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ON PROPERTY-(R1) AND RELATIVE CHEBYSHEV

CENTERS IN BANACH SPACES-II

SYAMANTAK DAS AND TANMOY PAUL

Abstract. We continue to study (strong) property-(R1) in Banach

spaces. As discussed by Pai & Nowroji in [On restricted centers of

sets, J. Approx. Theory, 66(2), 170–189 (1991)], this study corresponds

to a triplet (X,V,F), where X is a Banach space, V is a closed con-

vex set, and F is a subfamily of closed, bounded subsets of X. It

is observed that if X is a Lindenstrauss space then (X,BX ,K(X)) has

strong property-(R1), where K(X) represents the compact subsets of X.

It is established that for any F ∈ K(X), CentBX
(F ) 6= ∅. This extends

the well-known fact that a compact subset of a Lindenstrauss space X

admits a nonempty Chebyshev center in X. We extend our observation

that CentBX
is Lipschitz continuous in K(X) if X is a Lindenstrauss

space. If Y is a subspace of a Banach space X and F represents the set

of all finite subsets of BX then we observe that BY exhibits the condi-

tion for simultaneously strongly proximinal (viz. property-(P1)) in X

for F ∈ F if (X,Y,F(X)) satisfies strong property-(R1), where F(X)

represents the set of all finite subsets of X. It is demonstrated that

if P is a bi-contractive projection in ℓ∞, then (ℓ∞, Range(P ),K(ℓ∞))

exhibits the strong property-(R1), where K(ℓ∞) represents the set of all

compact subsets of ℓ∞. Furthermore, stability results for these proper-

ties are derived in continuous function spaces, which are then studied

for various sums in Banach spaces.

1. Introduction

1.1. Prerequisites: Some standard notations used in this study are intro-

duced as follows: X indicates a Banach space, whereas a subspace denotes

a closed linear subspace. For x ∈ X and r > 0, B(x, r) and B[x, r] denote

open and closed balls, respectively, each with its center at x and radius r.

Furthermore, BX and SX denote the closed unit ball and unit sphere of X,
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respectively. Further, B(X), C(X),K(X), and F(X) denote the set of all

closed and bounded, closed and convex, compact, and finite subsets of X,

respectively. Real numbers are assumed to be the underlying field for all

spaces. For x ∈ X,V ∈ C(X), and B ∈ B(X), the following are defined:

Notation.

(1) r(x,B) = sup{‖x− b‖ : b ∈ B}

(2) radV (B) = inf{r(x,B) : x ∈ V }

(3) CentV (B) = {v ∈ V : r(v,B) = radV (B)}

(4) δ −CentV (B) = {v ∈ V : r(v,B) ≤ radV (B) + δ}

(5) For B ⊆ X, Bη = {x ∈ X : d(x,B) ≤ η} for η > 0.

(6) Sη(B) = {x ∈ X : r(x,B) ≤ η} for η > 0.

Note that

(1) CentV (B) =

{

⋂

b∈B

B[b, radV (B)]

}

∩ V .

(2) δ − CentV (B) =

{

⋂

b∈B

B[b, radV (B) + δ]

}

∩ V .

However, if V ∈ C(X) and B ∈ B(X), the set CentV (B) may be empty, al-

though the set δ−CentV (B) is nonempty for any δ > 0. A triplet (X,V,F)–

where V ∈ C(X) and F ⊆ B(X), a subfamily of closed bounded subsets,

exhibits the restricted center property (rcp) if for all F ∈ F ,CentV (F ) 6= ∅.

Here, radV (F ) represents the radius of the smallest ball (if it exists) in X

centered at V and containing F , CentV (F ) represents the possible points of

the centers of these balls, and δ−CentV (F ) represents the set of points in V

which are at most radV (F )+δ away from F . Several researchers have inves-

tigated various characteristics (stated in the subsequent discussions) related

to the entities defined above, viz. CentV (F ), radV (F ) (see [3, 8, 10, 13]),

determined by various geometric properties of the Banach space and also

the type of the closed convex subset V .

Definition 1.1. [10] Let V ∈ C(X) and F ⊆ B(X). The triplet (X,V,F)

exhibits property-(R1) if for v ∈ V, F ∈ F , and r1, r2 > 0, the conditions

r(v, F ) ≤ r1+r2 and Sr2(F )∩V 6= ∅ imply that V ∩B[v, r1+ε]∩Sr2+ε(F ) 6= ∅,

for all ε > 0.

Equivalently (see [3, Theorem 2.2, 2.4]), the triplet (X,V,F) exhibits

property-(R1) if for v ∈ V, F ∈ F , r1, r2 > 0 the conditions r(v, F ) < r1 + r2

and Sr2(F ) ∩ V 6= ∅ imply that V ∩B[v, r1] ∩ Sr2(F ) 6= ∅.
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The above is a set-valued analogue of the 11
2 -ball property ([14]) and

clearly a subspace V has the 11
2 -ball property in X if (X,V,F) has property-

(R1) and F contains the singletons. The article by Pai and Nowroji ([10])

reported that if (X,V,F) exhibits property-(R1), then it has rcp. However,

in [7] it is demonstrated that the 11
2 -ball property is insufficient to ensure

rcp for finite subsets. In this context we recall [12, Proposition 2.2]. It is

observed for a family of bounded subsets F , if for all F ∈ F , CentBY
(F ) 6= ∅

for a subspace Y , then for all F ∈ F , CentY (F ) 6= ∅. This concludes if

(X,BX ,F) exhibits rcp, then CentX(F ) 6= ∅ for all F ∈ F .

Several characterizations for property-(R1) have been derived by Daptari

and Paul [3]. It is clear that for an arbitrary V ∈ C(X) and v ∈ V , r(v, F ) ≤

radV (F ) + d(v,CentV (F )), for all F ∈ B(X).

Theorem 1.2. [3, Theorem 2.4] Let V be a closed convex subset of X.

Then, the triplet (X,V,F) exhibits property-(R1) if and only if for v ∈ V

and F ∈ F , r(v, F ) = radV (F ) + d(v,CentV (F )).

Daptari and Paul [4] studied a stronger version of property-(R1), called

strong property-(R1), which is in fact a set-valued version of the strong 11
2 -

ball property (see [7]).

Definition 1.3. [4] Let V ∈ C(X) and F ⊆ B(X). The triplet (X,V,F)

exhibits strong property-(R1) if for v ∈ V, F ∈ F , r1, r2 > 0 the conditions

r(v, F ) ≤ r1 + r2 and Sr2(F ) ∩ V 6= ∅ imply that V ∩B[v, r1] ∩ Sr2(F ) 6= ∅.

