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ABSTRACT Physical servers are available as-a-service in bare-metal public and private cloud platforms, and

their demand has been proliferating because of the high levels of privacy and security guarantees they provide

to the tenants. This raises the need for efficient management of bare-metal clouds to keep operational costs

low such as by reducing energy consumption. For efficiently managing the cloud infrastructure, bare-metal

cloud operators need tomonitor the utilization of servers. However, the privacy and security concerns prohibit

the installation of third-party monitoring agents on the servers; thus, finding the server-utilization becomes

a challenge. In this work, we present NASCENT, a scalable machine-learning (ML) based non-invasive

solution for finding the utilization of servers without compromising the privacy and security of bare-metal

cloud tenants. Our key idea is to infer utilization from various sensor readings accessible via a server’s

baseboard management controller (BMC) hardware. We evaluate the proposed solution with three regression

based supervised ML algorithms in a Bare-metal-as-a-service (BMaaS) cloud. Our experimental evaluation

shows that one of the ML algorithms employed in NASCENT infers the utilization with a root-mean-

square error (RMSE) between 2.9 to 9.3 for different workloads. Also, the proposed solution uses minimal

memory resources (19 KB) and can even run on BMC hardware which has very limited memory. We also

propose a BMaaS cloud architecture that seamlessly integrates automated training and deployment of the

ML algorithm in our solution into the life-cycle of bare-metal servers. NASCENT’s codebase can be found

at https://github.com/iithcandle/dhi-ojas

INDEX TERMS Bare-metal server, BMaaS cloud, embedded systems, machine learning, privacy, power

consumption, server utilization.

I. INTRODUCTION

Demand for bare-metal servers in public and private cloud

platforms is increasing as they give high guarantees of data

privacy and security [1], especially because servers’ tenants

do not share them with others using virtualization tech-

niques. Many cloud providers [2]–[9] and research institutes

manage such bare-metal servers on behalf of their tenants

(e.g., customers, departments and labs) using a ‘‘Bare-metal-

as-a-service’’ (BMaaS) cloud orchestration software such

as Canonical’s MAAS [10] and Openstack’s Ironic [11].

To satisfy the diverse computing requirements of the tenants,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

a BMaaS cloud usually contains bare-metal servers with

diverse hardware configurations.

Figure 1 shows a typical bare-metal server with two mod-

ules. The module labeled host complex contains the server’s

computing hardware running the host operating system.

Moreover, the module labeled BMC complex (baseboard

management controller [12], [13]) is an embedded hard-

ware running BMC firmware. The BMC firmware provides

power control, sensor readings, and console services, all

remotely accessed through a dedicated ethernet port. Typ-

ically, BMC hardware is shipped with either a proprietary

firmware [14]–[16] or an open-source firmware such as

OpenBMC [17], [18]. Cloud operators or server owners can-

not modify the firmware if it is proprietary. On the other hand,
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FIGURE 1. A bare-metal server used in BMaaS cloud.

OpenBMC provides flexibility to build operator-defined

functionality in the BMC complex.

Efficient utilization of cloud resources in a BMaaS cloud

requires optimal allocation of available compute (servers)

among their tenants. To realize this goal, knowing the cur-

rent CPU utilization of individual servers is crucial. To be

specific, many cloud management applications benefit from

CPU utilization information. Some of these applications

are:

• energy management applications can turn off servers

with zero or low utilization

• load-balancing applications can distribute tasks among

servers based on their CPU utilization

• security applications can detect threats based on abnor-

mally high CPU utilization

• a deadlock in parallel programming or I/O-intensive task

can be detected if the CPU utilization is low

• a server’s ‘‘health’’ or ‘‘age’’ can be estimated based on

CPU utilization information gathered over a period of

time.

Evidently, measuring the CPU utilization metric is highly

important in efficient management of BMaaS cloud infras-

tructure.

Typically, in the Infrastructure-as-a-Service (IaaS) clouds

(where virtual machines are created), host agents [19], [20]

are installed in the host complex or hypervisor of the servers,

and they periodically collect the CPU utilization statistics.

However, no agents are installed inside the VMs to respect

the privacy and security of tenants. However, BMaaS cloud

operators [21] do not install any agents even in the host

complex as these agents can be misused to collect sensitive

user, tenant or system-related information, violating security

and privacy goals promised to the tenants. Few server models,

with additional licensing costs, offer BMC firmware-level

functionality [22]–[25] that provides CPU utilization infor-

mation without using host agents. Many other server models

do not offer this firmware-level functionality, and it requires

enhancements to proprietary BMC firmware. A solution for

inferringCPUutilization of heterogeneous bare-metal servers

in a non-invasive manner using BMC sensor readings but

not requiring additional enhancements to proprietary BMC

firmware is of high interest for meeting the security and

privacy requirements of the tenants.

FIGURE 2. Overall flow of activities in NASCENT.

In this paper, first we have experimented with a simple

power consumption-based heuristic to infer the CPU utiliza-

tion of servers and found it inadequate due to the overlapping

power consumption ranges. We then propose NASCENT,

a non-invasive machine learning (ML) based solution, to infer

a server’s CPU utilization with high accuracy from its BMC’s

sensor readings (viz., overall_power, cpu_power,

systemboard_power, fan_power, hdd_power, etc).

We have evaluated three popular supervised machine
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learning algorithms: K-Nearest Neighbor regression (KNNR),

support vector regression (SVR) with polynomial function

(SVRPOL), and support vector regression with radial basis

function (SVRRBF) in NASCENT. NASCENT is designed

to work with both OpenBMC hardware [17] and a proprietary

BMC hardware.

While provisioning servers, changes can be done to the

hardware configuration of bare-metal servers as per users’

requests. Few minor changes to the hardware configuration

can significantly change the range of power consumption

sensor readings. Consequently, keeping the ML models up-

to-date with frequent changes to hardware configuration at

the cloud scale is challenging. In this paper, we also pro-

pose a BMaaS cloud architecture that seamlessly integrates

automated training and deployment of the ML models into

life-cycle of bare-metal servers. We propose augmentation of

five components to BMaaS cloud architecture (viz., Training

Service, Utilization Data Collector, Job Scheduler, BMC-

Agents and Host-Agents). Figure 2 shows overall flow of

activities in NASCENT with references to relevant sections

in this paper.

The key contributions are as follows:

• We propose NASCENT, a solution for finding

server CPU utilization in a non-invasive man-

ner. Our approach is to train models with data of

server hardware configuration and its BMC sensor

readings using regression-based supervised ML algo-

rithms, and then use the trained models to infer CPU

utilization.

