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Abstract

Recently a new mechanism has been proposed to cure the problem of fermion
mass hierarchy in the Standard Model (SM) model. In this scenario, all SM
charged fermions other than top quark arise from higher dimensional opera-
tors involving the SM Higgs field. This model also predicted some interesting
phenomenology of the Higgs boson. We generalize this model to accommodate
neutrino masses ( Dirac & Majorana ) and also obtain the mixing pattern in the
leptonic sector. To generate neutrino masses, we add extra three right handed
neutrinos (NiR) in this model.
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1 Introduction

The experimental observations from several neutrino oscillation data indicate that
neutrinos have mass of the order of O(10−10) GeV and they also mix (see [1] and [2]
for review). In the Standard Model (SM), all three flavored neutrinos are left handed
and massless. Hence, to generate massive neutrinos, one needs to invoke physics
beyond the SM. Since neutrinos are electrically neutral, it can be either Dirac or
Majorana fermions. To generate the Dirac mass term for the neutrinos, one has to
add right handed neutrinos in the particle contents of the SM. On the other hand
for Majorana neutrinos, one has to break the lepton number which is an accidental
symmetry of the SM.

The seesaw mechanism [3] has been identified as the most natural scenario to
generate small masses for neutrinos. In this scenario, one adds a heavy particle of
mass M in the SM, which after being integrated out, leads to the gauge invariant
D = 5 operator with only SM fields, Leff = y LLHH

M
, with M >> MW assumed.

There are mainly three types of the seesaw mechanisms have been realized depending
upon the type of the exchanged heavy particles:

• Type -I : Heavy right handed neutrinos are exchanged [3, 4]

• Type -II : Heavy SU(2) triplet scalars are exchanged [5]

• Type -III : Heavy SU(2) neutral triplet fermions are exchanged [6]

All the above mechanisms have been proposed to generate neutrino masses of
the order of O(10−10) GeV, which immediately suggest that the neutrinos are much
lighter than their charged SU(2) partners. Although, we still do not know the exact
masses of the neutrinos, but their mass differences point out of some hierarchies among
different generations, which are very different from that of the charged leptons. In
addition, the observed neutrino mixing angles indicate strong flavor mixing in the
leptonic sector compared to the quark sector. As a result of this, the neutrino mass
models are expected to explain not only the smallness of the masses but also the
flavor structure of the lepton sector.

It has been be shown in Ref. [7] that by using higher dimensional operators in-
volving the relevant SM fermion fields and successive powers of the Higgs doublet
field one could obtain a good fit to quark and charged lepton masses and mixing
angles. These Yukawa interactions can be expressed in powers of H†H/M2, where H
is the SM Higgs doublet field and M is a mass scale ∼ O(1 − 2) TeV at which SM
would be embedded in an ultra violet (UV) theory. The dimensionless coefficients of
these non-renormalizable operators which has inverse mass-dimensions can all be or-
der one, which in turn leads to a small Yukawa couplings of the SM in a natural way.
This model also predicts some interesting Higgs phenomenology, for example, the
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enhanced bb̄H0, and µµ̄H0 couplings, flavor changing Higgs boson decay H → t̄c [7].
The strength of the flavor-changing t̄cH0 vertex is similar in magnitude of the flavor-
conserving b̄bH0 vertex. However, this feature is not visible in the leptonic sector, as
the flavor-changing τµH0 vertex turns out to be two orders of magnitude suppressed
compared to the flavor-conserving ττH0 vertex. All these lead to a very interesting
phenomenology which can be tested at the ongoing Large Hadron Collider (LHC)
experiment.

In Ref. [7], authors have not addressed the issues of neutrino masses. In this
paper, we try to obtain the right order of neutrino masses and the corresponding
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [8, 9] matrix by introducing three addi-
tional right-handed neutrino fields (NiR) in the above mentioned model. With these
right-handed neutrinos, one can generate both Dirac and Majorana type neutrinos.
We then compute the PMNS matrix in both these two cases.

Here, we would like to mention that generation of neutrino masses using effective
operators higher than d > 5 have been also discussed in Ref. [10–15]. Most of these
models have discussed only neutrino masses, but did not attempt charged fermion
masses simultaneously. Moreover, the mixing pattern in lepton sector has also not
been addressed in these models. Some of these models have effective d = 6, 7 oper-
ators with a TeV scale cutoff to explain the neutrino masses, but at the expense of
some more suppression through other couplings. In contrast to the above mentioned
models, we are trying to explain neutrino masses and mixing pattern in a model
which already has a natural mechanism to explain the charged fermion masses. The
effective operators we consider have mass dimensions of 20 or 12, depending on Dirac
or Majorana neutrinos, and hence even with a TeV scale cutoff of the model we do
not have suppressions in dimensionless couplings. Since the neutrino mass generation
in this model correlates with that of charged fermion masses, the parameters of this
model are highly constrained, leading to unique predictions for the phenomenology
of this model.

The rest of the paper is organized as follows. In Sec.II, we briefly discuss the model
of Ref. [7]. In Sec.III we discuss the mechanism of Dirac and Majorana neutrino mass
generation. In Sec.IV we discuss the UV completion of the model. In Sec.V we outline
some interesting phenomenology of this scenario. Finally, in Sec.VI we summarize
our results.

