This lower bound
holds even when the input circuits are restricted to be formulas of depth
four. We also present a polynomial time algorithm for detecting 1-hazards
in Dnf (or, 0-hazards in Cnf) formulas. Since 0-hazards in Dnf (or, 1-
hazards in Cnf) formulas are easy to eliminate, this algorithm can be used
to detect whether a given Dnf or Cnf formula has a hazard in practice.

1 Introduction

In logic design, one typically extends the Boolean domain {0, 1} with a third
value denoted by ‘u’ to indicate the presence of unstable voltage levels. In other
words, it indicates that the value of a Boolean variable is unknown. Useful
computation can be performed even in the presence of unstable/unknown values.
For example, consider a Boolean circuit over ∧, ∨, and ¬ gates that takes 2n bits
as input and decides whether a majority of the input bits are set to 1. Clearly
if at least n+ 1 of its inputs are 1 (or, 0) and the rest of the inputs are u, the
circuit should ideally output 1 (resp., 0).1 However, if the circuit outputs u on
such inputs, then the circuit is said to have a hazard. A priori the circuit may
be hazard-free or not, but if it is monotone (only ∧ and ∨ gates are allowed)
then it must be hazard-free [1].

It is well-known that popular physical realizations of the basic logic gates
are hazard-free. For example, if we feed a 0 and a u to an AND (∧) gate,

∗https://doi.org/10.1016/j.ipl.2020.105980
†This work was done when the author was affiliated with the Max Planck Institute for

Informatics, Saarland Informatics Campus, Saarbrücken, Germany.
1See Table 1 for the definition of Boolean gates in the presence of u.

1

then the ∧ gate will output a 0 (Table 1). However, it is not necessary that a
circuit constructed from hazard-free logic gates is hazard-free. For example, the
smallest circuit implementing a one bit multiplexer has a hazard (see, e.g., [1]).

For a logic circuit designer, it is desirable that every circuit they construct
is hazard-free. In a recent paper, Ikenmeyer et al. [1] showed that there are
n-variable Boolean functions with polynomial (in n) size circuits such that any
hazard-free circuit implementation for the same function must use exponentially
many gates. Therefore, constructing hazard-free circuits is not always feasible.
They also showed that even the computational problem of detecting whether a
circuit has a hazard is NP-complete.

Eichelberger’s algorithm [2] for detecting hazards in a circuit enumerates all
minterms and maxterms of the Boolean function computed by the circuit and
evaluates the circuit on each of them. Since an n-variable Boolean function can
have as many as Ω(3n/n) minterms [3], this algorithm is not always efficient.
Since this problem is NP-complete, one cannot hope to obtain a polynomial
time algorithm that works in general. In such cases, moderately exponential
time algorithms are sought over algorithms that employ brute-force search. For
example, it is known [4] that the independent set problem has a O(poly(n)1.19n)
time algorithm that performs much better than the brute-force O(poly(n)2n)
time algorithm. Is it possible to obtain such a moderately exponential time
algorithm for hazard detection in circuits?

In this work, we show that the O(3n poly(s)) time algorithm for hazard
detection on input circuits of size s over n variables is almost optimal under a
widely held conjecture known as the strong exponential time hypothesis (Seth).
Seth implies that there is no O(2(1−ε)n poly(m)) time algorithm, for any ε > 0,
for checking whether an n-variable, m-clause Cnf is satisfiable. We show that
there is no O(3(1−ε)n poly(s)) time algorithm, for any ε > 0, for hazard detection
on circuits of size s over n variables assuming Seth. In fact, we show that this
is true even when the input circuits are restricted to be formulas of depth four.

We also give a polynomial time algorithm to detect whether a given Dnf

formula has a 1-hazard. Since 0-hazards in Dnf formulas are easy to eliminate,
this algorithm can be used to check whether a given Dnf formula has a hazard
in practice. We remark that, using duality of hazards, this also implies a hazard
detection algorithm for Cnf formulas.