Several characterizations and examples of strong property-(R1) are pro-

vided in [4]. Certain properties relevant to this study are listed below.

Theorem 1.4. Let X be a Banach space, V be a subspace of X, and F be

a subfamily of B(X). Then, the following are equivalent.

(a) (X,V,F) exhibits strong property-(R1).

(b) (X,V,F) exhibits property-(R1) and ∀ F ∈ F , CentBV
(F ) 6= ∅.

(c) ∀ v ∈ V and F ∈ F , r(v, F ) = radV (F ) + ‖v − z‖, for certain

z ∈ CentV (F ).

In all the above characterizations for (strong) property-(R1), one can

choose v = 0. In [3] Daptari and Paul reported that the space C(K) where

K is a compact Hausdorff space yields many subspaces that satisfy (strong)

property-(R1). It is well-known that an M -ideal (see [6, pg.1]) in a Linden-

strauss space is categorized as such a subspace (see [10, Proposition 2.3] and
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[4, Theorem 3.6]). For instance, if x∗ is an extreme point of the dual unit

ball of a Lindenstrauss space X, then ker(x∗) exhibits strong property-(R1)

for the set of all compact subsets of X. The result in [10, Proposition 2.3]

follows directly in consideration of Theorem 2.4 when combined with [4,

Theorem 3.5]. This study examined (strong) property-(R1) and establishes

various consequences, stability properties, and examples thereof.

1.2. Summary of results: The remainder of this paper is structured as

follows.

Section 2 discusses several phenomena associated with property-(R1) and

strong property-(R1). It is demonstrated with respect to the finite sub-

sets of a Lindenstrauss space, the unit ball exhibits strong property-(R1).

Moreover, it is observed if (X,Y,F(X)) exhibits strong property-(R1), then

(X,BY ,F(BX )) has property-(P1).

A projection P : X → X such that ‖P‖ ≤ 1, ‖I − P‖ ≤ 1 is referred

to as a bi-contractive projection on X. In Section 3, the range of any bi-

contractive projection in ℓ∞ is derived as exhibiting strong property-(R1)

with respect to the compact subsets. This concludes the unit ball of such

subspaces exihibits restricted Chebyshev center for all compact subsets of

ℓ∞.

Section 4 demonstrates that the properties considered in this study re-

main stable under continuous function spaces. For a compact Hausdorff

space K, C(K,X) is considered to be the vector space of all continuous

functions fromK that take values inX. For an f ∈ C(K,X), supk∈K ‖f(k)‖

defines a norm that makes the space complete. It is demonstrated that if

(X,Y,F(X)) exhibits property-(R1), then (C(K,X), C(K,Y ),F(C(K,X)))

has property-(R1), and vice versa. This study adopts the technique used by

Yost in [14, Theorem 2.1] to confirm that a Weierstrass–Stone subspace of

C(K,X) exhibits strong property-(R1) for the finite subsets.

Section 5 discusses a few cases when (strong) property-(R1) is stable with

respect to various sums of Banach spaces.

2. Various aspects of property-(R1)

The following theorem can be obtained from certain standard inequalities:

|radV (F1) − radV (F2)| ≤ dH(F1, F2), |r(v1, F ) − r(v2, F )| ≤ ‖v1 − v2‖, for
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v1, v2 ∈ V and F1, F2, F ∈ B(X). Here, dH represents the Hausdorff metric

defined over B(X).

Theorem 2.1. Let X be a Banach space and V ∈ C(X). If (X,V,F(X))

exhibits property-(R1), then (X,V,K(X)) exhibits property-(R1).

Similar to Theorem 2.1, in certain cases, the strong property-(R1) of a

V ∈ C(X) for finite subsets is sufficient for ensuring the same for compact

subsets.

Theorem 2.2. Let X be a Banach space. Let (X, τX) represents a locally

convex topological vector space, where τX be a topology weaker than (X, ‖.‖).

In addition to that, we assume that any (norm) bounded net in X has a

τX convergent subnet in X, and ‖.‖ is lower semicontinuous in (X, τX).

Then, for a τX-closed V ∈ C(X), (X,V,K(X)) exhibits strong property-(R1)

whenever (X,V,F(X)) has strong property-(R1).

Proof. Let K ∈ K(X). The aim is to prove that r(0,K) = radV (K) + ‖z‖

for certain z ∈ CentV (K).

There exists a sequence Fn ∈ F(X) such that dH(K,Fn) → 0 as n→ ∞.

Thus, r(0, Fn) = radV (Fn) + ‖zn‖, where zn ∈ CentV (Fn) for all n ∈ N.

Because (zn) is bounded in X, there exists a subnet (zni
) of (zn) such that

zni
→ z in (X, τX ) for a certain z ∈ V . Hence,

‖z‖ ≤ lim inf
i

‖zni
‖ = lim inf

i
[r(0, Fni

)− radV (Fni
)] = r(0,K)− radV (K).

Claim: r(z,K) = radV (K).

Because zni
→ z in (X, τX), the following is obtained.

r(z,K) ≤ lim inf
i

r(zni
,K)

≤ lim inf
i

[r(zni
, Fni

) + d(Fni
,K)]

= lim inf
i

[radV (Fni
) + d(Fni

,K)] = radV (K)

Hence, r(z,K) = radV (K), and thus z ∈ CentV (K). Therefore,

d(0,CentV (K)) ≤ ‖z‖ ≤ r(0,K) − radV (K). The other inequality is ev-

ident. This completes the proof. �

The following is obtained by applying Theorem 2.2.

Corollary 2.3. Let X be a dual (reflexive) Banach space and V be a weak∗

(respectively, norm) closed convex subset of X. If (X,V,F(X)) exhibits

strong property-(R1), then (X,V,K(X)) exhibits strong property-(R1).
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Following the arguments used in [12, Lemma 2.1] it is easy to observe

that,

Theorem 2.4. Let Y be a subspace of X and F be a subfamily of B(X). If

(X,BY ,F) has (strong) property-(R1) then (X,Y,F) has (strong) property-

(R1).

Let V ∈ C(X). Let us recall the following.

Definition 2.5. [10] For a subfamily F ⊆ B(X), the triplet (X,V,F) ex-

hibits property-(P1) if for ε > 0 and F ∈ F there exists δ(ε, F ) > 0 such

that δ − CentV (F ) ⊆ CentV (F ) + εBX .