2 The Model

In the SM, the top quark mass, whose mass is around the electroweak scale, can
be explained naturally by the corresponding Yukawa term. Whereas, the masses for
other fermions need suppressions in the respective Yukawa couplings. So in the SM,
the hierarchy in mass pattern of fermions reflects into hierarchy in the corresponding
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Yukawa couplings. To address this fermion mass hierarchy problem a model has been
proposed in [7], where the suppression in Yukawa couplings, other than the top quark,
is explained through higher dimensional terms. These higher dimensional terms are
expressed in powers of H†H

M2 , where H is the Higgs doublet of the SM and M is a mass
scale at which SM would be embedded in a UV theory. The effective terms in the
SM to explain the fermion mass hierarchy are written as [7]

LYuk = hu
33q̄3Lu3RH̃ +

(

H†H

M2

)

(hd
33q̄3Ld3RH + hu

22q̄2Lu2RH̃ + hu
23q̄2Lu3RH̃ + hu

32q̄3Lu2RH̃)

+

(

H†H

M2

)2

(hd
22q̄2Ld2RH + hd

23q̄2Ld3RH + hd
32q̄3Ld2RH + hu

12q̄1Lu2RH̃ + hu
21q̄2Lu1RH̃

+hu
13q̄1Lu3RH̃ + hu

31q̄3Lu1RH̃) +

(

H†H

M2

)3

(hu
11q̄1Lu1RH̃ + hd

11q̄1Ld1RH

+hd
12q̄1Ld2RH + hd

21q̄2Ld1RH + hd
13q̄1Ld3RH + hd

31q̄3Ld1RH) + h.c. (1)

Here, hus and hds areO(1) couplings. Also, qs are left-handed quark doublets, u, d are
singlet right-handed up- and down-type quark fields, respectively. H̃ is the conjugate
of H . The above higher order terms can be explained from the UV completion of the
SM, which will be described later.

Terms in Eq. (1) are higher dimensional and generate effective Yukawa couplings
once the Higgs doublet acquires vacuum expectation value (vev). Although the terms
in Eq. (1) give masses to quarks, mass generation mechanism for charged leptons is
same as that for the down-type quarks. In the above equation by replacing qiL → LiL,
uiR → EiR and hd

ij → hl
ij, where Ls and Es are left-handed doublet and right-handed

singlet leptons, respectively, and hls are O(1) couplings, one would obtain mass terms
for charged leptons. After the electroweak symmetry breaking the masses of quarks
and charged leptons will have a form [7]

(mt, mc, mu) ≈ (|hu
33|, |hu

22|ǫ2, |hu
11 − hu

12h
u
21/h

u
22|ǫ6)v,

(mb, ms, md) ≈ (|hd
33|ǫ2, |hd

22|ǫ4, |hd
11|ǫ6)v,

(mτ , mµ, me) ≈ (|hl
33|ǫ2, |hl

22|ǫ4, |hl
11|ǫ6)v, (2)

where, ǫ = v
M

and v = 174 GeV is the vev of the Higgs doublet. Along with the mass
terms, we can also get Cabbibo-Kobayashi-Maskawa (CKM) matrix in the quark
sector. It has been shown in [7] that a good fit to the CKM matrix and to the masses
of quarks and charged leptons can be obtained for ǫ = 1/6.5, and the various O(1)
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couplings are found out to be3

(|hu
33|, |hu

22|, |hu
11 − hu

12h
u
21/h

u
22|) = (0.96, 0.14, 0.95),

(|hd
33|, |hd

22|, |hd
11|) = (0.68, 0.77, 1.65),

(|hl
33|, |hl

22|, |hl
11|) = (0.42, 1.06, 0.21). (3)

The value ǫ = 1/6.5 implies that M ≈ 1.1 TeV, which is the scale at which a UV
completion of the SM takes place.

The UV completion of this model is necessary in order to explain the higher
order terms of Eq. (1). Consider a flavor symmetry GF above the scale M , under
which the third generation up-quarks and Higgs boson are singlets and all other
fermions transform non-trivially. This charge assignment forbids the dimension-4
Yukawa terms for all fermions, expect for the top quark. Now, some vector-like heavy
fermions and complex scalar flavon fields F with masses ∼ M can be proposed, which
transform under the flavor group GF but are singlets under the SM gauge group. The
role of these heavy vector-like fermions and flavons F is such that they form Yukawa-
like terms with the SM fermions at a high scale. The flavon fields F can acquire vev
around M and spontaneously break the flavor symmetry GF . Upon integrating the
vector-like fermions, we can generate higher dimensional terms of Eq. (1) [7], where

the dimensionless couplings hus and hds can be viewed as functions of 〈F 〉
M

.
It is to be noted that the model in [7] can be generalized by including an additional

scalar singlet field S [16,17]. It has been shown that instead of expanding in H†H
M2 , the

higher order terms of Eq. (1) can arise in terms of S†S
M2 [16]. The model of this kind

is consistent and the UV completion of it has been worked in detail [16]. Likewise,

we can also consider higher order terms of Eq. (1) arising in expansion of both H†H
M2

and S†S
M2 [17]. However, in this work, we stick to the minimal version of all these

models [7], i.e. we do not assume extension to scalar Higgs sector of the SM.

3 Neutrino masses in this model

In the above described model, neutrino masses have not been addressed, and as a
result we cannot also obtain the PMNS matrix in the lepton sector. Here, we address
both these issues by proposing three right-handed neutrino fields (NiR) into the model.
However, right-handed neutrinos can couple to left-handed neutrinos in such a way
that either Dirac or Majorana neutrinos can form. We study both these cases in the
following two subsections.

