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a b s t r a c t

Soft tissues display highly non linear behaviour under various mechanical loads. Due to various diseases,

injury or when exposed to supra physiological loads, soft tissues demonstrate a softening behaviour or

damage. Continuum damage models coupled with continuum material models have been successful in

mathematically predicting the damage in tissues. Continuum models also incorporate anisotropy to give

better predictions of the response of tissues at higher stretch values. In this work, three different math-

ematical decaying functions (exponential, logarithmic and stretched exponential) have been adopted to

propose continuum damage models for anisotropic soft tissues. The model predictions were compared

with the experimental data of uniaxial extension from literature. The stretched exponential function with

the least computed error demonstrated the most accurate performance for predicting the damage in soft

tissues. A general algorithm for the procedure was also remarked upon.
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1. Introduction

Soft tissues can be mechanically simplified as being constituted

of a ground matrix with embedded fibres [1]. It has been shown

that the ground matrix behaves isotropically at lower stretches

and takes up the majority of the loads [2]. The fibres get activated

at higher stretches and participate in the load bearing process,

meanwhile inducing non linearity and anisotropy to the mechani-

cal repsonse of the tissue [3]. A tissue, under various circumstances

may experience damage, both in vivo as well as ex vivo. Factors

influencing in vivo damage may be attributed to diseases or certain

medical interventions [4–6] or even injury from strenuous activi-

ties [7]. Damage, ex vivo, is usually manifested during experiments

carried out to determine the material properties of the tissues like

uniaxial extension, biaxial extension and shear. During such tests

either under fatigue loading or supra physiological stretching, does

the tissue exhibit damage.

Damage simply is the manifestation of a softening behaviour or

degradation of the mechanical response in a material. A mathemat-

ical approach to model damage maybe credited to the works of [8].

Prior to circa 1970, damage models were predominantly

phenomological and it was only later that semi analytical and ana-

lytical models were proposed [9]. Continuum mechanics based

damage models, also called continuum damage models (CDMs),

have gained popularity in the last couple of decades to model the

softening response of biological tissues. It is in the works of [10]

that we can probably see the advent of CDMs.

To model the softening response, decaying functions are amal-

gamated to the strain energy density functions. In [11] an expo-

nential function was used to model the non local damage in soft

tissues. Various methods to determine the material model param-

eters as well as exponential damage model parameters were dis-

cussed in [12]. An exponential damage model coupled with a

visco hyperelastic material model was proposed in [13]. To model

the degradation of the collagen fibres as a parameter for damage,

an exponential model was also proposed in [14]. To incorporate

the squares of stretches in the fibre directions and also cross link-

ing of collagen fibres, the exponential damage model of [15] was

demonstrated to be highly efficient. Sigmoidal damage functions

have also proven to be efficient in predicting the damage in soft tis-

sues [16–18]. A comparative study of various exponential, sig-

moidal and polynomial damage functions can be found in [19].
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In this paper, the material model of [20] has been adopted to

define the constitutive behaviour of soft tissues. The damage

parameters from [21] have been adopted and implemented in

exponential, stretched exponential and logarithmic decay func-

tions to give an insight on the effect of the choice of mathematical

function to model the softening behaviour of tissues at high loads.

2. Constitutive laws

2.1. Material model

Cauchy-elastic materials exhibit path independent material

responses. Hyperelastic or Green-elastic materials are a special

class of Cauchy-elastic materials whose constitutive laws are gov-

erned by a strain energy density function [22]. For soft tissues, the

strain energy density function, W, is usually considered to be com-

posed of an isotropic function that incorporates the mechanical

response of the ground matrix and an anisotropic function that

incorporates the response of the collagen fibres at higher stretches

[1]. An additive split can be carried out in strain energy density

function as W ¼ W
vol þWiso þWaniso

h i

into its volumetric, isotropic

and anisotropic components respectively. The strain energy func-

tion is thus expressed in [20] as

W ¼
j
2
J� 1½ �2 þ

l
2

I1 � 3
� �

þ
x1

x2

ex2
�I�
1
=c�1½ �

2

� 1

� �

ð1Þ

where J ¼ det F iJ

� �

is the Jacobian of the deformation gradient (F iJ).

The scalar parameter I1 ¼ CIJdIJ is the first invariant of the isochoric

right Cauchy-Green tensor CIJ . The anisotropic pseudo invariant
�I�1 ¼ C�IJdIJ is a measure of the stretching along fibre directions,

and its mathematical expression is given in (9). The isochoric right

Cauchy Green tensor CIJ defined in the Cartesian space of orthogonal

basis XI can be transformed to its corresponding definition (C�IJ) in

the space defined by the oblique basis eJ as illustrated in Fig. 1 and

the transformation is carried out using the fourth order fibre orien-

tation transformation tensor bIJ
KL such that [20]

C�IJ ¼ b
IJ
KLCKL ð2Þ

The angles h1 and h2 in Fig. 1 shows the angles made by the two

family of fibres with respect to the longitudinal axis of the tissue.