(X,V,F) exhibits property-(P1) if it has property-(R1). In addition, a

Banach space X is considered a Lindenstrauss space if X∗ is isometric with

L1(µ) for a certain measure space (Ω,Σ, µ). [9] is a standard reference for

a comprehensive study of Lindenstrauss-type Banach spaces. Furthermore,

X is a Lindenstrauss space if and only if for any finite family of closed balls

{Bi}
n
i=1 that are pairwise intersecting in X, they actually intersect in X

([9, Theorem 5.5, 6.1]). In this statement, n can be replaced with 4. As

discussed in Section 1, our next theorem extends the fact that any finite

subset of a Lindenstrauss space has a nonempty Chebyshev center.

Theorem 2.6. Let X be a Lindenstrauss space. Then, (X,BX ,F(X)) has

rcp.

Proof. Let F ∈ F(X) be such that F = {z1, z2, . . . , zn}. Consider the family

of balls B = {BX , B[z1, radBX
(F )], B[z2, radBX

(F )], . . . , B[zn, radBX
(F )]}.

Evidently, for any two zi, zj ∈ F , ‖zi − zj‖ ≤ 2.radBX
(F ).

Furthermore, for z ∈ F , ‖z − 0‖ ≤ r(0, F ) ≤ r(s, F ) + 1 for any s ∈ BX .

Hence, ‖z−0‖ ≤ radBX
(F )+1 from where it follows that B[z, radBX

(F )]∩

BX 6= ∅. Because X is L1-predual,
⋂

B∈B B 6= ∅.

Hence, the result follows. �

Theorem 2.7. Let X be a Lindenstrauss space. Then, (X,BX ,F(X)) ex-

hibits property-(P1).

Proof. Let F ∈ F(X) such that F = {z1, · · · , zn} and ε > 0. Let x ∈

ε− CentBX
(F ).

Claim: x ∈ CentBX
(F ) + εBX .
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Our assumption yields ‖x − zi‖ ≤ radBX
(F ) + ε for all i = 1 · · · , n.

Thereafter, B[x, ε] ∩ B[zi, radBX
(F )] 6= ∅ for all i = 1 · · · , n. Additionally,

‖zi − zj‖ ≤ 2.radBX
(F ). Further, we have ‖zi − 0‖ ≤ r(0, F ) ≤ r(s, F ) + 1

for all s ∈ BX for all i = 1, · · · , n. Hence, ‖zi−0‖ ≤ radBX
(F )+1. Since X

is a Lindenstrauss space, we have B[x, ε]∩ (∩ni=1B[zi, radBX
(F )])∩BX 6= ∅.

In other words, B[x, ε] ∩ CentBX
(F ) 6= ∅, and hence the claim follows. �

Remark 2.8. (a) Let us recall that (see [3, Theorem 2.4]) the case

δ = ε in the definition of property-(P1) ensures property-(R1).

Hence, we have (X,BX ,F(X)) has property-(R1) when X is a Lin-

denstrauss space. In fact, we can draw a stronger conclusion, as

derived in Theorem 2.9.

(b) From [3, Theorem 2.5], it now follows that if X is a Lindenstrauss

space, then CentBX
: (F(X), dH ) → (B(X), dH ) is Lipschitz contin-

uous.

Theorem 2.9. Let X be a Lindenstrauss space. Then, (X,BX ,F(X)) ex-

hibits strong property-(R1).

Proof. Let x ∈ BX and F = {z1, z2, . . . , zn} ∈ F(X). Furthermore, let

r(x, F ) ≤ r1 + r2 and Sr2(F ) ∩BX 6= ∅ for r1, r2 > 0.

The condition r(x, F ) ≤ r1+ r2 ensures B[x, r1]∩B[zi, r2] 6= ∅ for 1 ≤ i ≤

n. In addition, Sr2(F ) ∩BX 6= ∅ ensures that ‖zi − zj‖ ≤ 2r2 for i 6= j and

B[zi, r2] ∩BX 6= ∅. However, owing to n.2.I.P. of X, BX ∩
⋂n
i=1B[zi, r2] ∩

B[x, r1] 6= ∅ is obtained. This completes the proof. �

As discussed in Theorem 1.4, CentBY
(F ) 6= ∅ for F ∈ F(X) if

(X,Y,F(X)) exhibits strong property-(R1). In Theorem 2.10 it is derived

that BY admits property-(P1) for a suitable subfamily of finite subsets of

X.

Theorem 2.10. Let (X,Y,F(X)) exhibit strong property-(R1). Then,

(X,BY ,F(BX )) has property-(P1).

Proof. We utilize the techniques used in [7, Theorem 2.9]. The detailed

proof is included for completeness.

Let F ∈ F(BX), d = radY (F ) > 0, and r(0, F ) < 1 + d. Hence, there

exists η > 0 such that r(0, F )− d = 1− η.

Considering ε > 0, choose 0 < δ < 1 such that δ + 3δ
δ+η < ε.
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Now, d = radBY
(F ) (see [4, Theorem 3.8]). Let y ∈ δ − CentBY

(F )(that

is, r(y, F ) < radBY
(F ) + δ). Now, by strong property-(R1), r(y, F ) =

radY (F )+d(y,CentY (F )) = d+ inf
z∈CentY (F )

‖z−y‖, that is, d(y,CentY (F )) =

r(y, F )− d < δ. Hence, there exists y0 ∈ CentY (F ) such that ‖y− y0‖ < δ.

Clearly, ‖y0‖ < ‖y‖+ δ ≤ 1 + δ.

Claim: There exists z ∈ CentY (F ) ∩BY such that ‖y − z‖ < ε.

Now, r(0, F )−d = 1−η = d(0,CentY (F )) and there exists z1 ∈ CentY (F )

with ‖z1‖ = 1− η.

Let wλ = λy0 + (1 − λ)z1, then ‖wλ‖ ≤ λ(1 + δ) + (1 − λ)(1 − η) =

1 + δλ− (1− λ)η.

Now, 1 + δλ− (1− λ)η = 1 ⇐⇒ 1− λ = δ
δ+η ⇐⇒ λ = η

δ+η .

Let λ = η
δ+η and z = wλ, then 0 < λ < 1.

‖y0 − z‖ = (1− λ)‖y0 − z1‖ ≤ 3δ
δ+η because ‖y0 − z1‖ ≤ 2 + 1 = 3.

Additionally, z ∈ CentY (F ) because CentY (F ) is convex and ‖z‖ ≤ 1 +

δλ− (1− λ)η = 1.