3SM fermion masses are given in [7], which include renormalization effects.
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3.1 Dirac neutrinos

From the neutrino oscillation data it is known that the atmospheric neutrino mass
scale (≈ 0.05 eV) is just a factor larger than the solar neutrino mass scale (≈ 0.009
eV). This is to be compared to the hierarchy of ∼ 104 between electron and tau
masses. Indeed, to accommodate hierarchy between different family generations of
charged fermions, different powers of H†H

M2 are assigned in Eq. (1), which may not be
necessary in the case of neutrinos because there are no such large hierarchies within
their masses. Hence, from the above mentioned point and also from the naive order of
estimations on the neutrino mass scale, we propose the following higher dimensional
terms

Lν
D =

(

H†H

M2

)8

hν
ijL̄iLNjRH̃. (4)

The mass dimension of the above operators are 20, which is large compared to some
dimension-10 operators in the quark sector of Eq. (1). The largeness in the dimension
for neutrino operators would give us very small neutrino masses compared to the
charged fermion masses. The above higher order terms can be motivated by studying
the UV completion of this model, where we appropriately choose the heavy vector-
like fermions under the flavor group GF and upon integrating them out we generate
the above terms in the low energy regime. The UV completion of this model will be
described in the next section. After the electroweak symmetry breaking, the above
term gives Dirac masses for neutrinos, which has a form

[Mν
D]ij = ǫ16vhν

ij. (5)

Now, our aim is to fit the atmospheric and solar neutrino mass-squared differences
and also the PMNS matrix with O(1) hν couplings. O(1) hν couplings mean that
the values should be close to 1, but there is no well defined range for these values.
For example, in [12] O(1) couplings are meant to be in the range 1/5 to 5. However,
in this work we try for hνs to be between 0.1 and 2.0 because Yukawa couplings for
charged fermions are found to be within this range, see Eq. (3). When we present our
numerical results we will see that the hνs may become slightly larger than 2.0 and we
comment out over there. As for the PMNS matrix, it has some specific structure and
as result we would expect the couplings hν need to have some structure as well. The
PMNS matrix has been defined as UPMNS = (V l

L)
†V ν

L , where V l
L and V ν

L are unitary
matrices which diagonalize the charged lepton and neutrino mass matrices as follows:

(V l
L)

†M l(M l)†V l
L = diag(m2

e, m
2
µ, m

2
τ ),

(V ν
L )

†Mν
D(M

ν
D)

†V ν
L = diag(m2

1, m
2
2, m

2
3). (6)

Here, m1,2,3 are the three neutrino mass eigenvalues and M l is the mass matrix in the
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charged lepton flavor basis, whose form is

M l =





hl
11ǫ

6 hl
12ǫ

6 hl
13ǫ

6

hl
21ǫ

6 hl
22ǫ

4 hl
23ǫ

4

hl
31ǫ

6 hl
32ǫ

4 hl
33ǫ

2



 v. (7)

We have found that the leading form of V l
L as

V l
L =









1
hl

12

hl

22

ǫ2
hl

13

hl

33

ǫ4

−hl

12

hl

22

ǫ2 1
hl

23

hl

33

ǫ2

−hl

13
hl

22
−hl

23
hl

12

hl

22
hl

33

ǫ4 −hl

23

hl

33

ǫ2 1









. (8)

The above equation indicates that the form of V l
L is close to unit matrix with the

off-diagonal elements are suppressed by at least ǫ2. This observation indicates that
the unitary matrix V ν

L should have nearly the PMNS structure.
The PMNS matrix is determined by the three mixing angles and one CP vio-

lating phase. In this work, for parameterization of PMNS matrix we have followed
the convention in [18]. Before the data of T2K experiment, a global fit to various
neutrino oscillation data [19] gave results that the θ13 was allowed to be zero at 2σ
level and the exact tribimaximal mixing pattern [20] in the lepton sector was still
a possibility. Recently, in the T2K experiment [21] the appearance of six events of
electron-neutrinos in the detector has ruled out θ13 6= 0 at 90 % C.L. However, the
analysis of T2K is done by putting θ12 ≈ 34o and θ23 = 45o, which suggests that the
values of θ12 and θ23 are in agreement with the corresponding tribimaximal values.
To be consistent with the T2K experimental result, we take the CP violating phase
to be zero and the leptonic mixing angles to be: sin θ12 = 1√

3
, sin θ23 = 1√

2
, and

sin θ13 = 0.157. The sin θ13 value gives θ13 ≈ 9o, which is consistent with the lower
and upper bounds by the T2K [21] and CHOOZ experiments [22], respectively. We
consider this value for θ13 only to demonstrate that PMNS structure can be obtained
with O(1) Yukawa couplings, but otherwise it can be varied within the experimental
limits.