2 Preliminaries

We study Boolean functions f : {0, 1}n → {0, 1} on n variables where n is
an arbitrary natural number. We are interested in Boolean circuits over AND
(∧), OR (∨), and NOT (¬) gates computing such functions. We recall Boolean
circuits are directed acyclic graphs with a unique sink node (output gate), where
the source nodes (input gates) are labeled by literals, i.e., xi or ¬xi for i ∈ [n]
and non-source nodes are labeled by ∧ or ∨ gates. The depth of a gate in the
circuit is defined as the maximum number of ∧ or ∨ gates occurring on any path
from an input gate to this gate (inclusive). (Note that ¬ gates do not contribute

2

to depth.) The depth of a circuit is then defined to be the depth of the output
gate. In particular, Cnf and Dnf formulas have depth two. We recall formulas
are circuits such that the underlying undirected graph is a tree, i.e., every gate
other than the output gate has out-degree exactly 1.

We refer to constant depth formulas where all gates of the same depth are
of the same type by the sequence of ∧ and ∨ starting from the output gate. For
example, Cnf formulas are ∧∨ formulas.

In our setting the input variables to circuits are allowed to take an unstable
value, denoted by u, in addition to the usual stable values 0 and 1. The truth
tables for gates in the basis {∧,∨,¬} in the presence of unstable values are given
in Table 1. The truth table for larger fan-in ∧ and ∨ gates in the presence of u
can be similarly defined using associativity. Thus, we can evaluate circuits on
inputs from {u, 0, 1}n in the usual inductive fashion.

∧ u 1 0
u u u 0
1 u 1 0
0 0 0 0

∨ u 0 1
u u u 1
0 u 0 1
1 1 1 1

¬
u u
0 1
1 0

Table 1: Truth table for AND, OR, and NOT gates.

We now formally introduce the notion of hazard.

Definition 1. A string b ∈ {0, 1}n is called a resolution of a string a ∈
{u, 0, 1}n if b can be obtained from a by only changing the unstable values in a
to stable values.

For example, strings 0100, 0110, 1110, and 1100 are all possible resolutions
of the string u1u0, but 0111 is not.

Definition 2. A circuit C implementing a Boolean function has a 1-hazard
(or, 0-hazard) on an input a ∈ {u, 0, 1}n if and only if C(a) = u yet for all
resolutions b of a, the value C(b) is 1 (resp., 0). A circuit has a hazard if it has
a 1-hazard or a 0-hazard.

Example 1. Consider the Dnf formula F = (x1∧x2)∨(¬x1∧x2)∨(¬x1∧¬x2)
implementing the function f that evaluates to 0 only when x1 = 1 and x2 = 0.
Consider the input x1x2 = 0u. The function f evaluates to 1 on both resolutions
of 0u. But, the formula F evaluates to u on input x1 = 0, x2 = u. Therefore,
F has a 1-hazard at the input 0u. We note that u1 is another input where F
has a hazard.

We remark that being hazard-free or not is a property of the formula or
circuit and not a property of the function being computed by them.

In this paper, we are interested in the time complexity of the following
language.

Definition 3. The language Hazard consists of all circuits that have hazards.

3

The hazards in a circuit implementing a function f are closely related to
the minterms and maxterms of f . A definition of these concepts and their
relationship to hazards in circuits follows.

Definition 4. A 1-implicant (0-implicant) of a Boolean function f on variables
x1, . . . , xn is an AND (resp., OR) over a subset I of literals x1, . . . , xn,¬x1, . . . ,¬xn

such that for any assignment a ∈ {0, 1}n, if I(a) = 1 (resp., I(a) = 0),2 then
f(a) = 1 (resp., f(a) = 0). In such a case the assignment a is said to be covered
by the implicant I. The size of an implicant is defined to be the size of the set
I.

Example 2. Consider the function f from Example 1. The only 0-implicant
of f is ¬x1 ∨ x2 and it is of size 2. The function has five 1-implicants x1 ∧ x2,
¬x1 ∧x2, ¬x1 ∧¬x2, x2, and ¬x1. The assignments x1 = 0, x2 = 0 and x1 = 0,
x2 = 1 are covered by the 1-implicant ¬x1.