• We also propose a BMaaS cloud architecture for auto-

mated ML model training and deployment and did a

proof-of-concept (PoC) implementation on four server

in a BMaaS cloud datacenter.

• We evaluate NASCENT on both synthetically created

dataset and production dataset and demonstrate its effec-

tiveness in detecting CPU utilization with low prediction

error.

• The code base of NASCENT is open sourced and avail-

able at https://github.com/iithcandle/

dhi-ojas

The rest of the paper is organized as follows: We first

discuss the related work (§II). We then present the system

architecture of NASCENT, along with the machine learning

aspect of NASCENT (§III). We then present the experimental

results (§IV) and finally conclude the work (§V).

II. RELATED WORK

This section gives an overview of two existing techniques for

utilization detection in a bare-metal cloud. It then presents the

related work on OpenBMC that NASCENT embraces. The

section then provides an overview of some related work in

(Infrastructure-as-a-Service) IaaS clouds and power predic-

tion from utilization. The section ends with related works in

applications of utilization detection.

A. USING HOST-COMPLEX MONITORING AGENTS

One of the most popular ways to collect utilization statistics

such as CPU, memory, and disk utilization is via installing

agents (also known as host agents) on the host complex.

Volz et al. [19], [20] propose installing host agents on

servers and periodically collecting utilization statistics. These

statistics are stored in a time-series database. However,

in bare-metal clouds, the tenants may not authorize cloud

operators [21] to install any agents in the host complex of the

server as these agents might collect sensitive user or system-

related information, violating security and privacy policies.

B. USING PROPRIETARY BMC FIRMWARE

FUNCTIONALITY

In-processor firmware functionalities such as Intel’s man-

agement engine (ME), AMD’s platform security proces-

sor (PSP), and IBM’s on-chip controller (OCC) provide

hardware-level utilization in an OS-agnostic manner. Propri-

etary BMCfirmware functionality such as compute usage per

second (CUPS) [22]–[25] uses these in-processor firmware

functionalities without involving host-complex operating sys-

tem. Hence, CUPS meets privacy and security requirements.

However, to use CUPS functionality, cloud operators have to

buy firmware licenses and upgrade the existing deployments.

This increases operational costs significantly and may not be

suitable for the existing deployments.

Moreover, it allows measuring only the processor uti-

lization. A similar functionality needs to be enabled by

all the power-hungry hardware accelerators (e.g., GPUs,

smart NICs) to find the overall server utilization. This, how-

ever, further adds to the operational overheads. While design-

ing NASCENT, we consider possible extensions to detect

utilization of these accelerators.

C. OPEN COMPUTE PROJECT AND OPENBMC

Typically, BMC hardware runs a proprietary firmware that

cloud operators or server owners cannot modify. To overcome

vendor lock-in, OpenBMC [17], [18] has become a popular

open-source alternative as it provides the necessary flexibility

to build user-defined functionality in the BMC-complexes

for a cloud. Today ‘‘Open Compute Project’’ [26] compli-

ant bare-metal servers and ‘‘OpenPower Servers’’ [27] are

being shipped with BMC hardware that can run OpenBMC

firmware. BMCLeech [28] is a method for capturing a snap-

shot of bare-metal server’s host complex memory from the

BMC complex (running OpenBMC) in a stealthy manner for

forensic investigation. The proposed NASCENT is designed

to run on OpenBMC and also on proprietary BMC hardware

using an OpenBMC proxy.

D. PRIVACY-PRESERVING METHODS IN IAAS CLOUD

Previous work on IaaS clouds by Borgetto et al. [29],

Verma et al. [30], Lin et al. [31], Oh et al. [32], Hat et al. [33],

and Arzani et al. [34] run special monitoring agents at the

hypervisor level (i.e., host-complex). This is used to perform
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live-migration of VMs to fewer servers, power-off unused

servers for energymanagement, or detect compromisedVMs.

Running monitoring agents at the hypervisor level preserves

the users’ privacy in the case of IaaS clouds (VMs), because

monitoring agents do not run inside the VMs. However,

in BMaas cloud, only tenants have complete control of

the host-complex of a bare-metal server. However, BMaaS

cloud operators [21] cannot install any agents even in the

host complex as these agents can be misused to collect

sensitive users, tenants or system-related information, vio-

lating security and privacy goals promised to the tenants.

Hence, they cannot adopt these solutions to BMaaS clouds in

practice.

E. INFERRING POWER CONSUMPTION FROM

UTILIZATION

Our work seeks to infer CPU utilization from the power

consumption data, whereas many other works [35]–[37] aim

to do the opposite, that is, infer power consumption from

the CPU utilization. The previous research works use a lin-

ear model of the form Power = a × Utilization+c,

where a and c are constants. However, through experiments,

we observe that CPU utilization does not have a linear rela-

tionship with power consumption (refer §IV-D).

Dhiman et al., [38] present a multi-variate ‘‘Gaussian

mixture vector quantization’’ model to predict active power.

Note that this is in contrast to our objective of predicting

utilization. Their key idea is to build power prediction models

using multiple metrics such as IPC (instructions-per-cycle),

MPC (memory accesses per cycle), CTPC (cache transactions

per cycle), and CPU utilization metrics. One can think of

using the same metrics to detect utilization. However, these

program-level metrics are not available without installing

monitoring agents at the host complex.

III. NASCENT: SYSTEM ARCHITECTURE

In this section, we first define key requirements (§III-A)

to be met by any solution for finding the CPU utilization

in BMaaS cloud, followed by an overview of NASCENT

architecture (§III-B). We then discuss the modifications to

BMaaS architecture with NASCENT (§III-C) followed by

the training (§III-D) and inference (§III-E) phases in detail.

We then discuss feature vector (§III-F) and then discuss the

ML models used (§III-G). Finally, we discuss the flow of

inference and training phases (§III-H).

A. DESIGN REQUIREMENTS

The following design requirements are derived based on the

practical constraints and potential use-cases of utilization

detection module observed both in the research literature and

in our private cloud.

1) R1: MEET SECURITY CONSTRAINTS

The solution should satisfy the privacy and security require-

ments of cloud tenants.

TABLE 1. Design requirements met by existing approaches and proposed
NASCENT solution.

2) R2: UTILIZATION DETECTION SHOULD BE GENERALIZED

A utilization detection technique should be generalized for

heterogeneous servers in BMaaS clouds having a diverse set

of CPU models.