Hence, we have z ∈ CentBY
(F ) and ‖y − z‖ ≤ ‖y − y0‖ + ‖y0 − z‖ <

δ + 3δ
δ+η < ε. This proves the claim.

Hence, δ − CentBY
(F ) ⊆ CentBY

(F ) + εBX . �

Theorem 2.11. Let Y be a subspace of a Banach space X. If

(X∗∗, Y ⊥⊥,F(X∗∗)) has property-(R1), then (X,Y,F(X)) has property-

(R1).

Proof. The proof is straightforward and follows from the extended version

of Principle of local reflexivity, as stated in [1, Theorem 3.2]. �

We do not have the answer to the following question.

Question 2.12. Let Y be a subspace of X. Does the triplet

(X∗∗, Y ⊥⊥,F(X∗∗)) have property-(R1) if (X,Y,F(X)) has the property-

(R1)?

3. Examples from subspaces of ℓ∞

Let us recall that a subspace Y of X has the 11
2 -ball property if and only

if for x ∈ X, ‖x‖ = d(x, Y ) + d(0, PY (x)) (see [5]). Here PY (x) = {y ∈

Y : ‖x − y‖ = d(x, Y )}, the set of points in Y which are nearest to x. It

is well-known that in ℓ∞(2), the subspace span{(1, 1)} = Z (say) has the

11
2 -ball property. The simplest manner of observing this is that for any
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(p, q) ∈ ℓ∞(2), d((p, q), Z) = |p−q|
2 and the unique best approximation from

(p, q) to the subspace Z is (p+q2 , p+q2 ). Hence for (p, q) ∈ ℓ∞(2), the above

identity turns out to be equivalent to |p| ∨ |q| = |p−q2 |+ |p+q2 |, which is true

for an arbitrary pair of real numbers p, q.

Consequently, using similar arguments, it can be easily observed that

span{(1,−1)} (=W say) has the 11
2 -ball property in ℓ∞(2). This study

claims that both subspaces, viz. Z,W , exhibit property-(R1) for finite sub-

sets of ℓ∞(2).

Proposition 3.1. Let X = ℓ∞(2) and Z = span{(1, 1)}. Then,

(X,Z,F(X)) exhibits strong property-(R1).

Proof. Let F ∈ F(X). Furthermore, let (z, z) ∈ Z and r1, r2 > 0 be such

that r((z, z), F ) ≤ r1 + r2 and Sr2(F ) ∩ Z 6= ∅.

Claim: B[(z, z), r1] ∩ Sr2(F ) ∩ Z 6= ∅.

If card(F ) = 1, then the claim follows from the fact that Z has the

11
2 -ball property in X. Suppose that the assertion holds for card(F ) =

n. The following proof is when card(F ) = n + 1. Assume that F =

{(x1, y1), (x2, y2), . . . , (xn+1, yn+1)}.

Let (p, p) ∈ Sr2(F )∩Z = ∩n+1
i=1 B[(xi, yi), r2]∩Z. Because Z exhibits strong

property-(R1) when F has n elements, the following is obtained for certain

(si, si) ∈ ℓ∞(2) for i = 1, 2, . . . , n: (si, si) ∈ B[(z, z), r1]∩∩n+1
j=1
j 6=i

B[(xj, yj), r2].

Here, s1, s2 are chosen and the arguments are as stated below.

Case 1: When p ≤ s1 ≤ s2.

Then, −r2 ≤ p−x1 ≤ s1−x1 ≤ s2−x1 ≤ r2 and −r2 ≤ p−y1 ≤ s1−y1 ≤

s2 − y1 ≤ r2, and thus (s1, s1) ∈ B[(x1, y1), r2].

Thus, (s1, s1) ∈ B[(z, z), r1] ∩
⋂n+1
i=1 B[(xi, yi), r2] ∩ Z = B[(z, z), r1] ∩

Sr2(F ) ∩ Z.

Similar arguments can be used for the cases:

Case 2: p ≤ s2 ≤ s1,

Case 3: s1 ≤ s2 ≤ p and

Case 4: s2 ≤ s1 ≤ p.

We now remain with the following cases.

Case 5: When s1 ≤ p ≤ s2.

Then, z ≤ s1+ r1 ≤ p+ r1 and p− r1 ≤ s2− r1 ≤ z, and thus |p− z| ≤ r1.

Thus, (p, p) ∈ B[(z, z), r1] ∩
⋂n+1
i=1 B[(xi, yi), r2] ∩ Z = B[(z, z), r1] ∩

Sr2(F ) ∩ Z.
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Case 6: When s2 ≤ p ≤ s1.

Then, z ≤ s2+ r1 ≤ p+ r1 and p− r1 ≤ s1− r1 ≤ z, and thus |p− z| ≤ r1.

Thus, (p, p) ∈ B[(z, z), r1] ∩
⋂n+1
i=1 B[(xi, yi), r2] ∩ Z = B[(z, z), r1] ∩

Sr2(F ) ∩ Z.

Hence, the result follows when card(F ) = n + 1, and this completes the

proof. �

Moreover, a similar conclusion can be derived for the subspace

span{(1,−1)}.

Proposition 3.2. Let X = ℓ∞(2) and W = span{(1,−1)}. Then,

(X,W,F(X)) has strong property-(R1) in X.

We now establish that the range of any bi-contractive projection in ℓ∞

exhibits property-(R1). Let us recall that, if P : ℓ∞ → ℓ∞ is a bi-contractive

projection, then either Px(n) = x(n)+x(τ(n))
2 or Px(n) = x(n)−x(τ(n))

2 for

x ∈ ℓ∞ and n ∈ N (see [2, Theorem 3.9]). Here, τ : N → N is a permutation

such that τ2 = I (identity).

Thus, if P is a bi-contractive projection on ℓ∞ and τ is the corresponding

permutation on N, then, for n ∈ N, either τ(n) = n or τ(n) = m for certain

m ∈ N and, in the second case, τ(m) = n. This concludes for a bi-contractive

projection P : ℓ∞ → ℓ∞,

(1) When τ(n) = n: either Px(n) = x(n) or Px(n) = 0.

(2) When τ(n) = m (n 6= m): either (Px(n), Px(m)) = α(1, 1), or

(Px(n), Px(m)) = α(1,−1) for some scalar α.