We take the unitary matrix V ν
L as

V ν
L =







√

2
3
c13

1√
3
c13 s13

− 1√
6
− 1√

3
s13

1√
3
− 1√

6
s13

1√
2
c13

1√
6
− 1√

3
s13 − 1√

3
− 1√

6
s13

1√
2
c13






, (9)

where c13 = cos θ13, s13 = sin θ13. The above form of V ν
L is same as the PMNS matrix

with mixing angles in the leptonic sector, as mentioned above. Using the above V ν
L ,
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we find

(V ν
L )

†Mν
D(M

ν
D)

†V ν
L = ǫ32v2







~a · ~a ~a ·~b ~a · ~c
~a ·~b ~b ·~b ~b · ~c
~a · ~c ~b · ~c ~c · ~c






, (10)

where the 3-dimensional vectors are: ~a = (a1, a2, a3),~b = (b1, b2, b3) and ~c = (c1, c2, c3),
with

aj =

√

2

3
c13h

ν
1j − (

1√
6
+

1√
3
s13)h

ν
2j + (

1√
6
− 1√

3
s13)h

ν
3j ,

bj =
1√
3
c13h

ν
1j + (

1√
3
− 1√

6
s13)h

ν
2j − (

1√
3
+

1√
6
s13)h

ν
3j ,

cj = s13h
ν
1j +

1√
2
c13(h

ν
2j + hν

3j). (11)

The necessary conditions to be satisfied in order to fit the neutrino mass-square
differences are

m2
1 = f 2

D~a · ~a, m2
2 = f 2

D
~b ·~b, m2

3 = f 2
D~c · ~c,

~a ·~b = ~b · ~c = ~a · ~c = 0,

m2
3 −m2

1 = ∆m2
atm = (±2.4)× 10−3 ev2,

m2
2 −m2

1 = ∆m2
⊙ = 7.6× 10−5 ev2, (12)

where f 2
D = ǫ32v2.

In Eq. (12) we take the central values of the atmospheric and solar neutrino mass-
squared differences as they are considered in T2K experiment [21]. Since the sign of
∆m2

atm is not known in experiments, its value could be either of the values given above.

We can take the form the vectors as ~a = |~a|(1, 0, 0), ~b = |~b|(0, 1, 0) and ~c = |~c|(0, 0, 1),
to satisfy the orthogonality among these vectors. The magnitude of these vectors
(|~a|, |~b|, |~c|) can be determined by fitting to the neutrino mass-squared differences.
If the sign of ∆m2

atm is positive, we get the normal hierarchical pattern among the
neutrino masses. In this case we can take m1 ∼

√

∆m2
⊙, m2 =

√

∆m2
⊙ +m2

1, and

m3 =
√

∆m2
atm +m2

1. Whereas, in the case where the sign of ∆m2
atm is negative,

the spectrum of neutrino mass eigenstates is called inverted hierarchy, in which case
we can take m3 ∼

√

∆m2
atm, m1 =

√

∆m2
atm +m2

3, and m2 =
√

∆m2
⊙ +m2

1. For a

definite value of ǫ, and after finding the values of |~a|, |~b| and |~c|, by inverting Eq.
(11), we compute the full neutrino Yukawa couplings.

In the determination of |~a|, |~b| and |~c|, the value of ǫ should be fixed. We fix
ǫ = 1/6.5 ≈ 0.15 as this value has given a good fit to charged fermion masses and
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also the CKM matrix. In the normal hierarchy, for m1 = 0 and m1 = 0.7 ×
√

∆m2
⊙,

the Yukawa couplings, respectively, turns out to be

hν =





0 0.29 0.45
0 0.26 1.99
0 −0.33 1.99



 ,





0.29 0.35 0.45
−0.18 0.32 2.01
0.11 −0.40 2.01



 . (13)

In the above case, if m1 is less than 0.7 times of
√

∆m2
⊙, the element hν

31 may become

less than 0.1. In the inverted hierarchy, for m3 = 0 and m3 = 0.5 ×
√

∆m2
atm, the

Yukawa couplings, respectively, come out to be

hν =





2.31 1.66 0
−1.43 1.49 0
0.91 −1.86 0



 ,





2.58 1.84 0.22
−1.59 1.66 0.99
1.01 −2.08 0.99



 . (14)

The above neutrino Yukawa couplings are O(1). As stated before, compared to
charged fermion Yukawa couplings whose values are within 0.1 to 2.0, some elements
of neutrino Yukawa couplings are slightly above 2.0, especially in the inverted hierar-
chical case. We have found that by increasing ǫ value to 0.16, the neutrino Yukawa
couplings would be in the range of 0.1 to 2.0 in both the hierarchical cases. By in-
creasing ǫ to 0.16, do not change the charge fermion Yukawa couplings very much.
In fact, we have also checked that for ǫ = 0.16 the CKM matrix elements can be
fitted to their experimental values. We will comment more on the possible values of
ǫ in Sec. 5, where we describe upper limits on it arising due to D0 − D̄0 mixing. Fi-
nally, we compute the PMNS matrix which is given by (V l

L)
†V ν

L . This matrix depends
on the charged lepton Yukawa couplings, for which only the diagonal elements have
been computed from their mass relations. If we set all the off-diagonal couplings for
charged leptons to be 0.5, the actual PMNS matrix in this model for ǫ = 1/6.5 is

UPMNS =





0.81 0.56 0.15
−0.50 0.54 0.68
0.30 −0.63 0.72



 . (15)

The above matrix elements are within the error limits of the computed values through
the mixing angles in neutrino oscillation experiments. By changing the off-diagonal
Yukawa couplings of charged leptons to 1.5, we have found that the elements in the
above matrix will change only in the second decimals.