3) R3: ABILITY TO DETECT UTILIZATION AT A FINER

GRANULARITY

This ability enables a wide variety of cloud management

applications (e.g.., load balance, energy management.)

4) R4: FAST AND SCALABLE UTILIZATION DETECTION

Utilization detection should be fast and consume minimal

resources (i.e., compute, storage, and network), so that it

enables taking quick actions and scales well for large clouds.

In the following section, we propose NASCENT and

explain how it meets all the requirements R1-R4. Table 1

summarizes the design requirements met by various

solutions.

B. OVERVIEW OF NASCENT

This work focuses on designing a solution to detect CPU

utilization for CPU-bound workloads. The key idea is to

leverage the server’s BMC sensor readings provided by the

BMC-complex to meet R1-R4 requirements. Note that in the

CPU-bound workloads, the usage of the CPU is much higher

than that of memory, disk, and network resources. To realize

this idea, we design NASCENT system that has the following

steps:

• We group servers with the same hardware configuration,

such as CPU processor_vendor, number of cores, and

other hardware components (e.g., disk type, memory)

into a single pool, as they show similar power consump-

tion profile.

• Before the first server in a pool is provisioned to

a user, we run synthetic CPU-bound benchmarks

on the server and collect the following training

data: (1) CPU utilization (actual_cpu_util) pro-

vided by monitoring agents running at the host-

complex; and (2) BMC sensor readings provided by

the BMC-complex: overall_power, cpu_power,

systemboard_power, fan_power, and

hdd_power.

• Figure 3 shows the training phase. We train a per-pool

ML regression model with the CPU utilization data and

the BMC sensor readings data collected from the first

server in a pool.
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FIGURE 3. Training phase in NASCENT.

FIGURE 4. Inference phase in NASCENT.

• Figure 4 shows the inference phase. The trained model

is deployed in BMC-complex of all servers in a pool,

that is, servers with the same configuration. At runtime,

a deployed server periodically reads actual BMC sensor

readings and infers CPU utilization from the ML model

deployed locally in BMC-complex.

By following the above steps, NASCENT detects CPU uti-

lization without running monitoring agents in host-complex,

thus satisfying R1. NASCENT pools servers with the same

hardware configuration and trains a per-pool ML model; this

generalizes utilization detection for a cloud with a diverse

set of server configurations, thus satisfying R2. NASCENT

uses regression methods as the ML models, which infers uti-

lization at fine granularity, thus satisfying R3. These models

require a small amount of computing and memory resources,

thus easily fit in the resource-constrained BMC-complex.

Moreover, the sensor readings data need not be transmitted

over the network or stored for processing. Hence, NASCENT

is fast and scales well for large clouds and meets R4.

C. BMaaS CLOUD ARCHITECTURE USING NASCENT

Figure 5 shows the high-level architecture of a BMaaS cloud

using NASCENTwith bare-metal servers. The BMaaS region

controller contains a database of all tenants, users, and

servers. A graphical user interface (GUI) based dashboard

is used to commission, acquire, deploy, release, and de-

commission servers. Within a datacenter facility, one or

more rack controllers are designated to provide near-rack

FIGURE 5. BMaaS cloud architecture using NASCENT.

network services such as pre-execution environment (PXE

with DHCP, TFTP, NTP services).

We have added the following five new components to

the existing BMaaS cloud architecture [39], which are high-

lighted in yellow in Figure 5. noitemsep

1) Training service provides a central web service for

building ML models on the data generated using

benchmarks, before or after deploying a server (when

there are changes to hardware configuration). It stores

trained models for each pool of homogeneous servers.

2) Host-Agent is a monitoring agent which runs on hosts

to collect actual_cpu_util during training phase.

3) Utilization data collector receives CPU utilizations

inferred by BMC-complexes of servers and stores it in

a time-series database (TSDB).

4) Job scheduler helps in running scheduled tasks

periodically.

5) BMC-Agent is an embedded application running either

in the BMC-complex of a server or onOpenBMC proxy

hosted by the rack controller.

NASCENT training phase and inference phase are

designed to work with both OpenBMC hardware and

proprietary hardware in the BMC-complex. For servers

with OpenBMC compatible hardware (indicated with # in

Figure 5), the inference engine module (named BMC-Agent)

can be run in their respective BMC-complex. However,

many private cloud datacenters have servers with propri-

etary BMC hardware with closed firmware running on them
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FIGURE 6. Automated model training during life-cycle of a bare-metal
server in BMaaS cloud.

(indicated with $). So deploying the inference engine in their

BMC-complex is not feasible as it requires firmware changes.

To address this problem, for servers with proprietary BMC

hardware, we propose spinning a lightweight VM on the rack

controller, named as OpenBMC proxy; this VM mimics the

OpenBMC hardware. We run a BMC-Agent for each server

with proprietary BMC in the VM. During the training phase,

servers with either OpenBMC or proprietary BMC (indicated

with #$ in Figure 5) are treated in the same manner.

D. TRAINING PHASE BEFORE DEPLOYMENT

Figure 6 shows Unified Modeling Language (UML) state-

machine diagram [40] for automated training and deployment

of ML model during the life-cycle of a typical bare-metal

server [41]. During the commissioning phase, necessary hard-

ware introspection is performed to check the health of a few

hardware parts (e.g. CPU, RAM, Disks). In addition, the

introspection data is stored in the region controller’s database.

The introspection data contains details of each server’s hard-

ware parts such as product vendor, CPU model, number of

cores, motherboard, CPUs, disks, NICs, accelerators, etc.

This hardware introspection activity is triggered whenever

hardware parts are added to or removed from an existing

server.

Figure 7 shows UML interaction diagram [40] for auto-

mated training and deployment of MLmodel. After hardware

introspection activity, theMLmodel training service, collects

training data and trainsmodels.More specifically, the training

service gets server’s hardware specifications from the region

controller (steps 1-2). If the hardware specification is not seen

before (step 3), the service runs synthetic CPU-bound bench-

marks and collects BMC sensor readings from the BMC-

complex (step 4a) and the CPU utilization data from the host-

complex (step 4b). The data collection is performed in a paral-

lel and time-synchronizedmanner through the respective rack

controller.