Hence, if P 6= 0, then P (ℓ∞) is isometrically isomorphic with either

(Πn∈A(αn, αn))∞ ⊕∞ (Πm∈B(βm,−βm))∞ ⊕∞ W or ℓ∞. Here, W is an

M -summand of ℓ∞ and A,B ⊆ N. Based on [4, Theorem 3.5], W exhibits

strong property-(R1) in ℓ∞. Furthermore, the subspaces (Πn∈A(αn, αn))∞
and (Πm∈B(βm,−βm))∞ exhibit strong property-(R1) in ℓ∞ when consider-

ing Propositions 3.1 and 3.2 and Theorem ??. Finally, according to Theo-

rem ??, the subspace range(P ) has strong property-(R1) in ℓ∞. Hence, the

following is obtained.

Theorem 3.3. Let P be a bi-contractive projection in ℓ∞ and Y =

range(P ). Then, (ℓ∞, Y,F(ℓ∞)) has strong property-(R1).

We now consider the derivation for the subspace span{(1, 1, . . . , 1, . . .)},

which exhibits strong property-(R1) in ℓ∞ for finite subsets.
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Theorem 3.4. Let X = ℓ∞ and Y = span{(1, 1, . . .)}. Then, (X,Y,F(X))

exhibits strong property-(R1).

Proof. Let F ∈ F(X), (x, x, . . .) ∈ Y , r1, r2 > 0 be such that

r((x, x, . . .), F ) ≤ r1 + r2 and Sr2(F ) ∩ Y 6= ∅.

Claim: B[(x, x, . . .), r1] ∩ Sr2(F ) ∩ Y 6= ∅.

Step 1: Let card(F ) = 1. Let F = {(x(1), x(2), . . .)}. Then, we

have B[(x, x, . . .), r1]∩B[(x(1), x(2), . . .), r2] 6= ∅ and B[(x(1), x(2), . . .), r2]∩

Y 6= ∅. Let (z(1), z(2), . . .) ∈ B[(x, x, . . .), r1] ∩ B[(x(1), x(2), . . .), r2] and

(y, y, . . .) ∈ B[(x(1), x(2), . . .), r2].

Let α = inf
i∈N

z(i) and β = sup
i∈N

z(i). Then, α ≤ z(i) ≤ β for all i ∈ N.

Case 1: When y ≤ α.

Then, y ≤ α ≤ z(i) for all i ∈ N. Then, −r2 ≤ y − x(i) ≤ α − x(i) ≤

z(i) − x(i) ≤ r2 for all i ∈ N. Hence, |α − x(i)| ≤ r2 for all i ∈ N. Let

ε > 0. Then, there exists N ∈ N such that z(N) − ε ≤ α. Hence, x − ε ≤

z(N) + r1 − ε ≤ α+ r1 and α− r1 ≤ z(N)− r1 ≤ x. Thus, |α− x| ≤ r1 + ε.

Therefore, (α,α, . . .) ∈ B[(x, x, . . .), r1] ∩B[(x(1), x(2), . . .), r2].

Case 2: When α ≤ y ≤ β.

Let ε > 0. There exists N,N ′ ∈ N such that z(N) − ε ≤ α and β ≤

z(N ′) + ε. Subsequently, x − ε ≤ z(N) − ε + r1 ≤ α + r1 ≤ y + r1 and

y − r1 ≤ β − r1 ≤ z(N ′) + ε− r1 ≤ x+ ε. Then, |y − x| ≤ r1 + ε.

Hence, (y, y, . . .) ∈ B[(x, x, . . .), r1] ∩B[(x(1), x(2), . . .), r2].

Case 3: When β ≤ y.

Then, z(i) ≤ β ≤ y for all i ∈ N. Furthermore, −r2 ≤ z(i) − x(i) ≤

β − x(i) ≤ y − x(i) ≤ r2 for all i ∈ N. Hence, |β − x(i)| ≤ r2 for all i ∈ N.

Let ε > 0. Then, there exists N ∈ N such that β ≤ z(N) + ε. Hence,

x ≤ z(N) + r1 ≤ β + r1 and β − r1 ≤ z(N) − r1 + ε ≤ x + ε. Thus,

|β − x| ≤ r1 + ε.

Thus, (β, β, . . .) ∈ B[(x, x, . . .), r1] ∩B[(x(1), x(2), . . .), r2].

Hence, (X,Y,F(X)) has strong property-(R1) when card(F ) = 1.

Step 2: Suppose that the assertion holds for all F ∈ F(X) when

card(F ) = n. Let card(F ) = n + 1. Let F = {x1, . . . , xn+1},

where xi = (xi(1), xi(2), . . .) for i = 1, . . . , n + 1. Then, we have

B[(x, x, . . .), r1] ∩ B[(xi(1), xi(2), . . .), r2] 6= ∅ for all i = 1, . . . , n + 1

and ∩n+1
i=1 B[(xi(1), xi(2), . . .), r2] ∩ Y 6= ∅. Now, because (X,Y,F(X))
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exhibits property-(R1) when card(F ) = n, the following is ob-

tained: B[(x, x, . . .), r1] ∩ ∩n+1
i=1
i 6=2

B[(xi(1), xi(2), . . .), r2] ∩ Y 6= ∅ and

B[(x, x, . . .), r1] ∩ ∩n+1
i=2 B[(xi(1), xi(2), . . .), r2] ∩ Y 6= ∅. Let (p, p, . . .) ∈

B[(x, x, . . .), r1] ∩ ∩n+1
i=1
i 6=2

B[(xi(1), xi(2) . . .), r2], (q, q, . . .) ∈ B[(x, x, . . .), r1] ∩

∩n+1
i=2 B[(xi(1), xi(2), . . .), r2] and (s, s, . . .) ∈ ∩n+1

i=1 B[(xi(1), xi(2), . . .), r2].

Case 1: When s ≤ p ≤ q.

Then, −r2 ≤ s − x2(i) ≤ p − x2(i) ≤ q − x2(i) ≤ r2 for all i ∈ N. Thus,

(p, p, . . .) ∈ B[(x2(1), x2(2), . . .), r2].

Hence, (p, p, . . .) ∈ B[(x, x, . . .), r1] ∩ ∩n+1
i=1 B[(xi(1), xi(2), . . .), r2].

Similar ideas can be adopted to establish the following cases.

Case 2: s ≤ q ≤ p.

Case 3: p ≤ q ≤ s.

Case 4: q ≤ p ≤ s.

We now remain with the following cases.

Case 5: p ≤ s ≤ q.

Then, x ≤ p+ r1 ≤ s+ r1 and s− r1 ≤ q − r1 ≤ x. Thus, |s− x| ≤ r1.