Definition 5. A 1-implicant (0-implicant) that is minimal with respect to set
containment is called a minterm (resp., maxterm).

Example 3. Continuing from Example 2, we note that f has one maxterm
¬x1 ∨ x2 and two minterms, namely ¬x1 and x2.

We have the following well-known cross-intersection property of the set of
all minterms and the set of all maxterms.

Fact 1. Let S be any minterm and T be any maxterm for a function f . Then,
S ∩ T 6= ∅.

Proof. Suppose not, then there exists an assignment a such that S(a) = 1 and
T (a) = 0. But then from Definition 4 we have f(a) = 1 as well as f(a) = 0,
which is a contradiction.

An implicant can be naturally represented as an assignment of variables to
{u, 0, 1} where the variables not in the implicant are set to u and the ones
present are set to 0 or 1 so as to make the corresponding literal evaluate to 1
for 1-implicants (or, 0 for 0-implicants). By evaluating a circuit at a minterm
or maxterm, we mean evaluating the circuit on the corresponding assignment
in {u, 0, 1}n.

Observation 1. A circuit C implementing a Boolean function f has a 1-hazard
(0-hazard) if and only if it has hazard at a minterm (resp., maxterm).

Proof. Given an input a at which C has hazard, consider a minterm or maxterm
that covers a. It is easily seen that the output of evaluating C on this minterm
or maxterm is u, because changing stable values in the input to u cannot cause
the output to go from u to a stable value.

2By I(a), we mean the AND (or, OR) function over the set I of literals evaluated at a. We
often overload notation to denote both the set of literals in an implicant and the function by
the same notation I.

4

Since any minterm or maxterm of an n-variable Boolean function can be
represented by a string from {u, 0, 1}n, there can be at most 3n minterms for
a Boolean function. How tight is this upper bound? Chandra and Markowsky
[3] gave an improved upper bound of O(3n/

√
n) and also gave an example to

show that this upper bound is almost tight. We recall the function witnessing
this lower bound now. We call it the Chandra-Markowsky (CM) function.

The Chandra-Markowsky (CM) function [3] on N = 3n variables for any
natural n is defined as follows: it evaluates to 1 if and only if at least n of the
variables are set to 1 and at least n of the variables are set to 0. This function
has

(

3n
n

)(

2n
n

)

= Θ(3N/N) minterms. Therefore, it has almost the maximum
possible number of minterms.

The Strong Exponential Time Hypothesis (Seth) is a conjecture introduced
by Impagliazzo, Paturi and Zane [5, 6] to address the time complexity of the
Cnf satisfiability problem (Cnfsat). It has been used to establish conditional
lower bounds for many NP-complete problems (e.g., [7, 8]) and problems with
polynomial time algorithms (e.g., [9, 10, 11]).

Hypothesis 1 (Seth [5, 6]). For every ε > 0, there exists an integer k ≥ 3
such that no algorithm can solve k-Cnfsat3 on n variables in O(2(1−ε)n) time.

To establish our lower bound, we reduce from the Dnf falsifiability problem
(Dnffalse): Given a Dnf formula as an input, determine whether there exists
an assignment that falsifies it.

This problem clearly has the same time complexity as the Cnfsat problem.
Seth implies that there is no O(2(1−ǫ)n poly(s)) time algorithm ,for any ǫ > 0,
for Dnffalse where n is the number of variables and s is the number of clauses.

3 A tight lower bound

The idea behind the proof is as follows: The givenDnf formula F on n variables
has 2n assignments. We construct a formula F ′ on m ∼ log3(2)n variables that
implements a function with more than 2n minterms. This allows us to map each
assignment of variables in F to a distinct minterm of the function implemented
by F ′. We then show that F is falsifiable by an assignment a if and only if the
formula F ′ has a hazard at the minterm b that corresponds to a in the mapping.
First, we define the function that is going to be implemented by F ′ and prove
some important properties related to it.

Let s be any natural number that is a multiple of 3. We now define the
auxiliary function ACM that will be used in our reduction. It is defined on sn
variables which are partitioned into n groups of s variables each. We simply
compose the AND function on n variables with the CM function on s variables
to define the ACM function. That is,

ACM(X1, . . . , Xn) = CM(X1) ∧ · · · ∧CM(Xn) (1)

3Every clause in the Cnf is defined on at most k literals.