The BMC sensor readings include overall_power,

cpu_power, systemboard_power, fan_power, and

hdd_power. The synthetic benchmarks perform the follow-

ing steps in the host-complex: (1) sleep command mimics an

idle server with CPU load of 0 for 30 minutes. (2) stress-

ng [42] tool is used to run CPU loads ranging from 1%

to 100% with an increment step of 5% and from 100% to

1% with a decrement step of 5%. Both the steps are run

FIGURE 7. Data collection using benchmarks and ML model training
service in NASCENT.

FIGURE 8. Percentage CPU utilization vs overall power consumed for
benchmark data.

for one hour each and actual_cpu_util is captured for

every five-second interval using mpstat [43] command.

We choose this interval because the BMC in servers used for

evaluation provides running-average readings for every five

seconds. The actual_cpu_util from host-complex and

sensor readings are subjected to inner-join at the rack con-

troller to get benchmark data. Figure 8 shows data generated

for the synthetic benchmark for a two-hour duration.

The benchmark data is used for training and validation at

the rack controller (step 5), and the ML model is automati-

cally deployed in the BMC of all servers in a pool (step 6).

The generated model is sent to the training service, which can

be used for other servers with the same hardware specifica-

tions in the future (step 7).

E. INFERENCE PHASE AFTER DEPLOYMENT

UML interaction diagram in Figure 9 shows the workflow of

the inference phase of NASCENT. In all servers, the deployed

BMC agents periodically (every 5 seconds) fetch sensor read-

ings and give the readings as input to the ML model to infer

CPU utilization viz., detected_cpu_util. To check the

accuracy of the inference after deployment, from few servers

where cloud administrator has access to the host-complex,

CPU utilization information actual_cpu_util from the

host-complex is collected and compared with the corre-

sponding detected_cpu_util. As shown in Figure 9,
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FIGURE 9. Utilization detection of servers during inference phase of
NASCENT.

a data collection job is periodically (every five minutes)

triggered by the job scheduler, and the job fetches CPU

utilization data and stores the data in the TSDB. In addition,

detected_cpu_util samples in that 5-minute duration

are fetched from the respective BMC and stored in the TSDB.

Using a dashboard we implemented (see Figure 5), the cloud

administrator can view both present and past samples of

actual_cpu_util and detected_cpu_util stored

in the TSDB.

1) APPLICATIONS OF UTILIZATION DETECTION

E-mail alerts are sent periodically (e.g., every day) to respec-

tive users of the servers if detected_cpu_util or

actual_cpu_util of servers show near-zero utilization

for the entire period (e.g., one day). Such servers could either

be released or re-purposed to get cost and power savings.

Alerts are also sent to users when abnormal utilization of

CPU is detected to let users check possible anomalous usage

(e.g. crypto-jacking [44]–[47] attacks). Further, depending on

the cloud management applications, other custom alerts can

also be generated.

F. FEATURE VECTOR IN ML MODELS

The ML model in NASCENT is trained with sensor read-

ings as features. The ground truth is the utilization of

servers, which is the actual_cpu_util collected from

the host-complex during benchmarking. As all the features

have numeric values with little different ranges, we used the

normalization values of the features.

To understand which features (sensor readings collected

through BMC) have a high correlation with CPU utiliza-

tion, we study the relationship between them using two

correlation methods: Pearson correlation coefficient (α) and

Spearman correlation coefficient (β) [48]. α evaluates the

linear relationship between two variables, whereas β evalu-

ates the monotonic relationship: α is linear when the change

in one variable leads to a proportional change in another

variable; β measures the change in a variable, but the rela-

tionship is not necessarily linear. Both α and β have a value

TABLE 2. Correlation of the features with actual_cpu_util metric.

between +1 and −1, where 1 is a total positive correlation,

0 is no correlation and −1 is a total negative correlation.

Table 2 shows α and β in a sample dataset for

a CPU-bound workload described in section §IV-B.

We can see three features that are positively correlated

with actual_cpu_util metric: overall_power,

cpu_power, and systemboard_power. This motivates

us to use these sensor readings as a feature vector for training

ML models. Please note that fan_power and hdd_power

are also correlated but negatively, probably because the spe-

cific dataset is CPU-bound.

G. ML MODELS

For detecting fine granular CPU utilization (R3 in §III-A)

we use regression methods. Regression is a method that is

used to learn a relationship between one dependent variable

and other independent variables. y = wT x where w is a

coefficient vector, x is feature vector, y is a target value. From

Figure 8, we observe that CPU utilization does not have a lin-

ear relationship with power consumption. This is because the

power consumption depends on two components: static and

dynamic. The static power consumption is constant across

all workloads, but the dynamic power does not vary linearly

with utilization. We trained models using three non-linear

ML regression algorithms: (a) K-Nearest Neighbor regres-

sion (KNNR), (b) Support vector regression (SVR) - Radial

Basis Function (RBF), and (c) Support vector regression -

Polynomial.

1) K-NEAREST NEIGHBOR REGRESSION

For a given test sample, the KNNRmodel [49], [50] measures

the Euclidean distance of the sample from all the training

samples and selects the K nearest samples. Then, it takes the

average of the respective K training samples’ target values,

and the average result is the predicted value of the given

test sample. Note that this regression model does not learn

the relation between the features and the target. The KNNR

model consists of all the training data samples and K value,

also called hyper-parameter.

2) SUPPORT VECTOR REGRESSION

In SVR [51], [52], we minimize the L2-norm of the coef-

ficient vector and also impose the constraint that the abso-

lute error should be less than a specific threshold ǫ. The ǫ

(epsilon-tube) is a hyper-parameter that can be tuned during

training to get the best model. It helps in avoiding over-fitting

or under-fitting of the model. Also, it helps in getting a more
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generalized model with respect to the training data. Here,

we seek to minimize:

J (θ,K ) = min
1

2
‖w‖22 K (xi, xj) such that | yi − w

T
i xi |< ǫ

The SVR method uses a kernel K to best fit the model.

Depending on the relationship between the dependent and

the independent variables, a suitable kernel such as linear,

polynomial, or radial basis function (RBF), can be used in

SVR. Linear kernel and polynomial kernel are similar, but

the function is defined differently, i.e., the order in the linear

kernel is one, while the order in the polynomial is arbitrary.

SVR with linear kernel learns a linear function, while SVR

with polynomial kernel learns a non-linear function. The

RBF kernel uses normal curves around the data points and

calculates the Euclidean distance between the data points,

which best fits the model. In general, the RBF kernel provides

the lowest error, but its inference latency is higher than that

of linear and polynomial kernels.

NASCENT assorts servers with the same hardware con-

figuration into a pool. A per-pool model is trained using

data collected from the first server in that pool and infer the

cpu_util of all the servers (including the first server) in

the pool.

