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1 Introduction

Studies of the structure of infrared (IR) singularities that appear in scattering amplitudes

in gauge field theories have a long and rich history, and have led to remarkable all-order

insights into the organisation of the perturbative expansion [1–16]. In the computation

of loop corrections to scattering amplitudes, IR singularities arise when a virtual particle

flowing in a loop becomes soft or collinear to one of the external particles. Upon construct-

ing, from amplitudes, a well-defined physical observable, these singularities are cancelled

by the contribution of real emission diagrams, which must be integrated over the phase

space for undetected real radiation. The singularities, however, often leave their imprints

on the perturbative expansion, in the form of potentially large logarithms of kinematic

variables, which may need to be resummed in order to obtain precise predictions. Such

resummations1 are made possible by the universal nature of infrared radiation, which re-

sults in factorised expressions for scattering amplitudes, where soft and collinear effects are

organised by universal functions, depending only on the quantum numbers of the external

particles involved in the scattering, but not on the specific nature of the hard process being

considered [14, 17, 18]. These soft and collinear functions, in turn, can be expressed as

matrix elements of field operators and Wilson lines, which are the object of the present

1For an introduction to the relevant techniques, see, for example, [17].
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study. We note that such matrix elements play a ubiquitous role, not only for the factori-

sation of scattering amplitudes, but also in many effective theories based on QCD [19–21];

furthermore, we emphasise that a detailed knowledge of infrared singularities is also impor-

tant for collider phenomenology at finite orders: indeed, the cancellation of singularities

between squared matrix elements with different numbers of external particles is difficult

to implement at high orders for complicated collider observables, which must be evalu-

ated numerically. In practice, the cancellation must be performed analytically, and the

construction of general and efficient subtraction procedures beyond next-to-leading order

(NLO) is an ongoing effort (see, for example, [22–31]).

The methods developed in this paper concern the evaluation of Wilson-line correlators

of the general form

Sn (γi) ≡ 〈0|
n∏

k=1

Φrk (γk) |0〉 , (1.1)

where Φr(γ) is a Wilson-line operator evaluated on a (smooth) space-time contour γ,

defined by

Φr (γ) ≡ P exp

[
ig

∫

γ

dx ·Ar(x)

]
, (1.2)

where A
µ
r (x) = Aµ

a(x)Ta
r is a non-abelian gauge field, with Ta

r the generators of the

representation r of the gauge group. The smooth contours γk can be closed (in which case

the correlator is gauge-invariant), or open: in this case, the correlator is a colour tensor

with open colour indices in representations rk attached to the ends of each Wilson line.

While most of our considerations will apply in general to any correlator of the form (1.1),

we will be especially interested in the soft colour operator associated with multi-particle

scattering amplitudes in gauge theories, which encodes all their soft singularities. This soft

operator is of the form of eq. (1.1), with the contours γk given by semi-infinite straight

lines extending from the origin along directions βk, corresponding to the four-velocities of

the particles participating in the scattering. In this case we write more explicitly

Sn

(
βi · βj , αs(µ

2), ǫ
)
≡ 〈0|

n∏

k=1

Φβk
(∞, 0) |0〉 , Φβ (∞, 0) ≡ P exp

[
ig

∫
∞

0
dλβ ·A(λβ)

]
,

(1.3)

where αs = g2/(4π), for simplicity we did not display the representations to which the

Wilson lines belong, and we introduced the dimensional regularisation parameter ǫ, setting

the space-time dimension to d = 4− 2ǫ.

Soft operators of the form (1.3) are highly singular, being affected by ultraviolet, soft,

and, in case β2
i = 0, collinear divergences: as a consequence, special care is required to

evaluate them [32–35]. In the massless case, this can be done by introducing auxiliary regu-

lators: for collinear divergences, one may set β2
i 6= 0, for soft divergences one may for exam-

ple introduce a smooth exponential long-distance cutoff on gluon interactions, as discussed

in refs. [34, 35], while retaining dimensional regularisation for ultraviolet singularities. The

bare correlator can then be evaluated and renormalised, yielding the desired answer.
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Wilson-line correlators of the form of eq. (1.1) have the following basic properties.

• After renormalisation, n-line correlators obey renormalisation group equations which

lead, in dimensional regularisation, to exact exponentiation in terms of a soft anoma-

lous dimension matrix Γn. For straight-line correlators, of the form of eq. (1.3), one

may write

Sn

(
βi · βj , αs(µ

2), ǫ
)
= P exp

[
−
1

2

∫ µ2

0

dλ2

λ2
Γn

(
βi · βj , αs(λ

2), ǫ
)]

. (1.4)

It is important to note that, in the massless case, the soft anomalous dimension

Γn is affected by collinear singularities, which must be properly organised in terms

of appropriate jet functions [14]; collinear-finite contributions can be computed in

the massless case by considering Wilson lines slightly tilted off the light cone, and

taking the light-cone limit in the intermediate stages of the calculation [36]. The soft

anomalous dimension matrix Γn is a central quantity for the study of perturbative

non-abelian gauge theories, and has been the focus of much theoretical work. It

was computed at one loop in [37] (see also [38]); at two loops in the massless case

in [39, 40], and in the massive case in [41–45]; finally, at three loops in the massless

case in [36, 46].

• General Wilson-line correlators of the form of eq. (1.1) obey a non-trivial form of

diagrammatic exponentiation, so that one can write

Sn (γi) = exp
[
Wn (γi)

]
, (1.5)

where the logarithm of the correlator, Wn (γi), can be directly computed in terms of a

subset of the Feynman diagrams contributing to Sn(γi). For non-abelian gauge theo-

ries, this was first pointed out in refs. [47–49], for the case of two straight, semi-infinite

Wilson lines. For general configurations, it was proven in refs. [50, 51]. Feynman di-

agrams contributing to Wn (γi) are collectively called webs. For an abelian theory,

webs are connected diagrams; for a non-abelian theory, if only two Wilson lines are

present, webs are two-eikonal irreducible diagrams, i.e. diagrams that do not become

disconnected upon cutting only the two Wilson lines; for general, multi-line correla-

tors, webs are sets of diagrams that differ among themselves by the ordering of their

gluon attachments to the Wilson lines. The properties of webs will be further dis-

cussed in section 2, and a useful generalisation of the concept of web will be proposed

in section 3. Clearly, by means of webs, one can directly compute the soft anomalous

dimension matrix Γn.