3.2 Majorana neutrinos

In the previous subsection we have analyzed the case of Dirac neutrinos in the model
[7]. In the case of Dirac neutrinos the fields NiR are just the right-handed components
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of neutrinos and lepton number is conserved. However, the phenomenology would
change if the lepton number is assumed to be violated, and we can have massive
sterile neutrinos in the model. Since the UV cutoff of the model is M ∼TeV, we
can choose the masses of the sterile neutrinos to be slightly less than of the order of
TeV. These TeV sterile neutrinos, with some mixing with active neutrinos, can give
significant contribution to neutrinoless double beta decay process and some collider
processes as well.

Suppose that the following effective operators exist in the model.

LM =

(

H†H

M2

)4

hν
ijL̄iLNiRH̃ +

Mi

2
N c

iRNiR + h.c., (16)

where Mi, i = 1, 2, 3, are the masses of the right-handed sterile neutrinos, and the
indices i, j should be summed over 1,2,3. N c

iR is the charge conjugate of NiR. There
are dimension-12 operators in the above equation which can be motivated from the
UV completion of this model, and it will be presented in the next section. The masses
of right-handed neutrinos would be around TeV which is much larger than the Dirac
neutrino masses of the first term in the above equation. Hence, after integrating the
heavy right-handed neutrinos, the masses of light neutrinos are given by

(Mν
M)ij = ǫ16v2

3
∑

k=1

hν
ik

1

Mk

hν
jk. (17)

Since the above mass matrix is symmetric, it can be diagonalized by a unitary matrix
V ν
L as

(V ν
L )

TMν
MV ν

L = diag(m1, m2, m3). (18)

Since we have argued previously that the corresponding unitary matrix V l
L in the

charged lepton sector is close to unit matrix, we choose V ν
L to have the form in Eq.

(9). Then the above matrix relation can be satisfied if the following relations are
hold:

m1 = fM ~a′ · ~a′, m2 = fM~b′ · ~b′, m3 = fM~c′ · ~c′,
~a′ · ~b′ = ~a′ · ~c′ = ~b′ · ~c′ = 0, (19)

where fM = ǫ16v2. The vectors ~a′ = (a′1, a
′
2, a

′
3),

~b′ = (b′1, b
′
2, b

′
3) and ~c′ = (c′1, c

′
2, c

′
3) are

such that a′i =
ai√
Mi

, b′i =
bi√
Mi

and c′i =
ci√
Mi

, where ai, bi, ci are defined in Eq. (11).

To satisfy the orthogonality in these vectors we choose their forms as ~a′ = |~a′|(1, 0, 0),
~b′ = |~b′|(0, 1, 0), ~c′ = |~c′|(0, 0, 1). Like in the previous Dirac neutrinos, in this case
also to fit the neutrino mass-squared differences we analyze both the normal and in-
verted hierarchical mass spectrums of neutrinos. The mass eigenvalues of the three
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neutrinos in terms of mass-squared differences are mentioned in the previous subsec-
tion. After finding the |~a′|, |~b′|, |~c′| and for definite values of right-handed neutrino
masses, we can invert the relations in Eq. (11) to find the Yukawa couplings. The
masses of right-handed neutrinos could be either degenerate or non-degenerate, and
so we study both these cases below. In our numerical analysis we have fixed ǫ = 1/6.5.

Case I: Degenerate right-handed neutrinos

We choose the degenerate mass scale of right-handed neutrinos to be 1 TeV, i.e.
M1 = M2 = M3 = 1 TeV. In the normal hierarchy, form1 = 0 andm1 = 0.5×

√

∆m2
⊙,

the Yukawa couplings came out to be, respectively, as

hν =





0 0.98 0.64
0 0.88 2.83
0 −1.10 2.83



 ,





0.98 1.03 0.64
−0.60 0.93 2.84
0.38 −1.16 2.84



 . (20)

In the inverted hierarchy, for m3 = 0 and m3 = 0.5×
√

∆m2
atm, the Yukawa couplings

came out to be, respectively, as

hν =





3.27 2.33 0
−2.02 2.10 0
1.29 −2.62 0



 ,





3.46 2.46 0.45
−2.14 2.21 2.00
1.36 −2.77 2.00



 . (21)

Notice here that in the inverted hierarchical case, the element hν
11 of neutrino Yukawa

coupling is even larger than 3.0. This situation can be improved if we raise ǫ to 0.16,
in which case hν

11 would be between 2.0 and 3.0. Further increasing ǫ to 0.17 would
bring all the neutrino Yukawa couplings in the range of 0.1 to 2.0 in both the hier-
archical cases. However, ǫ = 0.17 may be ruled out by the D0 − D̄0 mixing in this
model, which will be described in Sec. 5.

Case II: Non-degenerate right-handed neutrinos

To illustrate how the neutrino Yukawa couplings change from Case I, we take the
following values for the three right-handed neutrinos: M1 = 500 GeV, M2 = 800 GeV
and M3 = 1 TeV. In the normal hierarchy, for m1 = 0 and m1 = 0.5 ×

√

∆m2
⊙, the

Yukawa couplings came out to be, respectively, as

hν =





0 0.87 0.64
0 0.78 2.83
0 −0.98 2.83



 ,





0.69 0.92 0.64
−0.43 0.83 2.84
0.27 −1.04 2.84



 . (22)

In the inverted hierarchy, for m3 = 0 and m3 = 0.5×
√

∆m2
atm, the Yukawa couplings
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came out to be, respectively, as

hν =





2.31 2.08 0
−1.43 1.88 0
0.91 −2.34 0



 ,





2.44 2.20 0.45
−1.51 1.98 2.00
0.96 −2.47 2.00



 . (23)

Comparing the values of neutrino Yukawa couplings in this case with that of Case I, we
can notice that by decreasing the value of a right-handed neutrino mass decreases the
elements in the corresponding column of the matrix hν . For example, by decreasing
the value of M1 from 1 TeV to 500 GeV, we can see that the elements in the first
column of hν have decreased. This fact can be understood from the expressions of
a′i, b

′
i, c

′
i and also the from the form of these vectors that we have considered.