H. FLOW OF INFERENCE AND TRAINING PHASES

To give insights, we now discuss the pseudo-code of SVR

training and inference. Let X ∈ R
n×m be a data matrix of the

sensor readings where n is the number of examples, and m is

the number of features, and y is a vector of CPU utilization

values. For every instance of xj ∈ R
m in the data matrix, there

is a CPU utilization value yj. The instances in the dataset yj
vary from 0 to 100, which is the CPU utilization percentage.

Algorithm 1 shows pseudo-code for model training. Train-

ing of this model expects feature vector X and target vector y

as the input. It then passes the feature value to kernelK , which

transforms it into a higher dimension space and finds the best

linear model in that space by optimizing the cost function

Algorithm 1 Support Vector Regression Training

Input: {Xj}
n
j=1 ⊲ Sensor readings

Input: {yj}
n
j=1 ⊲ Actual CPU utilization

Input: ǫ ⊲ Epsilon-tube (a hyper parameter)

Output: θ ⊲ SVR Model

1: Initialize: α← 1.0 ⊲ Learning rate

2: Initialize: θ ← {θi}
m
i=1 ⊲ Random initialization

3: K ← SVRPOL or SVRRBF ⊲ Kernel to be used

4: Declare: J (θ,K ) ⊲ Cost function

5: repeat

6: for θi∈ θ do

7: θi← θi − α × ∂
∂θi
J (θ,K ) ⊲ Optimize

8: end for

9: until ‖ ∂
∂θi
J (θ,K )‖ ≤ ǫ ⊲ Convergence

10: return θ

Algorithm 2 Support Vector Regression Inference

Input: θ ⊲ SVR Model

Input: {Xj}
k
j=1 ⊲ Sensor readings

Output:{ŷj}
k
j=1 ⊲ Inferred CPU utilization

1: K ← SVRPOL or SVRRBF ⊲ Kernel to be used

2: ŷ← (θTK (X )) ⊲ Dot product

3: return ŷ

J (θ,K ). Loop (step 5-9) keeps iterating until the desired ǫ

is achieved.

Algorithm 2 shows pseudo-code for the inference phase.

During inference, the model (parameters vector and the ker-

nel) and data matrix X ∈ R
k×m having k sensor readings

are passed as the input to get inference results as a vector ŷ.

In step 2 of the algorithm, the data matrix is processed by

the kernel and then subjected to dot-product with transposed

parameters vector to get a vector of scalar values ŷj. These

ŷj are k inferred CPU utilization values corresponding to the

given X .

In summary, we give a data matrix of sensor readings as

well as the ground truth of the CPU utilization and try to find

the optimal weights for a support vector regression model.

The model is used to predict the unknown y for a given x.

The optimal weights are also tested on data that the model

has not been exposed to before.

IV. EXPERIMENTATION AND RESULTS

In this section, we first explain the experimental setup (§IV-

A), workloads considered for the evaluation (§IV-B), and

evaluation parameters and metrics (§IV-C). We then present

experiments performed with static threshold based heuristics

(§IV-D) and NASCENT (§IV-E). We then present results

from ablation study of the proposed ML models (§IV-F).

We compare the results provided by the best ML model

in NASCENT with that provided by the existing propri-

etary BMC firmware functionality, namely CUPS (§IV-G).

We finally present the salient features and applications of

NASCENT (§IV-I).

1) SETUP

We conduct the experiments by implementing NASCENT in

a private bare-metal cloud commissioned as part of Dhi-Ojas

project [39]. It has a region controller and two rack controllers

managing 105 bare-metal servers, belonging to 12 tenants.

All the servers run Linux OS. All of these servers have

proprietary BMC firmware.

2) CLOUD TECHNOLOGIES

We use open-source cloud technologies such as MAAS [10]

for cloud management, InfluxDB [53] for the time-series

database service, Grafana [54] dashboard to display summary

information for monitoring purposes, and Jenkins [55] for

scheduling jobs.
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3) DEVELOPMENT ENVIRONMENT

We have used a pool having four Fujitsu RX2540M2 servers

(2 processors with 28 cores each and 64GB RAM) to evalu-

ate NASCENT, as these servers have sensors for measuring

the overall power consumption (i.e.overall_power) and

the power consumption of individual components, namely

cpu_power, systemboard_power, fan_power and

hdd_power. The RX2540M2 BMC firmware maintains

a running average of overall_power for a five-second

window. The RX2540M2 BMC firmware reports instanta-

neous readings for the power consumption of individual

components. We also evaluated NASCENT on two other

different pools, viz., DellEMC PowerEdge R630, which has

four servers and HPE Proliant DL380G9, which has eleven

servers. The servers in the two pools have a running average

of overall_power of 60 seconds and 5 minutes, respec-

tively. All these servers have proprietary BMC firmware.

Note that OpenBMC based servers provide the flexibility to

adjust the BMC firmware to report running-average readings

of desired sensors for custom running-average windows and

run user-defined applications.

A. EXPERIMENTAL SETUP

As these four servers have proprietary BMC, we run BMC-

Agent in OpenBMC proxy (a QEMU VM instance) that

emulates the OpenBMC based BMC hardware. One proxy

VM is created for each proprietary BMC, and it operates

inside the rack controller, as shown in Figure 5. Note that

we do not need this VM for OpenBMC compatible hard-

ware servers; since the BMC-Agent developed works under

the BMC hardware resource constraints, it can be easily

ported to OpenBMC compatible hardware servers. In the

future, we plan to port the BMC-Agent to OpenBMC com-

patible servers and also customize OpenBMC firmware to

compute running-average readings to embrace all the indi-

vidual power consumption sensors. This would allow us to

apply NASCENT for other production workloads such as I/O

bound, memory-bound, network bound, accelerator bound.

The BMC and thus, the proxy VM is highly resource-

constrained, for example, it has 1 ARM vcpu, 256 MB

RAM and 140 MB flash and allows only C/C++ execution

environment. This constrains us to develop the inference

engine (BMC-Agent) in C++ using libsvm library [56].

The training code, which runs in the NASCENT training

service, is developed in Python and sklearn. The host

monitoring agent (Host-Agent) is a lightweight Python script

that returns the aggregate percentage of CPUs used (ranging

from 0 to 100), averaged over the last five-second interval.

Utilization-data collector is developed in Python and exe-

cuted by a Jenkins periodic-job to retrieve and save results

in an InfluxDB database.