Hence, (s, s, . . .) ∈ B[(x, x, . . .), r1] ∩ ∩n+1
i=1 B[(xi(1), xi(2), . . .), r2].

Case 6: When q ≤ s ≤ p.

Then, x ≤ q + r1 ≤ s+ r1 and s− r1 ≤ p− r1 ≤ x. Thus, |s− x| ≤ r1.

Hence, (s, s, . . .) ∈ B[(x, x, . . .), r1] ∩ ∩n+1
i=1 B[(xi(1), xi(2), . . .), r2].

Thus, the assertion holds for all F ∈ F(X). �

It is clear that the subspaces of type (Πn(αn, αn))∞ or (Πm(βm,−βm))∞
stated before Theorem 3.3 are w∗-closed, and so is the subspace in Theo-

rem 3.4. Hence, by Corollary 2.3, the conclusions in Theorems 3.3 and 3.4

remain valid for K(X).

4. Subspaces of C(K,X) with property-(R1)

In this section, the following fact is proven. ByK and C(K,X), we denote

a compact Hausdorff space and the Banach space of X-valued continuous

functions over K, as discussed in Section 1.

Theorem 4.1. Let Y be a subspace of X. Then, (X,Y,F(X)) has property-

(R1) if and only if (C(K,X), C(K,Y ),F(C(K,X))) has property-(R1).
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Before proving Theorem 4.1, a few supporting results must be derived.

For a real valued function f : S → R, we denote S(f) = {t ∈ S : f(t) 6= 0},

the support of f .

Proposition 4.2. Let f1, f2, . . . , fk ∈ C(K) and ε > 0. Then, there exists

a finite family (ϕi)
m
i=1 ⊆ C(K), where (ϕi)

m
i=1 forms a partition of unity and

there exists h1, h2, . . . , hk ∈ span{ϕi : 1 ≤ i ≤ m} such that ‖fi − hi‖∞ < ε

for 1 ≤ i ≤ k.

Proof. Case 1: When k = 1.

Let {Vi : 1 ≤ i ≤ n} be a finite open cover of K such that |f(z)−f(w)| < ε

for z, w ∈ Vi and 1 ≤ i ≤ n. Let (ϕi)
n
i=1 be a partition of unity such that

0 ≤ ϕi ≤ 1, 1 ≤ i ≤ n and S(ϕi) ⊆ Vi ([11, Theorem 2.13]). Choose vi ∈ Vi

and define h =
∑n

i=1 f(vi)ϕi. Then, |f(x) − h(x)| = |
∑n

i=1 f(x)ϕi(x) −
∑n

i=1 f(vi)ϕi(x)| ≤
∑

j |ϕij (x)||f(x) − f(vij )|. The last sum is taken over

all those j’s for which x ∈ Vij . Clearly,
∑

j ϕij (x)|f(x)− f(vij)| ≤ ε.

Case 2: When k > 1.

Without loss of generality, this study assumes that k = 2; no new ideas

are involved in other values of k.

Let (ϕi)
n
i=1 and (̺i)

m
i=1 be two partitions of unity in C(K), such that there

exists h1, h2, where h1 ∈ span{ϕi : 1 ≤ i ≤ n} and h2 ∈ span{̺i : 1 ≤ i ≤

m}, where ‖fi − hi‖ < ε for i = 1, 2. Then, {ϕi̺j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a partition of unity and hi ∈ span{ϕi̺j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. This

completes the proof. �

Let (ϕi)
N
i=1 be a finite partition of unity in C(K) corresponding to an

open cover U of K obtained as in [11, Theorem 2.13]. Then, we call (ϕi)
N
i=1

a partition of unity in C(K) subordinate to the cover U . In this case, (ϕi)
N
i=1

corresponds to a subspace Z of C(K,X): Z = {
∑N

i=1 xiϕi : xi ∈ X, 1 ≤ i ≤

n}. It is clear that Z ∼=
⊕

ℓ∞(N)X.

Proposition 4.3. Let X be a Banach space, K be a compact Hausdorff

space, and f1, f2, . . . , fn ∈ C(K,X). Then, for ε > 0, there exists a subspace

Z of C(K,X), where Z ∼=
⊕

ℓ∞(m)X for some m, and d(fi, Z) ≤ ε, 1 ≤ i ≤

n.

Proof. This study followed Proposition 4.2 to construct a subspace Z ⊆

C(K,X). If Si = fi(K), then Si ⊆ X is a compact set. Let us fix i. For

every s ∈ Si, let B(s, ε) ∩ Si be a ball in Si. For a finite sub-cover Ui
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of {f−1
i (B(s, ε) ∩ Si) : s ∈ Si}, we may choose a finite partition of unity

subordinate to the cover Ui; say, (ϕj). If (sj)
n
j=1 ⊆ Si is a finite set of points

corresponding to the cover Ui, then ‖fi −
∑

j ϕjsj‖ ≤ ε.

We now continue the process for other values of i. Following the argu-

ments for n functions as derived in Proposition 4.2, it is concluded for a

finite dimensional subspace Z of C(K,X), where Z ∼=
⊕

ℓ∞(m)X, for some

m ∈ N. Clearly, d(fi, Z) ≤ ε, 1 ≤ i ≤ n, and this completes the proof. �

We state the following result without proof, which is useful to derive

Theorem 4.5. A routine verification of the (strong) property-(R1) can lead

to the proof of the following. We derive similar results in Section 5. For any

unexplained notation used in Theorem 4.4, we refer to section 5.

Theorem 4.4. Let Y be a subspace of X. Then, (X,Y,B(X)) exhibits

(strong) property-(R1) if and only if (X∞, Y∞,B(X∞)) exhibits (strong)

property-(R1).

We are now ready to prove Theorem 4.1.

Theorem 4.5. Let Y be a subspace of X. Then, (X,Y,F(X)) has property-

(R1) if and only if (C(K,X), C(K,Y ),F(C(K,X))) has property-(R1).

Proof. Let F ∈ F(C(K,X)) and g ∈ C(K,Y ). Let r1, r2 > 0 such that

Sr2(F ) ∩C(K,Y ) 6= ∅ and r(g, F ) ≤ r1 + r2. Consequently, the following is

developed.

Claim: Sr2+ε(F ) ∩B(g, r1 + ε) ∩ C(K,Y ) 6= ∅ for all ε > 0.