• For the case when the contours γi are semi-infinite, or infinite straight lines, all loop

corrections to the bare correlator, in the absence of auxiliary IR regulators, vanish

in dimensional regularisation, since they are given by scale-less integrals. Bare corre-

lators are then exactly given by the unit matrix in the tensor product of the colour

representations of the n Wilson lines. The renormalised correlator is therefore a ‘pure

– 3 –
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counterterm’: in order to compute it, one must first construct an IR-regulated ver-

sion of the bare correlator, whose loop corrections will not vanish, but will in general

be regulator-dependent; one proceeds then to renormalise the regulated correlator,

extracting the relevant UV counterterms; the set of these counterterms constitutes

the renormalized version of the original correlator. It is important to note that,

for general multi-line correlators, multiplicative renormalisability and exponentiation

combine non-trivially, due to the non abelian nature of webs, and the calculation

of renormalised correlators includes commutators of counterterms and bare webs, as

required [52].

• When the countours γi are light-like, straight, semi-infinite Wilson lines, scale invari-

ance imposes strong constraints on the functional dependence of the soft anomalous

dimension matrix Γn. Up to two loops, Γn can only involve dipole correlations be-

tween Wilson lines [15, 16, 53, 54]; beyond two loops, only quadrupole correlations

can arise, which must depend on scale-invariant conformal cross ratios of the form

ρijkl ≡ (βi · βjβk · βl)/(βi · βkβj · βl): the first such correlations arise at three loops,

with at least four Wilson lines, and were computed in ref. [36]; further correlations

may arise only in association with higher-order Casimir operators, which may start

contributing only at four loops, as discussed in section 5.3.

In this paper, we study the properties of the logarithms of Wilson-line correlators, Wn(γi),

with emphasis on their colour structures, extending earlier studies to higher orders in

perturbation theory. After reviewing existing results on diagrammatic exponentiation in

section 2, in section 3 we propose a natural extension of the concept of web, which we

believe will prove useful for classification purposes and high-order studies. Subsequently,

in section 4, we discuss how our definition leads to a simple recursive method to generate

webs at (p+1) loops from those arising at p loops, and we discuss how this recursion can be

implemented in a code based on the ‘replica trick’ used in ref. [51]. In section 5, we apply

our method to construct the web mixing matrices at four loops for all webs connecting

four or five Wilson lines, verifying that these matrices satisfy the expected properties,

including conjectures that were proposed at lower orders; furthermore, we briefly discuss

the colour structures that arise at four loops, verifying the compatibility of our results

with the discussion in refs. [55, 56]. We conclude, in section 6, with an outlook on possible

future developments, while an appendix lists in detail the web mixing matrices for all the

webs discussed in the main text.

2 Diagrammatic exponentiation for multiple Wilson-line correlators

Diagrammatic exponentiation in the eikonal approximation was first observed in QED [6],

where Wn(γi) is given by the sum of all connected photon subdiagrams (obtained by remov-

ing the Wilson lines form the original diagrams): two examples are shown in figure 1. For

a non-abelian theory, the presence of non-commuting colour factors associated with gluon

attachments to the Wilson lines invalidates the simple QED exponentiation: it remains

nonetheless true that the logarithms of Wilson-line correlators have a direct diagrammatic

– 4 –
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Figure 1. Two low-order examples of webs with two Wilson lines in an abelian gauge theory.

Figure 2. The first two diagrams contribute to W2, while the third diagram, which becomes

disconnected by cutting the two Wilson lines, does not.

interpretation. For the case of two Wilson lines [47–49], W2 is constructed from the set

of diagrams which remain connected after cutting the two Wilson lines: these two-eikonal-

irreducible diagrams are called webs (see figure 2 for examples). It is important to note

that, even in the simple case of two Wilson lines in a colour-singlet configuration, webs

appear in W2 with modified colour factors: more precisely, the only colour factors ap-

pearing in W2 are those that correspond to connected gluon subdiagrams, such as the

first one portrayed in figure 2. This provides an interesting generalisation of the abelian

exponentiation, and points to further extensions to the multi-Wilson-line case.

The problem of constructing the colour operatorWn(γi) for the general case of nWilson

lines was solved in the remarkable series of papers [50–52, 57–61], while an interesting alter-

native approach was developed in refs. [62, 63]. Here we briefly summarise the main results,

with special attention to the colour structures, which will be the main focus of our paper.

Let D be a Feynman diagram contributing to the correlator Sn. Each such diagram

can be written as the product of a kinematic factor K(D), depending on the four velocities

βi (or more generally on the contours γi in the case of non-straight Wilson lines) and a

colour factor C(D). In full generality, the logarithm of the correlator, Wn, can be written

as linear combination of the same diagrams, with modified colour factors. We write

Wn(γi) =
∑

D

K(D) C̃(D) , (2.1)

where C̃(D) is referred to as Exponentiated Color Factor (ECF) for diagram D. The cru-

cial point in eq. (2.1) is of course that a large number of diagrams have vanishing ECFs,

– 5 –
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Figure 3. A simple two-loop, three-line web involving two Feynman diagrams. Note that Wilson

lines are oriented, and labelled by integers in green; multiple gluon attachments to a given line

(whose permutations generate the web) are labelled by capital letters in blue.

and therefore do not contribute to the logarithm of the correlator: for example, for n = 2,

one can show that all two-eikonal reducible diagrams have C̃(D) = 0. In general, ECFs are

linear combinations of the ordinary color factors of sets of diagrams that differ only by the

order of their gluon attachments to the Wilson lines. This naturally leads to the general def-

inition of a web not as a single diagram, but as a set of diagrams that can be obtained from

any representative element by permuting the gluon attachments to the Wilson lines: a sim-

ple example of a two-loop, three-line web involving two diagrams is presented in figure 3.

As a consequence of these considerations, the sum in eq. (2.1) is naturally organised as

a sum over webs, and for each diagram belonging to a given web w the ECF is expressed as

C̃(D) =
∑

D′∈w

Rw(D,D′)C(D′) , (2.2)

where the sum extends to the diagrams belonging to web w, and Rw(D,D′) is called web

mixing matrix. Combining eq. (2.1) and eq. (2.2) one can express the Wilson-line correla-

tor as

Sn = exp



∑

D,D′

K(D)R(D,D′)C(D′)


 , (2.3)

where the sum extends to all diagrams appearing in the correlator, order by order in pertur-

bation theory, and the matrix R is block-diagonal, with blocks corresponding to individual

webs. In turn, each web w can be written as

w =
∑

D∈w

K(D) C̃(D) =
∑

D,D′∈w

K(D)Rw(D,D′)C(D′) . (2.4)

In this language, Wn =
∑

wn, where the sum extends to all webs arising in the presence

of n Wilson lines, order by order in perturbation theory.

Clearly, web mixing matrices are crucial quantities for the purpose of computing

Wilson-line correlators, and therefore the soft anomalous dimension matrix. Their proper-

ties were extensively studied in refs. [50–52, 57–60], and can be summarised as follows:

• Web mixing matrices are idempotent, i.e. ∀w, R2
w = Rw, as a consequence of which

their eigenvalues can only be either 1 or 0.