Finally, the PMNS matrix in the Majorana neutrino case is same as that of Eq.
(15). The construction of PMNS matrix in this model is such that it depends on ǫ,
charged lepton Yukawa couplings and mixing angles which we have mentioned before.
As a result of this, either in the Case I or Case II of Majorana neutrinos, we do get
the same PMNS matrix as long as we do not change the ǫ and charge lepton Yukawa
couplings. This suggests that in this model the right-handed neutrino masses do
not show up in the PMNS matrix, rather their implications are felt in the neutrino
Yukawa couplings.

4 UV completion of the model

In this section we describe how the higher order terms of Eqs. (4) and (16) can be
motivated from the UV completion of the model. Our procedure of UV completion
is similar to that described in [7, 16, 17]. However, here we do not fix the charges

of any field and moreover we study the higher order terms of any power in H†H
M2 . In

the case of Dirac and Majorana neutrinos of this model, we need 8 and 4 powers of
H†H
M2 , respectively, in the relevant higher dimensional operators. In our approach, we

first study how a single power of H†H
M2 is possible in a higher dimensional operator

of H†H
M2 L̄LNRH̃ . For simplicity, here we have suppressed family indices. Then in the

next step, we try to see how two powers of H†H
M2 can arise in the

(

H†H
M2

)2

L̄LNRH̃ .

Then afterwards, we can generalize this procedure to obtain any higher dimensional
operator containing a finite power of H†H

M2 . Since the origin of higher order terms in
quark and charged lepton sectors have already been discussed in [7,16,17], below we
confine only to the neutrino sector. However, we believe our procedure, with a little
modification, can be merged with that of [7,16,17]. Otherwise, our procedure can be
extended even to the quark and charged lepton sectors.

As stated before, we have to propose a flavor symmetry group GF to forbid the
leading Yukawa couplings in the neutrino sector. The symmetry GF is an exact sym-
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metry at and above the scaleM ∼ TeV. We take GF to be a gauged abelian symmetry,
i.e. GF = U(1)F . In a first step to generate the higher order term H†H

M2 L̄LNRH̃, we
propose vector-like, color-singlet fermionic fields K1 and G1, which are singlet and
doublet, respectively, under the SU(2)L of the SM gauge group. We also propose
complex scalar flavon field F1, whose vev (〈F1〉 ∼ M) spontaneously breaks the flavor
symmetry U(1)F , but otherwise is singlet under the standard model gauge group.
Now, consider the following renormalizable terms at the high scale.

y1L̄LK1RH̃ + y2F1K̄1RK1L + y3K̄1LG1RH
† + y4F1Ḡ1RG1L + y5Ḡ1LNRH, (24)

where ys are O(1) dimensionless couplings.
The above renormalizable terms can be justified by assigning the following charges

under U(1)F : LL = K1R = l, F1 = f1, K1L = G1R = l−f1, G1L = NR = l−2f1, H = 0.
Here, the Higgs doublet is uncharged under U(1)F and l and f1 are U(1)F charges of
lepton doublet and F1, respectively. After spontaneous breaking of U(1)F and after

integrating out the heavy fermions (K1, G1), the above terms generate H†H
M2 L̄LNRH̃

in the low energy regime. Notice here that by assigning different U(1)F charges of
the three lepton doublets and by proposing three different copies of F1 field, i.e.
F1i, i = 1, 2, 3, the above procedure can be generalized to give the full 3×3 family
structure in H†H

M2 L̄LNRH̃ . In this generalization, we need three copies of K1, G1 and
moreover all the three right-handed neutrinos will have same U(1)F charge.

Let us note here that the field content proposed in Eq. (24) somewhat resembles to
that of [23], where a general study of seesaw Dirac neutrino masses has been studied
with arbitrary number of active and sterile neutrinos. Here the weak-singlet fields
NR, K1L, K1R are sterile and they have mixing masses with the active neutrino (νL)
of LL. The mixing between K1L and NR arises after integrating the heavy weak-
doublet G. As a result, we get 4×4 mixing mass matrix among the above said fields.
The structure of this matrix is same as that of 4×4 texture proposed in [23]. In
another context of these type of extended seesaw models, leptogeneis has also been
studied [24].

