The dynamic behavior of magnetic antivortices stabilized in patterned pound-key-like microstructures was studied using microfocus Brillouin light scattering (micro-BLS) at frequencies above the gyrotropic mode (>1GHz). Micro-BLS spectra obtained as a function of the frequency of a driving microwave field show an intricate spectrum for the antivortex state for an in-plane driving field. Spatial mode profiles for the strongest antivortex resonance frequencies, obtained for samples in the antivortex as well as the single domain states, show that while the symmetry of one of the observed resonances is relatively insensitive to the spin configuration, the antivortex exhibits a unique mode profile for the other. A comparison with micromagnetic simulations shows that the frequency and symmetry of the latter are consistent with one of the antivortex azimuthal modes. Furthermore, the simulations show that this mode involves coupling between the antivortex spin excitations and propagating spin waves in the structure legs, which may be useful for high-wave-number spin-wave generation. © 2015 American Physical Society.