– 6 –
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• Operating on the vector of color factors for the diagrams of web w, the web mixing

matrix Rw acts as a projection operator, selecting a subset of the possible colour

factors, in number equal to its rank.

• To all orders in perturbation theory, it can be shown [59] that the set of colour factors

surviving the projection is the set of colour factors of connected gluon diagrams: this

is the general form of the non-abelian exponentiation theorem.

• Acting on the vector of kinematic factors for the diagrams of web w, in the presence

of an infrared regulator, the web mixing matrix Rw projects onto kinematic factors

that do not contain ultraviolet sub-divergences. This is crucial, in order to be able

to isolate UV counterterms with no dependence on the infrared regulator.

• The elements of web mixing matrices obey the row sum rule
∑

D′ Rw(D,D′) = 0,

implying that at least one of the eigenvalues of Rw must vanish.

In addition to these properties, which were proved in refs. [52, 57, 59], in the case of semi-

infinite Wilson lines radiating out of a common origin, the matrix elements of web mixing

matrices are also conjectured to obey a column sum rule which can be stated as follows.

Given a diagram D, consider the set {Di
c} of subdiagrams that remain connected after

the Wilson lines are removed; we say that a connected subdiagram Di
c can be shrunk to

the common origin of the Wilson lines if all the vertices connecting the subdiagram to the

Wilson lines can be moved to the origin without encountering vertices associated with other

subdiagrams. For a given diagram D, we define the column weight of diagram D, s(D), as

the number of different ways in which the connected subdiagrams Di
c can be sequentially

shrunk, so that all gluon attachments to Wilson lines in D are moved to the common origin.

This means, in practice, that if all gluon attachments are entangled, so that no subdiagram

can be shrunk without shrinking the whole diagram, then s(D) = 0. On the other hand,

if, for example, a single subdiagram Di
c can be shrunk without affecting the others, this

provides a non-trivial sequence for the shrinking of the whole diagram, so that s(D) = 1:

this is the situation for the two diagrams portrayed in figure 3. With this definition, it is

conjectured that [52].

• The elements of web mixing matrices obey the column sum rule
∑

D s(D)Rw(D,D′)=0.

In what follows, row and column sum rules will be illustrated in a number of examples, and

the conjectured column sum rule will be verified to hold for all four-loop webs connecting

four or five Wilson lines.

We conclude this section by noting that the characterisation of web mixing matrices

as projectors can be made explicit by introducing, for each web, a diagonalising matrix Yw,

such that

YwRwY
−1
w = diag (λ1, . . . , λpw) = 1rw ⊕ 0pw−rw , (2.5)

where pw is the number of diagrams for web w, and thus the dimension of the matrix

Rw, while rw < pw is the rank of Rw. Without loss of generality, we have ordered the

– 7 –
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eigenvalues of Rw, labelled by λi, so that null eigenvalues appear in the last positions.

With these conventions, eq. (2.4) can be rewritten in matrix notation as

w =
(
KTY −1

w

)
YwRwY

−1
w (YwC)

=

rw∑

h=1

(
KTY −1

w

)
h
(YwC)h , (2.6)

where K is the vector of kinematic factors and C is the vector of colour factors for web

w. It is clear that only rw ECFs will contribute to web w: the non-abelian exponentiation

theorem tells us that they will be colour factors which, by the Feynman rules, would be

associated to connected gluon subdiagrams.

3 From gluon webs to correlator webs

As discussed in section 2, webs for multi-parton scattering amplitudes are defined as sets

of diagrams connecting gluons to Wilson lines, containing diagrams which are related to

one another by permutations of gluon attachments to the Wilson lines. In this section, we

present a definition for a closely related structure, where fixed-order Feynman diagrams are

replaced by ‘skeleton’ diagrams, which are built out of connected gluon correlators, instead

of gluon propagators and vertices. The basic reason to introduce these structures is that

they strongly simplify the counting and organisation of contributions to the logarithm

of Wilson-line correlators, especially at high orders, where radiative corrections to gluon

subdiagrams become important and proliferate; furthermore, as we will see, using connected

correlators does not affect the definition and structure of web mixing matrices, which are

derived exclusively from the ordering of gluon attachments to the Wilson lines, and are not

affected by gluon interactions away from the Wilson lines.

With this in mind, we define a correlator web, or Cweb as a set of skeleton diagrams,

built out of connected gluon correlators attached to Wilson lines, and closed under permu-

tations of the gluon attachments to each Wilson line.

Clearly, the main difference between webs and Cwebs is the fact that Cwebs are not

fixed-order quantities, but admit their own perturbative expansion in powers of g. In

a manner similar to webs, it is not easy to find a non-ambiguous notation to uniquely

identify Cwebs: indeed, to some extent, they reflect the full complexity of the perturbative

expansion. Below, we will use the notation Wn(k1, . . . , kn) for a Cweb involving n Wilson

lines,2 with ki gluon attachments to the i-th Wilson line. It is clear that beyond the

lowest orders several different n-line Cwebs will share the same number of attachments

to the Wilson lines: one can then refine the notation, using W
(c2,...,cp)
n (k1, . . . , kn) for a

Cweb with the prescribed attachments, constructed out of cm m-point connected gluon

correlators: one should keep in mind, however, that, at sufficiently high-orders, also this

notation becomes ambiguous. We note also that there is an obvious degeneracy in the

counting of Cwebs, since Cwebs that differ only by a permutation of their Wilson lines

2Recall that in section 2 we used lower-case w for ordinary webs, while we reserve upper-case W

for Cwebs.
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(a) W
(1)
1 (2) (b) W

(1)
2 (1, 1)

Figure 4. The only two Cwebs whose perturbative expansion starts at O(g2).

are structurally identical, and it is trivial to include them in the calculation of the full

correlator, simply by summing over Wilson-line labels. As a consequence, for classification

purposes, we will break this degeneracy by picking a specific Wilson-line ordering, choosing

k1 ≤ k2 ≤ . . . ≤ kn.

Taking into account the fact that the perturbative expansion for an m-point connected

gluon correlator starts at O(gm−2), we can write the perturbative expansion for a Cweb,

with a prescribed correlator content and number of attachments, as

W
(c2,...,cp)
n (k1, . . . , kn) = g

∑n
i=1 ki +

∑p
r=2 cr(r−2)

∞∑

j=0

W
(c2,...,cp)
n, j (k1, . . . , kn) g

2j , (3.1)

which defines the perturbative coefficients of the Cweb, Wn, j . Based on eq. (3.1), it is

natural to classify Cwebs based on the perturbative order where they receive their lowest-

order contribution, which is given by the power of g in the prefactor of eq. (3.1); one may

then easily design a recursive procedure to construct all Cwebs order by order. We begin

by noticing that only two Cwebs have lowest-order contributions at order g2: a self-energy

insertion with a two-point connected gluon correlator attached to a single Wilson line,

which we denote by W
(1)
1 (2), and the configuration with a two-gluon correlator joining two

Wilson lines, which we denote by W
(1)
2 (1, 1). They are depicted in figure 4.