5

where Xi denotes the i-th group of s variables. We denote the CM function on
the i-th group of variables Xi by CMi.

The following proposition characterizes the minterms and maxterms of the
ACM function.

Proposition 2. The following statements are true:

(i) The set of minterms of ACM is the direct product of the set of minterms
of the n disjoint s-variable CM functions.

(ii) The set of maxterms of ACM is given by the union of the set of maxterms
of CMi for 1 ≤ i ≤ n.

Proof. (i) We show a one-to-one correspondence between the set of minterms
of ACM and the direct product of the set of minterms of CMj for j ∈ [n].
For a minterm I of ACM, let Ij be the restriction of I to the variables in
Xj for each j. Since ACM evaluates to 1 on I, CMj must evaluate to 1
on Ij . Thus, Ij is a 1-implicant of CMj for each j. We now argue that
in fact it is a minterm. Suppose not, then there exists a j such that Ij is
not a minterm of CMj . However it must contain a minterm, since it is
a 1-implicant. Let I ′j ⊂ Ij be the minterm contained in Ij . By replacing
the part of Ij in I by I ′j we obtain I ′. Clearly, I ′ ⊂ I is a 1-implicant of
ACM. Thus, we have a contradiction to the fact that I is a minterm.

On the other hand, given minterms Ij of CMj for each j ∈ [n], their union
I = ∪j∈[n]Ij is a minterm of ACM. Suppose not, then there exists I ′ ⊂ I
that is a minterm. Since I ′ ⊂ I, then there exists j ∈ [n] such that I ′j ⊂ Ij .
Thus, we obtain a contradiction to Ij being a minterm of CMj .

(ii) For some j ∈ [n], let I be a maxterm of CMj . Then it is easily seen
that I is also a maxterm of ACM. To prove the other direction, for a
maxterm I of ACM, we argue that there exists a unique j ∈ [n] such that
I is a maxterm of CMj . Clearly, there exists a j ∈ [n] such that I is
a 0-implicant of CMj . Since I is a maxterm of ACM, it must only set
variables in Xj . And therefore, the term I is a 0-implicant of the unique
CMj . Hence, the term I must also be a maxterm of CMj .

Huffman [12] showed that for any Boolean function f with the set M of
all minterms, the Dnf F =

∨

I∈M I is hazard-free. For example, consider the
function f defined in Example 1. From Example 3 we know that ¬x1 and x2

are the only two minterms of it. Therefore, (¬x1)∨ (x2) is the hazard-free DNF
implementation for f given by Huffman’s construction.

In our reduction, it will be crucial for us to be able to introduce hazards to
the implementation at specific minterms. For this purpose we modify Huffman’s
hazard-free Dnf construction as follows.

6

Proposition 3. Let f be a function on n variables and S be a set of minterms
of f where each minterm in S is of size at most n− 1. Then, we can construct
a Dnf for f that has hazards exactly at the minterms in S.

Proof. Let F be the hazard-free Dnf for f given by Huffman’s construction.
Let I be a minterm in S and x be a variable not in I. Such a variable exists
by assumption. Consider the formula F ′ obtained by replacing the term I in F
with two new terms, namely I ∧ x and I ∧ x̄. F ′ computes the same function
and has a 1-hazard at the minterm I, since the two new terms evaluate to u on
I and every other term will evaluate to 0 or u on I. For any minterm not in
S, F ′ evaluates to 1. Therefore, these are the only 1-hazards. Also, F ′ has no
0-hazards, because every maxterm and minterm intersects contradictorily.

We repeat the aforementioned transformation for every minterm in S to
obtain the required Dnf for f that has hazards at the minterms in S.

To illustrate we consider our running example, the function f from Exam-
ple 1. We know that (¬x1)∨(x2) is a hazard-free DNF of f . Suppose we want to
selectively introduce hazard only at the minterm ¬x1. Following Proposition 3,
we modify the hazard-free representation to obtain the following:

(¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) ∨ (x2).