B. WORKLOADS

1) TRAINING (BENCHMARK) DATASET

We train one model for every pool of servers with identical

hardware configurations. The training dataset comprises of

actual_cpu_util from Host-Agent and corresponding

overall_power sensor reading from the BMC-Agent.

The model is trained by running synthetic benchmark work-

loads on one of the servers from each pool before provi-

sioning. The benchmarking scripts run for about 2.5 hours to

collect 1574 training data points. These data points are used

to train machine learning models.

2) INFERENCE (PRODUCTION) DATASET

To check the accuracy of NASCENT, we have collected pro-

duction datasets with actual_cpu_util and respective

overall_power readings for the following workloads:

(1) Build server workload, (2) DenseNet [57] Training work-

load, (3) Deep learning recommendationmodel (DLRM) [58]

from MLPerf suite. Note that we took permission from the

tenants to collect these statistics from the host complex. The

reasoning for the choice of these workloads is as follows:

(1) Build server workload: A build server is used for

building (compiling and linking) the source code of the soft-

ware. These builds form typical CPU-extensive workloads

and hence, are chosen for evaluation.

(2) DenseNet training workload: DenseNet is a convolu-

tional neural network architecture primarily used for com-

puter vision applications. This workload runs on multiple

Linux containers simultaneously inside the bare-metal server.

(3) DLRM training workload: MLPerf training suite of

benchmarks measure how fast a system can train ML mod-

els to a target quality metric. Of this, the DLRM [59]

recommendation training workload is run on a bare-metal

server. Despite the emergence of accelerators, CPU remains a

widely-used platform for running ML services in large-scale

datacenters such as those managed by Facebook and

Microsoft [60]. DenseNet and DLRM training emulate such

ML workloads.

Kindly note that these ML workloads are entirely dif-

ferent from the ML models used to make predictions in

NASCENT. We have included both non-ML (build server)

and ML (DenseNet and DLRM) workloads to show that

NASCENT works well for all types of workloads, including

traditional and emerging workloads.

C. EVALUATION PARAMETERS AND METRICS

We now define four parameters used for the evaluation of

NASCENT. (1) Training Time, (2) Model Size, (3) Inference

Time, and (4) Model Performance.

1) TRAINING TIME

Average-time taken (in ms) for generating regression model

after training data is available.

2) INFERENCE TIME

Average-time taken (in ms) for real-time inference of each

sample on OpenBMC proxy VM.

3) MODEL SIZE

Size (in KB) of regression model generated after training.
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4) MODEL PERFORMANCE

The efficiency of regression models during inference on

unseen data defined in terms of various metrics. We discuss

the following threemetrics used for the evaluation of different

regression models experimented in this paper.

5) ROOT MEAN SQUARED ERROR (RMSE)

RMSE is the most widely used metric for regression tasks.

It is computed as the square root of the average squared

differences between the model’s predictions and the actual

observations.

RMSE =

√

1

n

∑n

i=1
(yi − pi)2

where, yi - actual value, pi - predicted value.

6) MEAN ABSOLUTE ERROR (MAE)

It is the absolute difference between the actual target value

and the value predicted by the model. Since we do not take

the square of differences, and all the individual differences

are weighted equally, it is more robust to outliers.

MAE =
1

n

∑n

i=1
|yi − pi|

7) COEFFICIENT OF DETERMINATION (R2)

The ‘‘coefficient of determination’’ metric compares the cur-

rent model with a constant baseline and evaluates the cur-

rent model’s superiority. The value of R2 generally varies

from 0 to 1 as the model improves. A higher R2 value shows a

better model. However, if the model does not follow the trend

of training data, the metric’s value is negative.

R2 = 1−
SSres

SStot

SSres =
∑n

i=1
(yi − pi)

2

SStot =
∑n

i=1
(yi − ȳ)

2

where, yi - actual value, pi - predicted value, ȳ - mean of actual

values, SSres - sum of squares of difference between actual

and predicted value, SStot - sum of squares of difference

between actual and mean value.

8) ADJUSTED R2 (R2
a)

R2 suffers from the problem that the scores improve on

increasing terms even though the model is not improving.

Adjusted R2 adjusts for the increasing predictors and shows

improvement only if there is a real improvement in the model.

Value of Adjusted R2 also varies from 0 to 1 as the model

improves where a higher value refers to a better model.

R2a = 1−

[(

n− 1

n− k − 1

)

∗ (1− R2)

]

where, R2a - Adjusted R2, n - number of samples in dataset,

k - number of independent variables, R2 - coefficient of

determination.

TABLE 3. Overall power consumption ranges (in watts) at various
Percentage CPU utilization levels of a Fujitsu Primergy
RX2540M2 used as build server.

D. EXPERIMENTS WITH STATIC THRESHOLD BASED

HEURISTICS

One may use a naive approach of measuring the static mini-

mum and maximum thresholds on power consumed for every

percentage CPU utilization level by running different work-

loads. These thresholds can be deployed in BMC to infer

percentage CPU utilization at run-time. Since the thresholds

can be derived before provisioning a server, this method

is non-invasive, and the logic is simple enough to run in

the resource-constrained BMC-complex. Hence, this solution

meets R1 and R4, respectively. This method is also generic

as we can obtain thresholds for every CPU model; therefore,

it meets R2. However, as we show below, the predictions

provided by this method are inaccurate, thus violating R3.

Table 3 shows the minimum and maximum thresholds

obtained from a production build server, which is a CPU-

bound workload. From the table, we can observe a consid-

erable overlap in power consumed at different percentage

CPU utilization levels, causing ambiguity in determining the

percentage CPU utilization from a given power consumption

value. For instance, the power consumption of 200 watts

corresponds to two ranges of CPU-utilization, viz., [0, 20]

and (20, 40].

More specifically, Figure 10 shows the correlation between

the CPU load and the overall power consumed from a pro-

duction server. From this figure also, we can observe high

variance in determining power consumed (y-axis) by the

server at different percentage CPU utilization levels (x-axis).

As shown in Figure 10, we also observed similar high vari-

ance behavior for CPU-bound production workloads. The

data for production workload is collected from a server

already deployed after taking its owner’s permission. To sum-

marize, given such a large interval size and variance in the

power consumption, the server utilization cannot be accu-

rately detected using the static thresholds.

We also observe that the power consumption at different

utilization levels varies significantly across different servers.