In the massless case (with Wilson lines on the light cone), the self-energy Cweb vanishes

identically, since, by the eikonal Feynman rules, it is proportional to the square of the

Wilson-line four-velocity vector, β2, so one is left with a single non-vanishing O(g2) Cweb.

Starting from this initial condition, one may systematically construct Cwebs starting at

higher perturbative orders: keeping in mind that one must imagine having an unlimited

supply of yet-uncoupled Wilson lines, one may proceed by performing the following moves.

• Add a two-gluon connected correlator connecting any two Wilson lines (including

Wilson lines that had no attachments at lower orders).

• Connect an existing m-point correlator to any Wilson line (again, including Wilson

lines with no attachments at lower orders), turning it into an (m+1)-point correlator.

• Connect an existing m-point correlator to an existing n-point correlator, resulting in

an (n+m)-point correlator.

– 9 –
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(a) W
(0,1)
2 (1, 2) (b) W

(2)
2 (2, 2) (c) W

(0,1)
3 (1, 1, 1) (d) W

(2)
3 (1, 2, 1)

Figure 5. Representative skeleton diagrams for the four non-vanishing Cwebs in a massless theory

whose perturbative expansion starts at O(g4). Cwebs (a) and (c) comprise a single skeleton diagram,

while Cwebs (b) and (d) comprise two skeleton diagrams, obtained by permuting the labelled

attachments.

Executing all moves is clearly redundant, since the same Cweb is generated more than

once through different sequences of moves: upon performing all moves, one must therefore

remove multiply-counted Cwebs. This procedure can be considerably streamlined by taking

into account known properties of webs, which naturally generalise to Cwebs. Specifically,

• webs (and thus Cwebs) that are given by the product of two or more disconnected

lower-order webs (so that there are subsets of Wilson lines not joined by any gluons)

do not contribute to the logarithm of the correlator, Wn;

• as mentioned above, in a massless theory all self-energy webs (Cwebs), where all

gluon lines attach to the same Wilson line, vanish as a consequence of the eikonal

Feynman rules. Thus, any Cweb containing a connected gluon correlator attaching

to a single Wilson line will vanish.

It turns out that both these rules can be applied to trim the recursive procedure: more

precisely, moves that lead to a disconnected Cweb, or (in the massless theory) to a self-

energy Cweb can be immediately discarded. This is less than obvious, since a disconnected

Cweb can become connected at the next recursive step, and similarly a self-energy Cweb

can become connected to other Wilson lines upon adding more gluons. It is however

easy to convince oneself that all non-vanishing Cwebs that are reached by the recursion

through intermediate stages involving either self-energy or disconnected Cwebs, are also

reached through sequences of steps involving only non-vanishing Cwebs. The recursion can

therefore be stopped whenever a vanishing contribution of these two kinds is reached.

Using these recursion criteria, it is easy to enumerate inequivalent Cwebs at low or-

ders. In the massless theory, we find four inequivalent Cwebs starting at O(g4), which

we label W
(0,1)
2 (1, 2), W

(2)
2 (2, 2), W

(0,1)
3 (1, 1, 1) and W

(2)
3 (1, 1, 2): they are displayed in

figure 5 (up to permutations of the Wilson lines). Similarly, at O(g6) we find fourteen new

Cwebs, depicted in figures 6, 7 and 8. Out of these, four Cwebs connect two Wilson lines,

and their labels are W
(0,0,1)
2 (1, 3), W

(0,0,1)
2 (2, 2), W

(1,1)
2 (2, 3) and W

(3)
2 (3, 3); six Cwebs

connect three Wilson lines: W
(0,0,1)
3 (1, 1, 2), W

(1,1)
3 (1, 1, 3), W

(1,1)
3, I (1, 2, 2), W

(1,1)
3, II (1, 2, 2),

W
(3)
3 (1, 2, 3) and W

(3)
3 (2, 2, 2). Notice that here we find the first occurrence of two Cwebs
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(a) W
(0,0,1)
2 (1, 3) (b) W

(0,0,1)
2 (2, 2) (c) W

(1,1)
2 (2, 3) (d) W

(3)
2 (3, 3)

Figure 6. Representative skeleton diagrams for the four non-vanishing Cwebs in a massless theory

connecting two Wilson lines, and whose perturbative expansion starts at O(g6). Cwebs (a) and (b)

have a single skeleton diagram, while Cwebs (c) and (d) have six.

(a) W
(0,0,1)
3 (1, 1, 2) (b) W

(1,1)
3 (1, 1, 3) (c) W

(1,1)
3, I (2, 1, 2) (d) W

(1,1)
3, II (2, 1, 2)

(e) W
(3)
3 (3, 2, 1) (f) W

(3)
3 (2, 2, 2)

Figure 7. Representative skeleton diagrams for the six non-vanishing Cwebs in a massless theory

connecting three Wilson lines, and whose perturbative expansion starts at O(g6). Their respective

numbers of skeleton diagrams are {1, 3, 2, 4, 6, 8}.

with the same correlator content and attachments: they are distinguished by different at-

tachments of the three-gluon correlator to the Wilson lines, and we tag them by different

roman numeral indices. Finally, still at O(g6) we find four Cwebs connecting four Wilson

lines: W
(0,0,1)
4 (1, 1, 1, 1), W

(1,1)
4 (1, 1, 1, 2), W

(3)
4 (1, 1, 2, 2) and W

(3)
4 (1, 1, 1, 3). At O(g8),

we find a total of 60 new Cwebs: 8 connecting two lines, 22 connecting three lines, 21

connecting 4 lines and 9 connecting five lines. Four-loop Cwebs connecting four and five

lines will be discussed in more detail in section 5, and are listed in the appendix.