Suppose we further wanted to introduce hazard at the minterm x2. Then, again
following Proposition 3, we obtain

(¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) ∨ (x2 ∧ x1),

which has hazards at both the minterms. We note that this is the DNF imple-
mentation from Example 1.

The following lemma applies the above construction to the ACM function
to efficiently introduce hazards in a selective manner. Notice that any minterm
of ACM has some variable that is not in the minterm.

Lemma 4. Consider the ACM function on sn variables where s is regarded as
a constant. For j ∈ [n], let Mj be the set of all minterms of CMj. Further,
let S ⊆ Mi for some i. Then, there is a poly-time algorithm that constructs
an ∧ ∨ ∧ formula for ACM that has hazards exactly at minterms in the set
M1 × · · · ×Mi−1 × S ×Mi+1 × · · · ×Mn.

Proof. Let Fj be the hazard-free Dnf formula for CMj and F ′
i be the Dnf

formula for CMi that has hazards only at minterms in the set S obtained by
Proposition 3. We output the ∧ ∨ ∧ formula (∧j 6=iFj) ∧ F ′

i for ACM. The size
of the formula is O(n) because s is a constant.

We now argue that this formula has hazards only at minterms in the set
M1× · · ·×Mi−1×S ×Mi+1× · · ·×Mn. Since the individual implementation
of CMj ’s have no 0-hazards, by Proposition 2 (ii), the formula for ACM has no
0-hazards. Now suppose I is a minterm of ACM such that the ∧ ∨ ∧ formula
has a hazard at it. By Proposition 2 (i), we know that Ij is a minterm of CMj

7

for each j. Therefore, there exists a j such that the Dnf implementation of
CMj has a hazard at Ij . But then by construction it must be that j = i and
Ij ∈ S.

We now prove our main theorem.

Theorem 5. If Seth is true, then for any ǫ > 0, there is no algorithm for
Hazard that runs in time O(3(1−ǫ)n poly(s)), even when the inputs are formulas
of depth four. Here n is the number of variables in the formula and s is the size
of the formula.

Proof. Let r be a positive integer and s = s(r) be the minimum integer such

that 2r ≤
(

s
s/3

)(2s/3
s/3

)

. We will reduce Dnffalse instances on rn variables to

instances of Hazard on sn variables. In addition, the circuit we output will be
an ∨ ∧ ∨∧ formula. Recall, by our choice, s is a multiple of 3. For any ǫ > 0,
we claim that there exists a δ > 0 such that 3(1−ǫ)s < 2(1−δ)r for sufficiently
large r. Let f(s) be the number of minterms in the s-variable CM function.
Then f(s+3)/f(s)→ 27 as s→∞. As increasing the number of variables by 3
multiplies the number of assignments by 8, we have s(r)/r → log27(8) = log3(2)
as r→∞. The claim follows.

Let F be the input Dnf on rn variables. We consider the variables of F to be
partitioned into n groups Yj , j ∈ [n], of r variables each. We arbitrarily associate
with every assignment α ∈ {0, 1}r to the variables in Yj a unique minterm Iα of
CMj and call this bijection βj . Recall that s(r) is defined such that the number
of minterms of CMj is at least 2r. The mapping βj is constant-sized and can
be computed easily given j. The reduction is given in Algorithm 1. It is easy to
see that the algorithm runs in polynomial time and produces formulas of depth
four. We now argue the correctness of the reduction.

Algorithm 1 Reduction from Dnffalse to Hazard

F ′ ← F
for all literals ℓ occurring in F do

Replace ℓ in F ′ with LITERAL(ℓ)
end for

Collapse ∧ gates at depth three and four in F ′ to a single layer.
return F ′

procedure LITERAL(ℓ)
Let ℓ be xj or ¬xj .
i← ⌈j/r⌉; then, xj belongs to the group Yi.
T := {α ∈ {0, 1}|Yi| | the literal ℓ is falsified by α}
Recall βi is the bijection from {0, 1}Yi to the set of mintermsMi of CMi.
S ← βi(T)
G← ∧ ∨ ∧ formula for ACM given by Lemma 4 on input S ⊆Mi

return G
end procedure

8

Given an assignment y ∈ {0, 1}rn to all variables, let yj denote the restriction
of y to variables in the group Yj . Further let Iyj

be the unique minterm of CMj

associated with yj . From Proposition 2 (i), we know that Iy =×j∈[n]
Iyj

is a

minterm of ACM. Thus, we associate this minterm Iy with the assignment y.
We will now prove that F is falsified by y if and only if F ′ has a hazard at Iy .