In the next step, to generate the higher order term
(

H†H
M2

)2

L̄LNRH̃ , in addition

to the above field content, we propose K2, G2 whose quantum numbers under SM
gauge group are same as that of K1, G1, and also a complex scalar flavon field F2,
which is a singlet under the standard model gauge group. Now, consider the following
renormalizable terms at the high scale.

y1L̄LK1RH̃ + y2F1K̄1RK1L + y3K̄1LG1RH
† + y4F2Ḡ1RG1L + y5Ḡ1LK2RH

+y6F2K̄2RK2L + y7K̄2LG2RH
† + y8F1Ḡ2RG2L + y9Ḡ2LNRH. (25)

Here, ys are O(1) dimensionless couplings. The above terms can be justified with the
following U(1)F charges: LL = K1R = l, F1 = f1, K1L = G1R = l − f1, F2 = f2, G1L =
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K2R = l− f1 − f2, K2L = G2R = l− f1− 2f2, G2L = NR = l− 2f1− 2f2, H = 0. After
spontaneous symmetry breaking and also after integrating the heavy fields we can

generate
(

H†H
M2

)2

L̄LNRH̃ in the low energy regime. Again, to generate the full 3×3

family structure in this higher dimensional operator, we have to propose three copies
of F1, K1, K2, G1, G2, like we have explained previously. It can be noticed that the

charge assignment and field content is such that, while generating
(

H†H
M2

)2

L̄LNRH̃ ,

the other higher dimensional term H†H
M2 L̄LNRH̃ can not be possible in the low energy

regime.
Now, it is easy to understand that the above described procedure can be gener-

alized to obtained some finite power of H†H
M2 along with the L̄LNRH̃ . To generate

the higher dimensional term of Eq. (4), we need the following eight different heavy
fields: complex scalar flavon fields (Fi, i = 1, · · · , 8), singlet and doublet of SU(2)L of
the SM gauge group (Ki, Gi, i = 1, · · · , 8). Also, to get the full 3×3 family structure
in the L̄LNRH̃, we have to replicate the above heavy fields, with different charges,
three times. The number of heavy fields that we have described in the case of Dirac
neutrinos will be reduced in the case of Majorana neutrinos. To generate the first
term of Eq. (16), we have to propose four different heavy fields of scalar and fermionic
type, which we have described above. On top of this, to generate the second term of
Eq. (16), we have to propose additional complex scalar field with a charge of −2n,
where n is the U(1)F charge of the field NR.

5 Phenomenology

The phenomenology of this model in the quark and charged lepton sector is same
as that described in [7]. In the neutrino sector we get new phenomenological signals
which will be described below.

First, from the UV completion of the higher dimensional operators of Eqs. (4)
and (16), we need some heavy weak-singlet and weak-doublet ferminoic states. In the
case of Dirac neutrinos, the number of these heavy fermionic states is 8×3 of both
weak-singlet and weak-doublet fields. Whereas in the Majorana case this number is
4×3. The masses of these heavy fermionic fields are in the range of 1−2 TeV. The
heavy weak-singlet Ks have zero hypercharge, whereas the weak-doublet fields (Gs)
have hypercharge +1. Hence, the heavy weak-doublet fields can be produced either
through W or Z boson fusion at the LHC. However, detection of weak-singlets is
challenging due to its sterile nature. These weak-singlet fermions can be produced
in a collider process through the decay of heavy weak-doublet fermions. One of the
weak-singlets (K1 in the previous section) is bound to decay into an active neutrino
and Higgs boson. And similarly, one of the weak-doublets (G1 or G2 of the previous
section) is bound to decay into a right-handed neutrino and Higgs boson state, if
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this is kinematically allowed. As a result of these interactions, after the weak-singlet
and weak-doublet fermions being produced in a collider, they can ultimately cascade
down to some number of neutrinos and Higgs bosons, depending on the masses of
these fermions. In this model there are also heavy complex scalar fields, which are
SM gauge singlets and have masses of ∼1 TeV. The complex scalar flavon fields (Fi),
apart from their Yukawa couplings to heavy fermions, can have quartic interactions
with the Higgs doublet field. As a result of this, each scalar flavon field can decay
to a pair of Higgs bosons. These complex scalar fields can be produced through the
decay of either weak-singlet or weak-doublet heavy fermion.

Apart from the phenomenology of heavy fermions and scalars in the model, the
local nature of the flavor group U(1)F give some more phenomenology. Since the
flavor group is gauged, there would be a gauge boson Z ′ corresponding to the U(1)F .
The mass of Z ′ could be in the TeV scale provided the gauge coupling (gF ) of U(1)F is
O(1). In the UV completion of this model we have assumed that leptons are charged
under U(1)F and without any inconsistency we can assume that quarks are singlets
under U(1)F . This particular charge assignment can relax constraints on the gauge
coupling gF due to Drell-Yan process. However, the charge assignment of leptons
can induce mixing between Z and Z ′ at a loop level. Since this mixing should be
small [18], we may have to suppress the coupling gF . The details of these studies is
beyond the limit of this work, but we refer some recent works on the phenomenology
of Z ′ [25]. It is to be noticed that some of the phenomenology of Z ′ studied in [16] can
also be applicable in this model. Finally, the heavy fermions are chiral with respect
to the flavor group and as a result there could be anomalies due to gauged U(1)F . To
cancel these anomalies we have to propose some additional fermions at the TeV scale
through Green-Schwarz mechanism, which is also suggested in [16].

Next, we focus on the phenomenology arising due to neutrino masses of this model.
As said previously, one of the consequences of Majorana neutrinos is that it generates
neutrinoless double beta decay process at tree level. This has been looked in various
experiments, see Refs. [26], for conducted and future proposed experiments. The
amplitude of this process depends on the quantity mee =

∑3

i=1 U
2
eimi [27], where U =

UPMNS andmi are the mass eigenvalues of light neutrinos. The non-observation of this
process has put an upper bound on mee to be ∼0.5 eV [28]. In our particular case of
Majorana neutrinos, for ǫ = 1/6.5, we have calculated the mee of neutrinoless double
beta decay process. In the normal hierarchy, for m1 = 0 and m1 = 0.5×

√

∆m2
⊙, mee

is 3.9×10−3 eV and 7.1×10−3 eV, respectively. In the inverted hierarchy, for m3 = 0
and m3 = 0.5×

√

∆m2
atm, mee is found out to be 0.048 eV and 0.054 eV, respectively.