We conclude this section by discussing briefly the symmetry properties of Cwebs and

the counting of skeleton diagrams entering each Cweb. First, we note that Cwebs are built

out of connected gluon correlators, each of which is constrained by Bose symmetry and

gauge invariance. In simple cases, this poses strong limitations on the colour structures

entering the Cweb: for example, colour conservation forces the gluon two-point function to

be diagonal in colour, and thus proportional to the unit matrix in the adjoint representation
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(a) W
(0,0,1)
4 (1, 1, 1, 1) (b) W

(1,1)
4 (1, 2, 1, 1) (c) W

(3)
4 (1, 2, 1, 2) (d) W

(3)
4 (1, 3, 1, 1)

Figure 8. Representative skeleton diagrams for the four non-vanishing Cwebs in a massless theory

connecting four Wilson lines, and whose perturbative expansion starts at O(g6). Their respective

numbers of skeleton diagrams are {1, 2, 4, 6}.

of the gauge group; thus, to any order, a two-point function joining Wilson lines i and j will

always generate the dipole structure Ti ·Tj ≡ Ta
i Tj, a. Similarly the three-point (off-shell)

correlator is conjectured to be proportional to the structure constants fabc to all orders in

perturbation theory, a conjecture which has been verified to high orders (see for example

refs. [64, 65]), and which implies the complete antisymmetry of the corresponding kinematic

factor. For correlators with n > 3 gluons, several colour structures are possible (including

building blocks for higher-order Casimir operators) and decoding the constraints imposed

by colour conservation and Bose symmetry becomes more intricate: these constraints are

however crucial for the construction of the full soft anomalous dimension matrix (see for

example [36, 46]), and they are efficiently summarised to all orders in the language of Cwebs.

Concerning the counting of skeleton diagrams contributing to a given Cweb, which

gives the dimension of the corresponding web mixing matrix, we note that if a connected

correlator is attached to a given Wilson line with p gluons, the permutations of those gluons

should not be taken into account in the enumeration of contributing diagrams, since Bose

symmetry is embedded in the structure of the correlator and all p gluons are equivalent.

The dimension of the web mixing matrix should therefore be computed not by counting

permutations of gluons on each Wilson line, but rather by counting shuffles of the subsets

of gluons emerging from each correlator. Thus, for example, if a Wilson line has a total of

five attachments, three of them emerging from one correlator, and the remaining two from

another one, that line will contribute to the dimension of the web mixing matrix a factor of

10 (the number of possible shuffles of two sets of three and two cards), rather than a factor

of 120 (the number of permutations of five cards). We note also that, in the language of

Cwebs, the bulk of the growth of the number of diagrams at high orders in perturbation

theory is hidden in the internal structure of the contributing gluon correlators: thus, for

example, in our language, the four Feynman diagrams contributing to W
(0,0,1)
4 (1, 1, 1, 1) at

O(g6) are understood as four contributions to that same Cweb at that order, rather than

four distinct webs; similarly W
(0,0,0,1)
5 (1, 1, 1, 1, 1) receives contributions from 25 Feynman

diagrams at O(g8).

We now move on to the discussion of the calculation of web mixing matrices with the

method of replicas [51], before discussing the four-loop case in greater detail.
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4 A replica-trick algorithm to generate Cweb mixing matrices

As in other combinatorial problems involving exponentiation, such as the construction of

effective actions, Wilson-line correlators can be studied efficiently by means of algorithms

constructed with the replica method [66]. Here we will briefly discuss the application of

the replica method to infrared exponentiation, following refs. [51, 67], and then outline our

algorithm for the construction of web mixing matrices.

In order to introduce the replica method, consider the path integral expression for the

Wilson-line correlator in eq. (1.1)

Sn (γi) =

∫
DAa

µ eiS(A
a
µ)

n∏

k=1

Φ (γk) = exp
[
Wn(γi)

]
, (4.1)

where S is the classical action.3 In order to compute Wn(γi), we may imagine build-

ing a replicated theory, replacing the single gluon field Aa
µ with Nr identical copies Aa, i

µ

(i = 1, . . . , Nr), which do not interact with each other. Under this replacement, one has

S
(
Aa

µ

)
→
∑Nr

i=1 S
(
Aa, i

µ

)
; if, furthermore, we replace each Wilson line in eq. (4.1) by the

product of Nr Wilson lines, each belonging to one replica of the theory, one readily realises

that the replicated correlator is given by

S repl.
n (γi) =

[
Sn (γi)

]Nr

= exp
[
Nr Wn(γi)

]
= 1+Nr Wn(γi) +O(N2

r ) . (4.2)

As a consequence, in order to compute Wn(γi) order by order in perturbation theory,

one may compute the replicated correlator, and then extract from the result the term of

order Nr.

Importantly, while gluon fields belonging to different replicas do not interact, they

all belong to the same gauge group: therefore, the colour matrices associated with their

attachments to the Wilson lines do not commute, and their ordering is relevant. On the

other hand, in a Cweb, each connected gluon correlator can be assigned a unique replica

number, since there are no interaction vertices connecting different replicas. It is clear then

that the contributions of different skeleton diagrams to the replicated correlator in eq. (4.2)

will be simply related to those of the same diagrams in the unreplicated theory, by means of

combinatorial factors, counting the multiplicities associated with the presence of different

replicas. The computation of Wn(γi) in terms of the skeleton diagrams contributing to

Sn(γi) is thus reduced to the computation of these combinatorial factors. The necessary

steps, listed below, were identified in refs. [51, 67], and can be naturally adapted to the

language of Cwebs.

• Given a Cweb, assign a replica number i (1 ≤ i ≤ Nr) to each connected gluon

correlator present in the web. Note that if only one connected correlator is present,

only one replica can contribute to any diagram. It is then easy to show that all

3In the presence of matter fields, we can imagine having integrated them out and included their effect in

S, since they do not play a role in the following argument: only gluons couple to Wilson lines, and matter

fields appear only in loops.
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diagrams of the Cweb contribute to Wn(γi) with unit weight: in other words, there

is no mixing matrix.

• Define a replica ordering operator R which acts by ordering the color generators on

each Wilson line according to their replica numbers. Note that the Wilson lines

are naturally oriented, so this operation is unambiguous. If we denote by T
(i)
k the

group generator associated with the emission of a gluon in replica i from the k-th

Wilson line, the replica-ordering operator acts on a product T
(i)
k T

(j)
k by relabelling

the generators, exchanging their replica numbers i and j, if i > j, while leaving them

unchanged if i ≤ j.

• In order to compute the colour factor of a skeleton diagram in the replicated theory,

it is now sufficient to note that any non-trivial action by the replica ordering operator

R effectively replaces the selected skeleton diagram with another one drawn from the

same Cweb. The colour factor in the replicated theory is thus a linear combination of

the colour factors of all skeleton diagrams in the Cweb, with multiplicities given by

the number of possible replica orderings of the gluon attachments on every Wilson

line.