To prove this, we consider the formula F ′ in the algorithm just before col-
lapsing ∧ gates of depths three and four (i.e., it has depth five). The gates
in F ′ correspond to gates in F in the following fashion: The output gate and
gates of depth four in F ′ correspond to the output gate and depth one gates
in F respectively and the gates of depth three in F ′ correspond to literals in
F . Since all occurrences of literals in F are replaced with formulas computing
ACM in F ′, the function computed at the output gate and all gates of depth
four and three in F ′ is also ACM.

Consider a gate g at depth three in F ′. By construction, the sub-formula
rooted at g satisfies the property that it has a hazard at Iy if and only if the
corresponding literal in F evaluates to 0 on y.

We now consider a gate g at depth four in F ′. It is an ∧ gate. Assume that
it evaluates to 0 on input y in F . Then, at least one of its inputs in F must
also evaluate to 0 on y. From the above argument about depth three gates, we
know that the corresponding gate in F ′ must have a hazard at the minterm Iy.
Therefore, this gate must evaluate to u on Iy while the other inputs to the gate
g evaluate to 1 or u. This is because we are evaluating an implementation of
ACM on one of its minterms. Thus, the sub-formula rooted at g in F ′ must
have a hazard at the minterm Iy corresponding to y. In the other direction,
suppose g has a hazard at the minterm Iy. Then, at least one of its inputs must
have a hazard at this minterm, which in turn implies that the corresponding
literal in F evaluates to 0 on the assignment y. Since g is an ∧ gate we thus
obtain that g evaluates to 0 on y in F .

Finally we consider the ∨ gate g at the root of F ′. If g outputs u on Iy, all
gates feeding into g must output u on Iy . (They cannot evaluate to 0 because
each of them is evaluating ACM function on a minterm.) Therefore, all the
corresponding gates in F must output 0 on y causing F to output 0. On the
other hand, if F outputs 0 on y, every gate feeding into the root in F must
output 0 on y and therefore, all the corresponding gates in F ′ must output u
on Iy causing F ′ to output u as well.

4 Detecting hazards in depth-two formulas

We now look at the time complexity of detecting hazards in depth two formulas.
We will focus on input formulas in Dnf. The dual statements are true for
formulas in Cnf. It is known that a Dnf formula that does not contain terms
with contradictory literals (i.e., x and ¬x for some variable x) cannot have 0-
hazards. Since it is trivial to remove such terms, the interesting case is to detect
1-hazards in Dnf formulas. Máté, Das, and Chuang [13] gave an exponential
time algorithm that takes as input a Dnf formula and outputs an equivalent

9

Dnf formula that is hazard-free. Such an algorithm is necessarily exponential
time because there are functions that have size s Dnf formulas such that any
hazard-free Dnf formulas for it has size at least 3s/3 [3, Theorem 1.3]. We show
that there is a polynomial time algorithm if the goal is to only detect whether
an input Dnf formula has a 1-hazard.

We start with a crucial observation that help witness 1-hazards in Dnf easily.
The simplest Dnf formula with a 1-hazard is x∨ ¬x. We show that every Dnf

formula with a 1-hazard has a 1-hazard α ∈ {0, 1, u}n such that when the Dnf

is restricted by the stable values in α, the simplified Dnf has the form

x ∨ ¬x ∨H,

for some Dnf formula H such that no term in H evaluates to 1. Obviously, it
is easy to detect that there is a hazard in such a simplified Dnf formulas. We
now introduce a definition that will help us formally state the lemma.

Definition 6. A Dnf H over variables and constants is said to be equal to 1
if at least one of the terms in it evaluates to 1.