The term c is a parameter associated with the undeformed config-

uration. The parameters j;l;x1 > 0 are material parameters pos-

sessing the dimensions of stress and x2 > 0 is a dimensionless

constant.

2.2. Damage model

Damage can be parametrized using a scalar parameter

Di 2 0;1½ � as when

Di ¼
0 no damage

1 complete mechanical failure

� �

ð3Þ

The subscript ’i’ can either be isotropic or anisotropic depend-

ing on the whether the damage is defined for the isotropic matrix

or the anisotropic fibres. The undamaged second Piola–Kirchhoff

stress (SIJ) can be determined as

SIJ ¼ 2
@W

@CIJ

ð4Þ

Using Clausius–Duhem inequality (� _Wþ 0:5SIJ _CIJ P 0) the

damaged second Piola–Kirchhoff stress (SIJ) can be derived as

SIJ ¼
@Wu

vol

@CIJ

þ 1� Disoð Þ � Siso
IJ þ 1� Danisoð Þ � Saniso

IJ

� �

ð5Þ

Such that

S
iso
IJ ¼ 2

@Wiso

@CIJ

;S
aniso
IJ ¼ 2

@Waniso

@CIJ

ð6Þ

To define Diso the scalar invariant called equivalent stretch (keq)

can be adopted from [17] such that

k4eq ¼ CIJCIJ ð7Þ

An exponential decay function of the equivalent stretch can be

implemented [21] such that

Diso ¼ 1� e aiso kdeq�keqð Þ½ � ð8Þ

where aiso is a parameter that dictates the slope of the decaying

function and kdeq defines the onset of damage in the tissue matrix.

To quantify the anisotropic damage Daniso the pseudo invariants

of [21] can be adopted using (2) as

I�1 ¼ C�IJdIJ ; I�2 ¼ 0:5 I�1
� �2

� C�IJC�IJ
h i

ð9Þ

quantify the stretch along fibre directions and the shear developed

between the matrix and fibres respectively, are conducive to model

the anisotropic damage. These parameters are implemented in

three different decaying functions to predict the softening beha-

viour of tissues when strained above the physiological loads.

The spatial Cauchy stress (rij) can be determined as [23]

rij ¼ J
�1F iISIJF jJ ð10Þ

3. Decaying functions for anisotropic damage

A general form of the anisotropic damage function can be writ-

ten as

Daniso ¼ 1�
Y

n

i¼1

f
i
d Xið Þ ð11Þ

The function f
i
d Xið Þ represents the damage function of the i

th

internal variable (Xi). Since I�1 and I�2 are the chosen parameters

to define the anisotropic damage, the function can now be written

as

Daniso ¼ 1� f
1
d I�d1 � I�1
� �

� f
2
d I�d2 � I�2
� �

h i

ð12Þ

Fig. 1. Schematic representation of collagen fibres in arterial tissue.
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The damage initiation parameter I�d1 quantifies the onset of the

softening behaviour in tissues due to loss of stiffness in the fibres.

The parameter I�d2 , on the other hand, quantifies the initiation of

damage in the fibre–matrix interface due to shear. The parameters

I�d1 ; I�d2 needs to be judiciously extracted from the experimental

data.

The damage functions f
i
d Xið Þ are implemented as exponential,

logarithmic and stretched exponential decaying functions and

the model predictions are plotted against the experimental data

of muscular vaginal tissue from [24].

3.1. Exponential decaying function

Exponentially decaying functions, of the chosen internal vari-

ables, maybe adopted of the form

Daniso ¼ 1� ea1 I�d
1
�I�

1ð Þ � ea2 I�d
2
�I�

2ð Þ
h i

ð13Þ

The parameters a1; a2 P 0 can be obtained by calibrating the

model to the experimental data through a curve fitting procedure.

The values obtained after fitting the model to the experimental

data of uniaxial extension [24] are mentioned in Table 1.

3.2. Logarithmic decaying function

Product of logarithmic decaying functions can be adopted for

the anisotropic damage such that

Daniso ¼ 1� 1þ a1loge I�1=I
�d
1

� �� ��1
� 1þ a2loge I�2=I

�d
2

� �� ��1
ð14Þ

The parameters a1; a2 P 0, obtained after curve fit with the

experimental data [24] are tabulated in Table 1.