Note here that we put Majorana phases to be zero in this calculation. An interesting
fact is that the values we get for the quantity mee is independent of right-handed
neutrino masses, since they do not enter in the construction of the PMNS matrix of
this model.

Nonzero masses of neutrinos indicate oscillations in flavor neutrinos, and hence we
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can have flavor changing processes such as µ → eγ. The current upper bound on the
branching ratio of this process is 2.4 × 10−12 at 90% C.L. [29]. For Dirac neutrinos,
due to Glashow-Iliopoulos-Maiani (GIM) cancellation mechanism, the amplitude for
this process is highly suppressed, and the branching ratio is well below the current
upper limit. However, for Majorana neutrinos the GIM cancellation mechanism is
not valid, and one may wonder if we can get appreciable branching ratio in this case.
In the Majorana case, we have Type-I seesaw mechanism and in this mechanism the
branching ratio for µ → eγ has been derived in [30]. For a TeV scale right-handed
neutrino masses, we have found that the branching ratio of this process is ∼ 10−31,
which is significantly smaller than the current upper limit. We believe that this small
branching ratio in our model is due to small admixture between light active and heavy
right-handed neutrinos.

Finally, we comment on possible restrictions on this model due to D0−D̄0 mixing.
Since the Yukawa couplings are non-diagonal in the quark sector, Higgs boson can
generate flavor changing neutral current processes. Among these the Higgs couplings
to up and charm quarks can give mass difference between D0 − D̄0 [7]. The current
upper limit on this mass difference is 2.35 × 10−14 at 2σ level [18]. In [7], the Higgs
contribution to this mass difference is claimed to be ≈ 7 × 10−14, which is now
ruled out. However, this computation is done for a specific values of hu

12 = 1.0 and
hu
21 = 0.5 and also for a Higgs boson mass of 200 GeV. Since now the Higgs boson

has to be within 140 GeV [31, 32], we have redone the computation with hu
12 = 1.06,

hu
21 = 0.5 and for a Higgs mass of 130 GeV. For ǫ = 1/6.5 and 0.16 we have found

∆mHiggs
D = 1.47 × 10−14 and 2.01 × 10−14, respectively. For ǫ = 0.17 we have found

that the mass difference between D0 − D̄0 is 3.26 × 10−14 which exceeds the current
upper limit. However, ǫ = 0.17 can be made allowed by choosing different set of hu

12

and hu
21 values. The price one may have to pay is adjusting the Yukawa couplings to

some decimal places. Here, it can be noticed that we have fixed hu
12 to two decimal

places to get additional suppression compared to that of [7]. The upper bound on ǫ
we are getting from D0−D̄0 correlates with neutrino Yukawa couplings of this model.
In Sec. 3 we have quoted that in the inverted hierarchical case of Majorana neutrinos,
ǫ = 0.17 can give neutrino Yukawa couplings close to 1.0 rather than for ǫ = 1/6.5 or
0.16. From the current data on D0 − D̄0 mixing, the neutrino Yukawa couplings of
this model are set to be on the higher side. Further improvements on the D0 − D̄0

mixing can set limits on [7] as well as neutrino sector of this model.

6 Conclusions

Some of the challenging problems in particle physics are the hierarchical pattern of
fermion masses and the difference in the mixing pattern for quarks and leptons. A
simple and elegant model [7] has been proposed to explain the hierarchies in charged
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fermions and also the mixing pattern in the quark sector. One of the parameters
of this model is ǫ = 〈H〉

M
∼ 0.15. After fixing this parameter and for O(1) Yukawa

couplings in the model, the charged fermion masses and the CKM matrix have been
obtained, in agreement with experimental values.

We have generalized the model [7] to accommodate neutrino masses and also
obtain mixing pattern in lepton sector, i.e. PMNS matrix. We have addressed both
Dirac and Majorana masses for neutrinos in this model. To explain the Dirac and
Majorana masses consistently, we have proposed dimension 20 and 12 higher order
terms, respectively. These higher order terms are shown to be arriving from the UV
completion of the model by having an additional flavor symmetry and some TeV
scale heavy fermions and scalars. After proposing higher order terms we have done
numerical analysis, where we have shown that the atmospheric and solar neutrino
mass scales and mixing pattern in lepton sector can be consistently obtained for ǫ
between 1/6.5 and 0.16. From the D0 − D̄0 mixing, we have argued that we can set
an upper bound on ǫ to be around 0.17.

Since the ǫ parameter is tightly constrained, the model has definite predictions
for various collider processes. From the neutrino sector, in the Majorana case, the
effective mass of the neutrinoless double beta decay, mee, has definite values in this
model. The values of mee, in the inverted neutrino mass hierarchical case, are about
an order less than the currently probed experimental values. This case is interesting in
the ongoing and future experiments on the neutrinoless double beta decay process, to
verify if the model presented here is realistic. Apart from the signals in neutrino sec-
tor, the UV completion of this model demands the presence of TeV scale weak-singlet
and weak-doublet fermionic as well as singlet scalar particles in the theory. Detection
of these particles is within reach of LHC experiment, which can give smoking gun
signals of this model.
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