Suppose that h ∈ Sr2(F ) ∩ C(K,Y ). From Proposition 4.3, there exists

Z ⊆ C(K,X), where Z ∼=
⊕

ℓ∞(k)X for certain k such that for all f ∈ F ,

d(f, Z) < ε. Let F = {f1, f2, . . . , fn} and F ′ = {f ′1, f
′
2, . . . , f

′
n} where f ′i ∈ Z

and ‖fi − f ′i‖ < ε. Additionally, there exists W ⊆ C(K,Y ), where W ∼=
⊕

ℓ∞(m) Y such that there exist g′, h′ ∈W and ‖g−g′‖ < ε, ‖h−h′‖ < ε, here

g and h are taken as above. Subsequently, without loss of generality, m = k

may be assumed. Furthermore, from the assumption, Sr2+2ε(F
′) ∩W 6= ∅

and r(g′, F ′) ≤ r1 + r2 + 2ε is obtained. In addition, from Theorem 4.4

(
⊕

ℓ∞(k)X,
⊕

ℓ∞(k) Y,F(
⊕

ℓ∞(k)X)) with property-(R1) is obtained; hence,

Sr2+2ε(F
′) ∩B(g′, r1 + 2ε) ∩W 6= ∅.

Let h ∈ Sr2+2ε(F
′) ∩ B(g′, r1 + 2ε) ∩ W . After identifying h with an

element in C(K,Y ), we obtain h ∈ Sr2+3ε(F ) ∩ B(g, r1 + 3ε) ∩ C(K,Y ).

Moreover, because ε > 0 is arbitrary, the proof follows. �
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However, it is not yet known whether analogous results such as Theo-

rem 4.5 are true for the spaces of the form L1(µ,X) or not. Neverthe-

less, if the triplet (L1(µ,X), L1(µ, Y ),F(L1(µ,X))) has property-(R1), then

(X,Y,F(X)) has property-(R1).

Theorem 4.6. Let E be a real Lindenstrauss space, K and S be compact

Hausdorff spaces, and ψ : K → S be a continuous onto map. Let ψ∗ :

C(S,E) → C(K,E) be the natural isometric embedding expressed as ψ∗f =

f ◦ ψ. Then, (C(K,E), ψ∗C(S,E),F(C(K,E))) exhibits strong property-

(R1).

Proof. Let F ∈ F(C(K,E)) such that F = {f1, . . . , fn}. Suppose that r > 0

such that r(0, F ) ≤ 1 + r and Sr(F ) ∩ ψ
∗C(S,E) 6= ∅. Furthermore, define

η : S → B(E) by

η(y) = B[0, 1] ∩





⋂

k∈ψ−1(y)

∩ni=1 B[fi(k), r]





= B[0, 1] ∩
(

∩ni=1{a ∈ E : fi(ψ
−1(y)) ⊆ B[a, r]}

)

.

Each η(y) is closed and convex.

Claim: η(y) 6= ∅ for all y ∈ S.

Let ψ∗g ∈ ψ∗C(S,E) ∩ Sr(F ) = ψ∗C(S,E) ∩ (∩ni=1B[fi, r]).

For k1, k2 ∈ ψ−1(y), we have

‖fi(k1)− fj(k2)‖ ≤ ‖fi(k1)− g(y)‖ + ‖fj(k2)− g(y)‖

≤ ‖fi − ψ∗g‖+ ‖fj − ψ∗g‖ ≤ 2r

for i, j = 1, . . . , n. Hence, B[fi(k1), r]∩B[fj(k2), r] 6= ∅. Because ‖fi‖ ≤ r+

1, B[0, 1]∩B[fi(k), r] 6= ∅ for all i = 1, . . . , n. Thus, the entire family of balls

defining η(y) has a pairwise non-empty intersection property. Moreover,

owing to the collection of centers {0}∪∪ni=1fi(ψ
−1(y)) being compact, η(y) 6=

∅ is obtained.

Claim: η is lower semicontinuous.

Let G ⊆ E be open, and y0 ∈ {y : η(y) ∩ G 6= ∅} and a ∈ η(y0) ∩ G.

Then, ‖a‖ ≤ 1, fi(ψ
−1(y0)) ⊆ B[a, r] and B[a, ε] ⊆ G for certain ε > 0

and for all i = 1, . . . , n. As K is compact, the map y → ψ−1(y) is upper

semicontinuous. Hence, N = ∩ni=1{y : fi(ψ
−1(y)) ⊆ intB[a, r+ε]} is an open

set containing y0. If y ∈ N , then B[a, ε] ∩B[fi(k), r] 6= ∅ for all k ∈ ψ−1(y)

and for all i = 1, . . . , n. Additionally, B[a, ε] ∩ B[0, 1] 6= ∅. Furthermore,
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because E is a real Lindenstrauss space, η(y) ∩ B[a, ε] 6= ∅ for all y ∈ N .

Thus, N ⊆ {y : η(y) ∩ G 6= ∅}, where {y : η(y) ∩ G 6= ∅} is open and η is

lower semicontinuous.

Now, applying Michael’s selection theorem, a continuous selection h :

S → E is obtained, such that h(y) ∈ η(y) for all y ∈ S. Accordingly,

ψ∗h ∈ ∩ni=1B[fi, r] ∩B[0, 1] ∩ ψ∗C(S,E). This completes the proof. �

The following is obtained as a consequence of Theorem 4.6.

Corollary 4.7. Let K,S,E, ψ be as in Theorem 4.6. Furthermore, y0 ∈ S

is set and let M = {ψ∗f : f ∈ C(S,E) and f(y0) = 0}. Then,

(C(K,E),M,F(C(K,E))) has strong property-(R1).

Proof. Let f, r, η be similar to that in the proof of Theorem 4.6. If ψ∗g ∈

M ∩ ∩ni=1B[fi, r], ‖fi(x)‖ = ‖fi(x) − ψ∗g(x)‖ ≤ r for all x ∈ ψ−1(y0) and

for all i = 1, . . . , n. Hence, 0 ∈ η(y0). If we define η0 : S → B(E) by

η0(y) =







η(y) if y 6= y0

{0} if y = y0

This η0 is clearly lower semicontinuous. Subsequently, on applying Michael’s

selection theorem, a continuous selection h : S → E is obtained, such that

h(y) ∈ η0(y) for all y ∈ K. Hence, the assertion follows. �

5. Stability results

For a Banach space X we introduce the following notations.