• Algorithmically, for a Cweb W
(c2,...,cp)
n (k1, . . . , kn), built out of m =

∑p
r=2 cr con-

nected correlators, one needs to determine two relevant numbers: the number of

possible hierarchies between the m replica numbers of the correlators, h(m), and, for

every fixed hierarchy h, the multiplicity with which that hierarchy can occur in the

presence of Nr replicasMNr(h). The determination of h(m) is made non-trivial by the

fact that the case of equal replica numbers must be treated separately: the sequence

h(m) is however well known [68], and given by the so-called Fubini numbers.4 In the

first instances, for m = {1, 2, 3, 4, 5, 6} one finds h(m) = {1, 3, 13, 75, 541, 4683}. The

multiplicity of a given hierarchy, on the other hand, is easily seen to be given by

MNr(h) =
Nr!(

Nr − nr(h)
)
! nr(h)!

, (4.3)

where nr(h) is the number of distinct replicas present for hierarchy h. To give a

concrete example, for m = 5, labelling the replica numbers of the 5 correlators with

ik, (k = 1, . . . , 5), and picking the hierarchy i1 = i2 < i3 = i4 < i5, we have nr(h) = 3,

and thus MNr(h) = Nr(Nr − 1)(Nr − 2)/6.

• Finally, the exponentiated color factors for a skeleton diagram D is given by

C repl.
Nr

(D) =
∑

h

MNr(h)R
[
C(D)

∣∣h
]
, (4.4)

4The Fubini numbers admit a generating function, and they can be defined by

1

2− exp(x)
− 1 ≡

∞
∑

m=1

h(m)
xm

m!
.
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where R
[
C(D)

∣∣h
]
is the color factor of the skeleton diagram obtained from D through

the action of the replica-ordering operator R for the case of hierarchy h. The Cweb

mixing matrix is built out of the coefficients MNr(h), which are polynomials in Nr,

picking terms that are linear in Nr: many examples will be described in section 5 and

in the appendix. Note that in the presence of m-point correlators, with m ≥ 4, each

such correlator can contribute different ‘internal’ colour factors, for example different

permutations of products of structure constants. Since, however, the information on

the mixing matrix is encoded in the coefficients MNr(h), the different colour factors

arising from the internal structure of the correlators can be treated one by one,

without affecting the mixing of the diagrams.

• We note that, given a Cweb W
(c2,...,cp)
n (k1, . . . , kn), the dimension dW of its mixing

matrix RW can be expressed as follows. Let sW (k) be the number of shuffles that can

be performed with the attachments to the k-th Wilson line, given the arrangement

of connected correlators for the Cweb under consideration. One would näıvely con-

clude that the dimension of RW is the product of the factors sW (k) over all Wilson

lines. This however fails to take into account an important degeneracy, which already

appears in the simple two-line Cweb W
(2)
2 (2, 2) at two loops: counting shuffles sep-

arately on each line yields dW = 4, which is wrong, because the two shuffles on the

second Wilson line can be obtained from the shuffles on the first line by exchanging

the two gluons, which is manifestly a symmetry of the Cweb. In order to take into

account this degeneracy, one must divide by the number of available permutations of

subsets of m-point correlators that have the property of being attached to the same

sets of m Wilson lines.

In order to compute Cweb mixing matrices at four loops, extending the results refs. [51, 52,

59], we have developed an in-house Mathematica code which we describe very briefly below.

• The first step is to generate all the Cwebs that appear at four loops (O(g8)), in

particular those involving four and five Wilson lines. To do so, we note that at

four loops (O(g8)), all possible Cwebs can be obtained by combining the connected

correlators shown in figure 9, and attaching them to 2 ≤ n ≤ 5 Wilson lines. One

may begin by attaching four two-point correlators in all possible ways to the Wilson

lines. Next one proceeds to Cwebs generated by attaching two two-point correlators

and one three-point correlator, in all possible ways, and similary with the other types,

obtained by using the other building blocks in figure 9. We note that the five-point

correlator at this order can only give a trivial Cweb, since it contains only a single

skeleton diagram.

• The code assigns a distinct replica variable to each of the correlators present in a

given Cweb: for example, four two-gluon correlators will be assigned replica indices

i, j, k and l. Then the correlators are sequentially attached to the Wilson lines in

lexicographic order, beginning with the one with index i, attached between Wilson

line 1 and 2, proceeding to the one with index j, attached in all possible ways, so

as to generate a set of ‘partial skeleton diagrams’. This procedure continues till all
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correlators are exhausted. Clearly, this procedure will generate several Cwebs that

are identical (as far as color is concerned), since they are related to each other by a

mere renaming of the Wilson lines: duplicates are discarded. At this stage, we have

only one diagram per Cweb.

• The code then takes one of the above diagrams and generates all the other diagrams

of the corresponding Cweb by permuting (or more precisely shuffling) the gluon

attachments on each of the Wilson lines.

• The next step is to generate all the multiplicities associated to the possible hierachies,

corresponding to the entries of the table 1 of ref. [51]. A subroutine creates all possible

different hierarchies h for each diagram; the code then proceeds to obtain all other

colums of the table, and finally leads to the exponentiated colour factors C̃(D), from

which we obtain the mixing matrix R. Finally, R is diagonalised and the diagonalising

matrix Y is recorded.

• The code automatically discards self-energy Cwebs, where a connected correlator is

attached only to a single Wilson line, but, in principle, keeps disconnected Cwebs, so

that the vanishing of the corresponding R matrix works as a test.

We note that the run time of the code increases steeply with the increase in the number

of connected correlators, which causes a rapid increase in the number of available replica

hierarchies. The code has been checked by reproducing all lower-order results available in

the literature, and by verifying the two known properties of mixing matrices: their idempo-

tence, and the row sum rule, which hold true for all the R matrices that we have computed.

Furthermore, one can verify that all different Cwebs at O(g8) have been constructed, by

applying the recursive construction described in section 3. Finally, as shown explicitly in

section 5 and in the appendix, all R matrices we have computed satisfy the conjectured

column sum rule discussed in section 2.

5 A selection of four-loop Cwebs

In this section we present in some detail the calculation of two four-loop Cwebs, involving

respectively four and five Wilson lines. This will allow us to introduce some notation which

will be useful to simplify the full listing of results for similar webs, which is presented in the

appendix. For each Cweb, we will present the mixing matrix R, the diagonalising matrix

Y , and the exponentiated colour factors.