This is because our private cloud has bare-metal servers with a

wide variety of hardware configurations provisioned to users

based on their requirements. Few minor changes in the count

or type of peripheral devices significantly change the power

consumption ranges. The main factors that influence power

consumption are heterogeneity in count and type of each

server component such as processor, processor-frequency,
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TABLE 4. Model performance with different regression methods on various datasets using overall_power as the feature and ǫ = 0.1 (For RMSE and
MAE, lower is better. For AdjR2, higher is better).

FIGURE 10. CPU utilization vs overall_power, cpu_power,
systemboard_power consumed for a production build server.

core(s), memory, disk(s), OS, and a variety of hardware

devices (e.g., GPUs, FPGAs) connected to a server.

Therefore, inferring the current CPU utilization based on

power consumption-based heuristic alone is inadequate.

E. EXPERIMENTS WITH THE PROPOSED NASCENT

SOLUTION

From Figure 10, we observed that the relationship between

overall power and actual_cpu_util is not exactly lin-

ear. We evaluated the models trained using three non-linear

ML regression algorithms discussed in section §III-G:

(a) K -Nearest Neighbor regression (KNNR), (b) Support

vector regression - Radial Basis Function (SVRRBF), and

(c) Support vector regression - Polynomial (SVRPOL). As for

the hyper-parameter for SVRRBF and SVRPOL, we set ǫ =

0.1. Table 4 shows the summary of results with prediction

errors for three regression models. We have shown results

with three metrics viz., root mean squared error (RMSE),

mean absolute error (MAE), and adjusted R2 (AdjR2). Across

all the production workloads, the lowest error is observed for

SVRRBF, followed by KNNR and SVRPOL.

1) BENCHMARK RESULT

Figure 11(a) shows the ground truth (GT) i.e.actual_cpu_

util, and detected_cpu_util using KNNR, SVR-

POL and SVRRBF ML models on the benchmark dataset

(training subset). SVRRBF provides the best fit amongst

the three ML models; KNNR overfits to the given bench-

mark dataset, which is evident from the two humps between

100 and 175 overall_power range. Due to this over-

fitting, KNNR performs better on training data but is rela-

tively inaccurate on the test data.

2) PRODUCTION RESULTS

(1) Build server workload: Figure 11(b) shows the ground-

truth vs. inferred (predicted) values for the build server work-

load. As reflected from the benchmark results, SVRRBF

provides the best fit and the lowest error across all metrics

(Table 4) with an average RMSE of up to 3.

(2) DenseNet Trainingworkload: As shown in Figure 11(c),

for DenseNet training also, we observe a similar trend

as observed for the build server. Specifically, the KNNR

over-fits and the SVRPOL shows the highest error amongst

the three ML models.

(3) DLRM training workload: Figure 11(d) shows the

results for DLRM training workload. Among the three work-

loads, the prediction error is highest for the DLRM training

workload. This is because the DLRM training workload is

resource-intensive and runs for a longer time. This increases

the fan speeds to upwards of 1000RPM, which is more than

the fan speeds seen with the synthetic benchmark. Hence, the

RMSE metric rises to 8.7 for SVRRBF and up to 15.9 for

other models.

We observed that on the production dataset, K -nearest

neighbor regression achieves RMSE values in the range

4.18 to 10.65, SVRPOL achieves RMSE values between

8.96 and 15.94 and SVRRBF achieves RMSE values between

2.89 and 8.73.

3) TIME AND SPACE OVERHEAD

Table 5 shows training time, inference time, and model size

for KNNR, SVRPOL and SVRRBF ML models. KNNR

model takes the least time for training, but it has the largest

model size (42 KB) amongst all the ML models as KNNR

keeps all the training samples in the model. Due to its

large size, we do not recommend using KNNR as the final

solution. Similarly, SVRRBF has the longest training and

inference time amongst all the models with smallest model

size (19KB). Although SVRRBF has a long training time (65

millisec), it is still negligible compared to the time incurred

in data-collection using synthetic benchmarks (2.5 hours).

The inference application running in OpenBMC Proxy

VM has a peak memory demand of 4 MB. The total time
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FIGURE 11. Different regression models’ detected_cpu_util and the actual_cpu_util (GT) for benchmark and production (build server, DenseNet
training, DLRM training) data.

TABLE 5. Model sizes and inference time for regression models.

taken to gather sensor readings and perform inference for

a single sample is about 120 ms. Out of this 120 ms,

more than 119 ms is spent on reading the sensors from the

BMC-complex over the BMC-network. Consequently, the

actual inference time stands trivial (at 186 µs) compared to

the time taken to read sensors (at 119ms).When the inference

is done near the sensors (i.e., inside OpenBMC hardware),

the time taken to read all sensors would be relatively lower

(approximately 40 ms) since there would be no network

overhead.

Overall, from Table 4 and Table 5, we conclude that SVR-

RBF provides the least error with negligible time and space

overheads across multiple test workloads. As such, we rec-

ommend using SVRRBF as the final solution.

F. ABLATION STUDY

Our main results presented in Table 4 correlated actual_

cpu_util with overall_power. We now study

whether actual_cpu_util prediction improves by using

cpu_power or systemboard_power. This is moti-

vated by the fact that in Table 2, cpu_power and

systemboard_power also showed positive correla-

tion with actual_cpu_util. We seek to find whether

the error in prediction of actual_cpu_util from

cpu_power and systemboard_power is low enough.

We did not conduct ablation studies for KNNR model,

because the model size of KNNR is large (refer Table 5)

VOLUME 10, 2022 12877



M. S. Inukonda et al.: NASCENT: Non-Invasive Solution for Detecting Utilization of Servers in Bare-Metal Cloud

TABLE 6. RMSE for models trained with different feature combinations.

TABLE 7. RMSE for models trained using overall_power, cpu_power
and systemboard_power features, for different values of
hyper-parameter ǫ.

and grows linearly with training dataset size and hence not

suitable for inference in embedded systems (BMC).

Table 6 shows RMSE in predicting actual_cpu_util

from different feature sets using combinations of features

overall_power,cpu_power, andsysboard_power.

We observe that these RMSE values are much higher than

that obtained on using overall_power (refer Table 4).

This can be explained from the fact that the readings of

cpu_power andsystemboard_power sensor are highly

noisy, as confirmed from Figure 10. These readings are

instantaneous readings whereas that of overall_power

are average readings and hence, are noise-free. These

results and the explanation justify our choice of correlating

actual_cpu_utilwith overall_power, but not with

cpu_power and systemboard_power (refer Table 4).