X0 =
⊕

c0
X = {(xn) : xn ∈ X, limn ‖xn‖ = 0},

X∞ =
⊕

ℓ∞
X = {(xn) : xn ∈ X, supn ‖xn‖ <∞}

X1 =
⊕

ℓ1
X = {(xn) : xn ∈ X,

∑

n ‖xn‖ <∞}
⊕

ℓ1(m)X = ⊕m
i=1X with norm

∑m
i=1 ‖xi‖ and

⊕

ℓ∞(m)X = ⊕m
i=1X with norm maxmi=1 ‖xi‖.

Theorem 5.1. Let Y be a subspace of X. Then, (X,Y,F(X)) has (strong)

property-(R1) if and only if (X0, Y0,F(X0)) has (strong) property-(R1).

Proof. First, the result for property-(R1) is derived.

It is sufficient to prove that (X0, Y0,F(X0)) exhibits property-(R1) if

(X,Y,F(X)) has property-(R1). Proof of this fact is outlined below.
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Let F ∈ F(X0) and F (n) ⊆ X be the corresponding component, that is,

F (n) ∈ F(X). Suppose F = {x1, . . . , xk}, y0 = (y0(n)) ∈ Y0 and r1, r2 > 0

be such that Sr2(F ) ∩ Y0 6= ∅ and r(y0, F ) < r1 + r2.

Claim: Sr2(F ) ∩B[y0, r1] ∩ Y0 6= ∅

It is clear that there exists N sufficiently large, such that 0 ∈ Sr2(F (n))∩

B[y0(n), r1] ∩ Y , for all n > N . Now, for 1 ≤ n ≤ N , we choose y(n) ∈

Sr2(F (n)) ∩ B[y0(n), r1] ∩ Y . As a result, an element (y(n)), a member of

the set as specified in the claim above, exists.

Nevertheless, regarding the remaining part, it is sufficient to prove

that (X0, Y0,F(X0)) exhibits strong property-(R1) if (X,Y,F(X)) exhibits

strong property-(R1).

This study only shows that CentBY0
(F ) 6= ∅, for F ∈ F(X0).

Let F ∈ F(X0) and F (n) ∈ F(X) be as defined above. Based on the

assumption, CentBY
(F (n)) 6= ∅ for all n ∈ N. Let y(n) ∈ CentBY

(F (n)) be

obtained for all n ∈ N.

It is clear that y = (y(n)) ∈
⊕

c0
Y , because radBY

(F (n)) → 0.

Since for any z = (z(1), z(2), · · · ) ∈
⊕

c0
BY , r(y, F ) ≤ r(z, F ) and be-

cause ‖(y(n))‖∞ ≤ 1, y ∈ Cent⊕
c0
BY

(F ) = CentBY0
(F ), the result follows

from Theorem 1.4. �

Remark 5.2. (a) If Y is a finite co-dimensional proximinal subspace

of c0, then there exists n ∈ N, such that Y = F ⊕∞ Z, where F is

a subspace of ℓ∞(n) and Z = {(xi) ∈ c0 : xi = 0, 1 ≤ i ≤ n}. From

Theorem 4.4, it is clear that Y has property-(R1) in c0 if and only

if F has property-(R1) in ℓ∞(n). We do not know the characteriza-

tion of αi ∈ ℓ1(n) where 1 ≤ i ≤ m, considering dim(c0/Y ) = m,

satisfying the condition that ∩i ker(αi) has property-(R1) in ℓ∞(n).

(b) If Y is a finite co-dimensional proximinal subspace of c0, then

from the decomposition Y = F ⊕∞ Z, it is also clear that Y has

property-(R1) in c0 if and only if Y has property-(R1) in ℓ∞.

We now consider the result for the ℓ1-sum.

Proposition 5.3. Let X be a Banach space and Y1, Y2 be two subspaces of

X. Then, for F1, F2 ∈ B(X) the following can be obtained:

(a) r((y1, y2), F1 × F2) = r(y1, F1) + r(y2, F2) ∀ (y1, y2) ∈ Y1 ⊕1 Y2.

(b) radY1⊕1Y2(F1 × F2) = radY1(F1) + radY2(F2).

(c) CentY1⊕1Y2(F1 × F2) = CentY1(F1)⊕1 CentY2(F2).
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(d) d(0,CentY1⊕1Y2(F1 × F2)) = d(0,CentY1(F1)) + d(0,CentY2(F2)).

Let X be a Banach space. For a fixed n, define H = {Πni=1Fi : Fi ∈

F(X)}. The following is obtained as a consequence of Proposition 5.3.

Theorem 5.4. Let X be a Banach space and Y be a subspace of X. Then,

(X,Y,F(X)) exhibits property-(R1) if and only if (
⊕

ℓ1(n)
X,

⊕

ℓ1(n)
Y,H)

exhibits property-(R1).

For a Banach space X, recall the notations defined before Sec-

tion 1.2. For F ∈ F(X), we identify F × F × . . . × F (n − times) with

{(x1, x2, . . . xn, 0, 0 . . .) : xi ∈ F}. Let F = {Πni=1Fi : Fi = F,F ∈ F(X), n ∈

N}. F is now identified with a subfamily of B(X1), more precisely a subfam-

ily of F(X1).

Theorem 5.5. Let Y be a subspace of X. Then, (X,Y,F(X)) exhibits

property-(R1) if and only if (X1, Y1,F) exhibits property-(R1).

Proof. Here, proving that the condition is sufficient concludes the proof.

Let W ∈ F, y ∈ Y1, and r1, r2 > 0 be such that r(y,W) < r1 + r2 and

Sr2(W) ∩ Y1 6= ∅. Then, clearly W = ΠNi=1Fi and we obtain a large l ∈

N(l > N) such that ‖yi‖ < r1 + r2, for all i ≥ l. Let Wl = {(x1, x2, . . . , xl) :

∃ (wi) ∈ W, xi = wi, 1 ≤ i ≤ l} and Λ = (y1, y2, . . . , yl).

It is clear that r(Λ,Wl) < r1 + r2 and Sr2(Wl) ∩
⊕

ℓ1(l)
Y 6= ∅.

Now, from Theorem 5.4, Sr2(Wl) ∩B[Λ, r1] ∩
⊕

ℓ1(l)
Y 6= ∅ is obtained.

Let (z1, · · · , zl) be in the intersection above. Let z = (z1, · · · , zl, 0, . . .).

Then, z ∈ Sr2(W) ∩B[y, r1] ∩ Y1. Hence, the conclusion follows. �

However, it is not known whether the ℓ1-sum remains stable for

(X1, Y1,F(X1)).
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