5.1 A four-loop, four-line Cweb

As an example, we have selected the Cweb W
(1,0,1)
4, I (1, 1, 2, 2), which comprises four skeleton

diagrams depicted in figure 10. We note that in this case the Cweb label includes a roman

numeral, to distinguish it from a second Cweb with identical correlator and attachment

content, W
(1,0,1)
4, II (1, 1, 2, 2), where however the four-gluon correlator has two attachments

to the same Wilson line. That Cweb, discussed in the appendix, involves only two skeleton

diagrams, and therefore has a 2 × 2 mixing matrix. In this case, it is evident by looking
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(a) (b)

(c) (d) (e)

Figure 9. Combinations of connected correlators that can form Cwebs at four loops.

at any one of the diagrams that there are four shuffles to be considered, so that the

mixing matrix will have dimension four. In order to write down an explicit expression

for the matrices R and Y , it is necessary to introduce an ordering among the diagrams:

in this case, the ordering is displayed in figure 10, but in general it can be identified by

labelling the gluon attachments to be shuffled, and giving the sequence of the shuffles to be

considered. As an example, in figure 10, we have labelled the attachments on Wilson line

3 by A and B, and those on Wilson line 4 by C and D: the shuffles associated with the

four skeleton diagrams can be labelled by giving the sequences of the attachments, in the

orderings defined by the orientation of the Wilson lines. In this case C1 = {{BA}, {CD}},

C2 = {{BA}, {DC}}, C3 = {{AB}, {CD}}, and C4 = {{AB}, {DC}}. Having chosen

the ordering of diagrams, it is straightforward to apply the algorithm and obtain the

exponentiated colour factors.

We find that the mixing matrix R and the diagonalising matrix Y are given by

R =




1
2 0 0 −1

2

−1
2 1 0 −1

2

−1
2 0 1 −1

2

−1
2 0 0 1

2


 , Y =




−1 0 0 1

−1 0 1 0

−1 1 0 0

1 0 0 1


 , (5.1)

The expected properties of the mixing matrix are easily verified: R is idempotent, i.e.

R2 = R, the matrix elements in each row sum to zero, and furthermore the column sum

rule is obeyed. Indeed, in this case the vector built out of the indices s(D) for the four

diagrams in figure 10 is given by S ≡ {s(C1), s(C2), s(C3), s(C4)} = {1, 0, 0, 1}: in the

first and last diagrams one can move the gluon attachments of one of the two correlators to

the origin without affecting the other correlator, which is not possible for the second and

the third diagram. One then readily verifies that the column vector S ·R is a null vector.

Finally, we observe (upon diagonalisation by means of the matrix Y ) that the mixing

matrix has rank r = 3: as a consequence, there are three independent exponentiated
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C1 C2

C3 C4

Figure 10. The four skeleton diagrams of the Cweb W
(1,0,1)
4, I (1, 1, 2, 2).

colour factors, which can be chosen as the combinations (YC)i, where i = {1, 2, 3}. In

order to display explicit expressions for the colour factors, we have to make a choice for the

internal colour structure of the four-point correlator, which appears here at tree level, and

thus is built out of three possible products of pairs of structure constants. As an example,

we display here the colour factors arising from the combination fa1a2xfa3a4x, where the

gluons emerging from the four point correlator and attaching to line i have colour index

ai, with i = 1, 2, 3, 4. The other two possible colour factors for this Cweb can be obtained

by simple permutations. In the case we examine, the emerging colour combinations are

(YC)1 = ifabgf cdgf edhTa
1T

b
2T

e
3T

c
3T

h
4 − ifabgf cdgf cejTa

1T
b
2T

j
3T

d
4T

e
4 ,

(YC)2 = −ifabgf cdgf cejTa
1T

b
2T

j
3T

d
4T

e
4 , (5.2)

(YC)3 = ifabgf cdgf edhTa
1T

b
2T

c
3T

e
3T

h
4 .

We observe that these exponentiated color factors correspond to fully connected Feyn-

man diagrams, so that the non-abelian exponentiation theorem of ref. [59] is, as expected,

satisfied.

5.2 A four-loop, five-line Cweb

As an explicit example of a four-loop, five-line Cweb, we select the one labelled by

W
(2,1)
5, I (1, 1, 1, 2, 2), one of two Cwebs with this particular set of attachments and corre-

lators. A sample skeleton diagram contributing this Cweb is shown in figure 11: it is

immediate to note that there are four possible shuffles of the labels, so that the mixing

matrix will have dimension four.
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Figure 11. A sample skeleton diagram contributing to W
(2,1)
5, I (1, 1, 1, 2, 2).

The four skeleton diagrams comprising the Cweb can be labelled with the shuffles of

the gluon attachments to the Wilson lines: we choose the sequence C1 = {{DA}, {EB}},

C2 = {{DA}, {BE}}, C3 = {{AD}, {EB}}, and C4 = {{AD}, {BE}}, where, as usual,

the letters are ordered along the oriented Wilson lines following the arrows: with this

choice, figure 11 portrays diagram C1. By inspection, one realizes that for diagram C1 it

is possible to shrink to the origins of the Wilson lines, independently of each other, both

the two-gluon correlator joining lines 3 and 5, and the other two-gluon correlator, joining

lines 2 and 4, without affecting the three-gluon correlator. The value of the parameter s

for this diagram is therefore s(C1) = 2. By a similar reasoning, one concludes that the

other three diagrams have s(Ci) = 1, for i = 2, 3, while s(C4) = 2. The calculation of the

mixing matrix leads to

R =




1
6 −1

6 −1
6

1
6

−1
3

1
3

1
3 −1

3

−1
3

1
3

1
3 −1

3
1
6 −1

6 −1
6

1
6


 , Y =




1 −1 −1 1

−1 0 0 1

2 0 1 0

2 1 0 0


 . (5.3)

One observes that both the row and the column sum rules are satisfied. Furthermore,

diagonalising the mixing matrix, one finds that it has rank r = 1, so that there is only one

exponentiated colour factor. It is

(YC)1 = −ifabcfadhf begTh
1T

g
2T

c
3T

d
4T

e
5 . (5.4)

In the appendix, we will similarly treat all the other four-loop Cwebs connecting four and

five Wilson lines.

5.3 A note on colour structures at four loops

Four-loop colour structures are especially interesting for the study of gauge-theory scatter-

ing amplitudes, since at this order for the first time the soft anomalous dimension matrix

can receive contributions from quartic Casimir operators of the gauge algebra. The rele-

vance of higher-order Casimir invariants was first noted in this context in [15], but it was in

fact known from the early days of QCD [69]. The presence of quartic Casimir contributions

at four loops in the cusp anomalous dimension is one of only two possible sources for the

violation of the dipole structure of the soft anomalous dimension matrix for massless theo-

ries, which holds up to two loops. Remarkably, the cusp anomalous dimension for QCD was
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Figure 12. Gluon diagrams representing the structure of the exponentiated colour factors appear-

ing at four loops.

recently computed analytically at four loops [70, 71], following the precise numerical predic-

tions of refs. [72, 73], and the presence of a non-vanishing contribution from quartic Casimir

operators was confirmed. Studying the implications of such contributions for the multiparti-

cle soft anomalous dimension matrix is therefore now an open and very interesting problem,

also in light of the results of refs. [74, 75]. Of course, the ultimate understanding of the role

played by these contributions, and their implications for collinear factorisation, will depend

upon a full calculation of the kinematic factors for the relevant Cwebs: indeed, we note

that collinear factorisation remains compatible with the three-loop expression of the soft

anomalous dimension matrix only thanks to a remarkable connection between matrices with

different number of partons, and after enforcing the constraints of colour conservation [36].