3.3. Stretched exponential decaying function

A stretched exponential function is an exponential function of

the nth power of the dependent variable. Assuming a cubic function

of the internal parameters, the anisotropic damage parameter can

be expressed as

Daniso ¼ 1� ea1 I�d
1
�I�

1ð Þ
3

� ea2 I�d
2
�I�

2ð Þ
3

� �

ð15Þ

The parameters a1; a2 P 0 too are tabulated in Table 1 after

curve fit with the experimental data [24].

4. Goodness of fit and error analysis

The goodness of fit was measured using the R2 value which is a

measure of the correlation between the experimental stress and

the stress predicted by the model. The R2 2 0;1½ � implies a good

fit if the value lies closer to unity.

Error in the model prediction was quantified using v2 value

such that

v2 ¼
X

p

j¼1

rexpt � rmodel

� �2

rexpt

ð16Þ

where p is the number of data points. rexpt is the value of the Cauchy

stress obtained experimentally and rmodel is the Cauchy stress pre-

dicted by the model.

The values of R2 and v2 obtained against each of the exponen-

tial, logarithmic and stretched exponential damage functions have

been mentioned in Table 1.

5. General Algorithm

1. Define material model, damage model parameters and damage

onset points I�d1 ; I�d2 ; kdeq.

2. Intialize load step.

(a) Calculate deformation gradient F

(b) Calculate internal variables keq; I
�
1; I

�
2 from (7) and (9).

(c) keq=max kdeq; keq

� 	

I�1=max I�
d

1 ; I�1

� 	

I�2=max I�
d

2 ; I�2

� 	

(d) Calculate exponential damage parameter from (13)

(e) Calculate logarithmic damage parameter from (14)

(f) Calculate stretched exponential damage parameter from

(15)

(g) Calculate damaged second Piola–Kirchhoff stress from (5)

(h) Calculate damaged Cauchy stress from (10)

3. Repeat steps a-h till final load step

6. Results and conclusion

Fig. 2 illustrates the evolution of the anisotropic damage param-

eter Daniso for each of the mathematical functions assumed i.e.

exponential, logarithmic and stretched exponential. A cubic power

was taken for the stretched exponential function in (15). Taking

higher order function of the internal variable results in large values

that gives rise to erroneous output. The order needs to be an odd

number for a decaying function. The damage in the fibres were

assumed to initiate at an uniaxial stretch k � 1:4 for degradation

of the fibre–matrix interface due to shear and at k � 1:78 for loss

of fibre stiffness. These values were assumed by observing the

trend of the experimental data and was considered the same for

all the damage functions.

From Fig. 2 it can be conceived that both the exponential and

logarithmic damage functions of (13) and (14) respectively, behave

very similar under lower strains as well as higher strains and dis-

play a concave behaviour. The stretched exponential function of

(15) on the other hand displays a convex behaviour. It is also to

be noted from Fig. 2 that the logarithmic function evolves with

almost a constant slope at higher strain values.

In Fig. 3 the prediction of the various damage models when cou-

pled with the material model of (1) has been illustrated. It can be

seen that all the damage models demonstrate good performance

in the lower stretch regime. At higher stretches the performance

of the logarithmic model, post fibre damage, was the most inaccu-

rate. The exponential function on the other hand demonstrated a

consistent performance but was erroneous in the post failure soft-

ening regime. As can be seen from the experimental data that the

post failure response is generally concave in nature and the func-

tion that accurately fits the contour is the stretched exponential

function. The R2 values in Table 1 also show the highest value for

the stretched exponential function whereas the logarithmic func-

tion had the least value. A similar trend was also observed for

the v2 error. With R2 � 1 and the lowest v2 error, the stretched

exponential function thus demonstrated the best performance in

predicting damage of anisotropic soft tissues.

Table 1

Damage model parameters with associated R2 and v2 values.

Mathematical Function Damage Model Parameters R
2 v2

a1 ¼ 0:85

Exponential a2 ¼ 0:2 0.953 35.97

a1 ¼ 9:8

Logarithmic a2 ¼ 0:3 0.881 42.65

Stretched a1 ¼ 0:102

Exponential a2 ¼ 2:29 0.989 31.75
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Fig. 2. Evolution of anisotopic damage parameter Daniso for various mathematical functions. The smooth line represents the evolution for a stretched exponential function. The

dashed and dotted lines correspond to exponential and logarithmic functions respectively.

Fig. 3. Prediction of damage for various mathematical decaying functions. The smooth line represents the prediction of the stretched exponential model whereas the dotted

and dashed lines represent the predictions of logarithmic and exponential functions respectively. The stars represent the experimental data for uniaxial extension of muscular

vaginal tissue from .[24].
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