For example, x∨¬x is not equal to 1, though it evaluates to 1 on all possible
inputs. On the other hand x ∨ ¬x ∨ 1 is equal to 1, since it contains the term 1
that trivially evaluates to 1.

Lemma 6. Let F be a Dnf on n variables. Suppose that F has a 1-hazard.
Then, there exists α ∈ {0, 1, u}n such that F has a 1-hazard at α, and further-
more,

F |α = x ∨ ¬x ∨H,

for some variable x and Dnf H that is not equal to 1. Here, F |α represents the
Dnf obtained by simplifying the terms of F upon substitution of variables by the
stable values of α. A Dnf is simplified by exhaustively applying the following
two rules:

(i) Remove terms with a literal that evaluates to 0,

(ii) Shorten terms by the removal of literals that evaluate to 1.

Proof. Let β ∈ {0, 1, u}n be an arbitrary 1-hazard for F . Substitute the stable
variables given by β in F to obtain a simplified Dnf G. If G = x ∨ ¬x ∨H , for
some variable x and Dnf H , then H is not equal to 1 because G must evaluate
to u on β and, hence, β is the required 1-hazard. Suppose not, then either there
exists a term of size 1 in G or every term is of size at least 2. In both cases we
construct the required hazard from β iteratively. We will increase the number
of stable values in β at each step while ensuring that it remains a 1-hazard.
In particular, we argue in both cases that there exists a variable x in G such
that we can set it to 0 and the resulting partial assignment is still a 1-hazard.
Clearly this process terminates in at most n steps. We now show how to find
the variable in each case.

10

Suppose there exists a term of size 1 in G. That is, G = ℓ∨H , for some literal
ℓ and, moreover, H does not have ¬ℓ as a term. Then we extend the partial
assignment β by setting ℓ = 0. We now claim that the new partial assignment
is still a 1-hazard. This is easily seen because ℓ = 0 either kills a term in G or
reduces its size. It never makes a term evaluate to 1, and therefore the hazard
propagates.

In the remaining case, every term in G is of size at least 2. We pick an
arbitrary literal from an arbitrary term and set it to 0. Again as before we can
argue that the hazard propagates since any term is either killed or reduced in
size, but never evaluated to 1.

Note that if G has only one variable, then it must be x∨¬x for some x. This
completes the proof of the lemma.

We now give a polynomial time algorithm to detect 1-hazards in Dnf for-
mulas.

Theorem 7. There is a polynomial time algorithm that detects 1-hazards in
Dnf formulas.

Proof. Let F be the input Dnf formula. From Lemma 6, we know that to
check whether F has a 1-hazard it suffices to check for an easy-to-detect hazard.
Observe that an easy-to-detect hazard is nothing but a partial assignment α
such that F |α has both x and ¬x as terms for some variable x and, furthermore,
no term evaluates to 1. In fact, we give a polynomial time procedure to find an
easy-to-detect hazard.

To find such a partial assignment we do the following: For every pair of
terms S ∧ x and T ∧ ¬x in F , for some variable x, we check if S and T can
be simultaneously set to 1 while no other term in F evaluates to 1. If so, then
clearly this partial assignment is an easy-to-detect hazard.

It is easily seen that the above procedure runs in polynomial time.

Even though all 0-hazards can be eliminated fromDnf formulas by removing
all terms with contradictory literals, the presence of such terms do not imply a
0-hazard. For example, the single variable Dnf formula (x ∧ ¬x) ∨ x does not
have any hazards.

In contrast to the poly-time algorithm to detect 1-hazards, the following
simple reduction shows that detecting 0-hazards in Dnf formulas is hard.

Theorem 8. If Seth is true, then there is no O(2(1−ǫ)n poly(s)) time algo-
rithm, for any ǫ > 0, that detects 0-hazards in Dnf formulas on n variables and
s terms.