Table 6 shows error metrics for the twomodels trainedwith

default value of hyper-parameter ǫ = 0.1. As cpu_power

and systemboard_power features are noisy, we have

also done ablation study by varying the value of ǫ for mod-

els trained with all the three features overall_power,

cpu_power and systemboard_power. From Table 7,

for ǫ = 0.05 and ǫ = 0.15, we did not notice any reduction

in RMSE in the two SVR models (SVRPOL and SVRRBF)

for all datasets, compared to their corresponding values in

Table 6.

These results from ablation study justify our choice of

hyper-parameter value ǫ = 0.1 (refer Table 4).

FIGURE 12. CPU utilization reported by CUPS, actual_cpu_util (GT)
and detected_cpu_util (SVRRBF) for production data (build server).

G. COMPARISON OF NASCENT SVRRBF WITH CUPS

To compare SVRRBF with the existing proprietary BMC

functionality (CUPS), we collecteddetected_cpu_util

(SVRRBF), actual_cpu_util (GT), and the corre-

sponding CPU utilization readings from CUPS of BMC

firmware during a build server workload. As shown in

Figure 12, the error between detected_cpu_util and

actual_cpu_util is inline with RMSE shown in Table 4.

We observed that there is a minor difference in CPU utiliza-

tion readings reported by CUPS and actual_cpu_util.

This could be the case as actual_cpu_util is retrieved

from the OS in host-complex and the CUPS readings from the

BMC firmware. Also, CUPS uses a sampling based running-

average. A small value of RMSE confirms that NASCENT

predicts the utilization accurately and is also comparable with

an industry-grade BMC functionality.

Apart from this CUPS functionality, to the best of

the authors’ knowledge, no previous work proposed a

non-invasive technique for detecting server utilization. Main

limitation of CUPS functionality is that, it is available only

in servers from few vendors (viz., Fujitsu, DellEMC) requir-

ing additional license cost, whereas NASCENT is agnostic

to server vendors and can be applied to all servers in a

bare-metal cloud with heterogeneous servers without any

licensing cost.

H. RESULTS ON DIFFERENT POOLS

To evaluate NASCENT further, we used a pool of ‘‘DellEMC

PowerEdgeR630’’ servers and another pool of ‘‘HPEProliant

DL380G9’’ servers. We generated an SVRRBF model on a

server from each pool and tested it on another machine from

the same pool. From Table 8, we did not notice a significant

deviation in RMSE in the two SVRRBF models for all the

datasets, compared to their corresponding values in Table 4

on Fujitsu RX2540M2 servers. The results from these pools

are in-line with the evaluation of NASCENT on the ‘‘Fujitsu

RX2540M2’’ servers.
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TABLE 8. RMSE for models trained using overall_power feature for
different pools (Server Vendor and CPU models).

I. SALIENT FEATURES OF NASCENT

1) PRIVACY AND SECURITY GUARANTEES

By leveraging the BMC-complex features, NASCENT sat-

isfies security and privacy requirements. NASCENT is a

processor agnostic approach with no additional license costs

and no need to upgrade existing hardware. Also, NASCENT

does not use any static power consumption-based thresholds.

Leveraging BMC-complex features also has other advan-

tages. First, the network to which the BMC network port

is connected is not exposed to the public internet. This

reduces the risk of being exploited by attackers from out-

side. Second, recent advancements in the BMC technology

such as the rise in the usage of OpenBMC compatible hard-

ware in servers [17], [61] and its visibility to power-hungry

components (e.g., GPUs, smart NICs) provide opportunities

to predict the overall server utilization accurately. Finally,

our approach is secure as OpenBMC keeps implementation

details open for everyone, thus enables fast fixes to security

issues. In the future, using OpenBMC, we plan to extend this

work to other workloads such as memory-bound and GPU-

bound.

2) APPLICATIONS OF CPU UTILIZATION DETECTION

Cypto-jacking is a cyber-attack where hackers compromise

servers and then, illicitly mine cryptocurrency on these com-

promised servers. Related works such as Bijmans et al. [44],

Musch et al. [45], Hong et al. [46], and Kirat et al. [47]

detect compromised servers based on abnormally high uti-

lization reported by the host-complex agents. NASCENT

complements these works by detecting CPU utilization in a

non-invasive manner. In the ‘‘energy-proportional comput-

ing’’ [62]–[65], the overall power consumption of a server

is proportional to the amount of useful work done (uti-

lization). To achieve energy-proportional computing, power

consumption and CPU utilization data is crucial. We envi-

sion that the idea of energy-proportional computing can be

enabled for the bare-metal cloud using the utilization detec-

tion enabled by NASCENT. This would allow using energy-

proportionality as a parameter while provisioning servers to

tenants.

V. CONCLUSION AND FUTURE WORK

NASCENT is a machine-learning-based non-invasive solu-

tion to find CPU utilization of bare-metal servers in a BMaaS

cloud where monitoring agents are not preferred because of

privacy and security reasons. The core idea is to leverage the

server’s sensor readings that are accessible via the BMC hard-

ware module as input features of machine learning models.

In addition to these features, the models are trained with

CPU utilization data of a few servers collected by monitoring

agents before provisioning. Finally, the learned models are

deployed in servers not running monitoring agents, and the

models are applied to infer the CPU utilization of servers. Our

evaluation shows NASCENT can infer CPU utilization with

low error (RMSE between 2.9 and 9.3) and is comparable to

utilization information by proprietary BMC firmware func-

tionalities (CUPS). NASCENT is open source and available

at https://github.com/iithcandle/dhi-ojas.

A. FUTURE WORK

We plan to use the detected_cpu_util and respective

power consumed for computing energy-proportionateness of

the bare-metal servers to help efficient server selection dur-

ing provisioning. Also, we plan to extend NASCENT for

accelerator utilization detection and study its performance.

Currently, NASCENT uses uni-variate regression; that is,

a single independent variable is used to train a model to pre-

dict one dependent variable. In our solution, the independent

variable is overall_power and the dependent variable is

actual_cpu_util. In the future, we shall improve our

solution by using multi-variate multiple-regression, where

we train models on more than one independent variable,

and it can predict more than one dependent variable. The

independent variables would be gpu_power, hdd_power,

memory_power, nic_power and cpu_power. A model

trained on these variables would predict GPU utilization,

disk utilization, memory utilization, NIC utilization and CPU

utilization individually. It would be a more complex model

as there is interdependence among independent variables for

hybrid workloads.
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