Proof. We will reduce the Dnf falsifiability problem to this problem. Let F be
the input Dnf formula for the falsifiability problem. We assume without loss of
generality that F does not contain terms with contradictory literals. We now
claim that the Dnf formula G = F ∨ (x ∧¬x), where x is a new variable, has a
0-hazard if and only if F is falsifiable. If F is falsifiable at an input a, then the
input (a, u) is a 0-hazard for G. On the other hand if F is a tautology, then so
is G and, therefore, G cannot have a 0-hazard.

11

The above results can also be stated for Cnf formulas using the following
observation.

Observation 2. A Cnf formula F has a 0-hazard if and only if the Dnf

formula G = ¬F has a 1-hazard.

Proof. Assume F has a 0-hazard at a ∈ {u, 0, 1}n. Each clause in F evaluates
to 1 or u on input a. Then, the corresponding term in G evaluates to 0 or u
respectively which implies that the output of G is also u. The other direction
is similar.

Observe that any Cnf formula that has a 1-hazard contains a clause that
contains a variable and its negation. Therefore, we can easily eliminate all 1-
hazards from a givenCnf formula. Combining these observations with theorems
for Dnf formulas, we have the following theorem.

Theorem 9. There is a polynomial-time algorithm that detects 0-hazards in
Cnf formulas. Also, if Seth is true, there is no O(2(1−ǫ)n poly(s)) time algo-
rithm for any ǫ > 0 that detects 1-hazards in Cnf formulas on n variables and
s clauses.

5 Conclusion

We show that under Seth the straightforward hazard detection algorithm can-
not be significantly improved upon, even when the inputs are restricted to be
depth-4 formulas. We also show that there are polynomial time algorithms for
detecting 1-hazards in Dnf formulas (resp., 0-hazards in Cnf), while 0-hazards
(resp., 1-hazards) can be easily eliminated. The complexity of hazard detection
for depth-3 formulas remain open.

Acknowledgements

The authors would like to thank the anonymous reviewers. Their suggestions
helped to greatly improve the presentation of results in the paper.

References

[1] C. Ikenmeyer, B. Komarath, C. Lenzen, V. Lysikov, A. Mokhov, K. Sreeni-
vasaiah, On the complexity of hazard-free circuits, in: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, 2018, pp. 878–889.

[2] E. B. Eichelberger, Hazard detection in combinational and sequential
switching circuits, IBM J. Res. Dev. 9 (2) (1965) 90–99.

[3] A. K. Chandra, G. Markowsky, On the number of prime implicants, Dis-
crete Mathematics 24 (1) (1978) 7 – 11.

12

[4] M. Xiao, H. Nagamochi, Exact algorithms for maximum independent set,
Information and Computation 255 (2017) 126 – 146.

[5] R. Impagliazzo, R. Paturi, On the complexity of k-sat, J. Comput. Syst.
Sci. 62 (2) (2001) 367–375.

[6] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly expo-
nential complexity?, J. Comput. Syst. Sci. 63 (4) (2001) 512–530.

[7] D. Lokshtanov, D. Marx, S. Saurabh, Lower bounds based on the exponen-
tial time hypothesis, Bulletin of the EATCS 105 (2011) 41–72.

[8] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto,
R. Paturi, S. Saurabh, M. Wahlström, On problems as hard as CNF-SAT,
in: IEEE Conference on Computational Complexity, IEEE Computer Soci-
ety, 2012, pp. 74–84.

[9] K. Bringmann, M. Künnemann, Quadratic conditional lower bounds for
string problems and dynamic time warping, in: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, 2015, pp. 79–97.

[10] A. Abboud, A. Backurs, V. V. Williams, Tight hardness results for LCS
and other sequence similarity measures, in: FOCS, IEEE Computer Society,
2015, pp. 59–78.

[11] V. V. Williams, Some open problems in fine-grained complexity, SIGACT
News 49 (4) (2018) 29–35.

[12] D. A. Huffman, The design and use of hazard-free switching networks, J.
ACM 4 (1) (1957) 47–62.

[13] L. L. Máté, S. Das, H. Y. Chuang, A logic hazard detection and elimination
method, Information and Control 26 (4) (1974) 351 – 368.

13

	1 Introduction
	2 Preliminaries
	3 A tight lower bound
	4 Detecting hazards in depth-two formulas
	5 Conclusion