We may, in any case, make a few remarks in this issue, based purely on the analysis

of the colour structure of four-loops Cwebs. First, we observe that all the exponentiated

colour structures that arise in four-loop Cwebs connecting four and five Wilson lines (listed

in the appendix) correspond to the connected gluon diagrams depicted in figure 12, with

the open ends of the gluon lines attaching to generic permutations of Wilson lines. The

gluon-loop structure on the right of figure 12 is of course built out of products of structure

constants fabc, however, upon symmetrization, could in principle yield a quartic Casimir

contribution. We note, however, that, for all Cwebs whose perturbative expansion starts at

O(g8), the gluon-loop structure cancels in the exponentiated colour factors (YC)i, before

their recombination with kinematic factors. It would appear that the only possible source

of quartic Casimir contributions from four- and five-leg Cwebs at four loops is in the one-

loop correction to the O(g6) Cweb W
(0,0,1)
4 (1, 1, 1, 1), depicted in figure 8(a). Indeed, at one

loop, the four-gluon correlator featuring in that Cweb (which must be Bose symmetric),

can develop a symmetric colour structure, yielding a contribution of the form

W
(0,0,1)
4 (1, 1, 1, 1)

∣∣∣
quartic

= Kijkl Ta
iT

b
jT

c
kT

d
l d

(r)
abcd , (5.5)

where K is a kinematic factor, and d
(r)
abcd is the completely symmetrized trace of four

generators of the gauge algebra in representation r. We note, however, that the colour

structures directly arising from the diagrams are not all independent, and, upon enforcing

colour conservation, which implies the operator constraint
∑

iTi = 0, they must be reduced

to a basis, following for example the analysis of ref. [59]. Since antisymmetric combination

of generators on the same Wilson line can be eliminated using the gauge algebra, this step
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leads to the appearance of symmetric combination of generators, which can again yield

contributions of quartic Casimir type. These results and considerations are in agreement

with the analysis of refs. [55, 56], with the effective vertex analysis in ref. [59], and with

the generating functional approach of ref. [76], where the role played by symmetric colour

structures in the exponentiated soft function is emphasised.

6 Summary and outlook

The study of the infrared structure of perturbative gauge amplitudes is an active developing

field, with implications for both theoretical studies, concerning the mathematical properties

of gauge theories, and for high-energy phenomenology at colliders. These studies are very

advanced, and we now have a well-developed understanding of infrared factorisation and

exponentiation, with the soft anomalous dimension matrix fully known at three loops for

massless particles [36], the cusp anomalous dimension computed to four loops [70, 71], and

several high-order radiative amplitudes available (see for example [74, 75]). The current

frontier is the calculation of the soft anomalous dimension matrix for multiparticle scatter-

ing at three loops including massive particles, and the exploration of the four-loop domain;

in general, all these studies bring to the fore the relevance, for gauge theory calculations,

of correlators involving Wilson lines, possibly together with gauge and matter fields, which

provide leading-power approximations to scattering amplitudes and cross sections in soft

and collinear limits.

In the present paper, we have developed a set of tools for the analysis of soft anomalous

dimensions at high orders, and we have studied the exponentiated colour structures arising

at the four-loop level in multiparticle amplitudes. We have introduced the concept of a

correlator web, or Cweb, which, we believe, will be useful for the classification and study of

exponentiated correlators at high orders: Cwebs include their own radiative correction, are

easily generated and enumerated, since their number grows only moderately as a function

of the perturbative order, and may help to clarify and implement symmetry properties of

gluon correlators and the consequences of colour conservation.

We have enumerated all Cwebs for a massless theory up to four loops, and we have

computed their mixing matrices and exponentiated colour factors for all cases involving

four and five Wilson lines. We observe that all exponentiated colour factors correspond

to completely connected gluon diagrams, as expected from the non-abelian exponentia-

tion theorem [59]. Furthermore, we note that structures compatible with the presence of

quartic Casimir contributions are present, as expected, but they cancel in Cwebs arising

at O(g8), while they survive in radiative corrections to Cwebs arising at lower orders. Fi-

nally, we verify the properties of mixing matrices that were proved or conjectured in earlier

studies [51, 52, 57–60].

The combinatorial complexity of the calculation of web mixing matrices grows rapidly

with the perturbative order, most notably because of the proliferation of hierarchies that

arise in the application of the replica method, which are counted by the Fubini numbers.

We have developed a code which can handle this complexity at four loops with minimal

computing resources, but we believe that going to yet higher orders is likely to require
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significant optimisation, the development of new tools, or the deployment of considerably

larger computing power. That not withstanding, our results in this paper provide a number

of needed ingredients for the calculation of infrared divergences at four loops, and we believe

that the tools that we have developed will be useful to further our understanding at higher

orders as well.
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A Mixing matrices and exponentiated colour factors

In this appendix we give results for all the webs that appear at 4 loops in the scattering

amplitude, that can connect 4 or 5 Wilson lines. Throughout the list, R, Y and D denote

the mixing matrix, the diagonalizing matrix and the diagonal matrix respectively. D is

represented as D = (1r, 0), where r is the rank of the mixing matrix R. We display only one

skeleton diagram per web, and we explicitly give the order of the shuffles that generate the

other diagrams, which is tied to the order the columns of the mixing matrix in the chosen

basis. Finally, we give the expressions for the exponentiated colour factors, which, in

all cases, correspond to fully connected gluon diagrams, as expected. For Cwebs involving

four-point correlators, the colour factors that we present correspond to one of three possible

permutations of structure constants arising from the internal structure of the correlator,

as in section 5.1. We omit from the list the Cwebs that are composed of a single skeleton

diagram, such as W
(0,0,0,1)
5 (1, 1, 1, 1, 1), whose mixing matrix is just a number, R = 1.

A.1 Cwebs connecting four Wilson lines

1. W
(1,0,1)
4, I (1, 1, 2, 2)

This Cweb has four diagrams, one of which is displayed below. The table gives the chosen

order of the four shuffles of the gluon attachments, and the corresponding S factors.

Diagrams Sequences S-factors

C1 {{BA}, {CD}} 1

C2 {{BA}, {DC}} 0

C3 {{AB}, {CD}} 0

C4 {{AB}, {DC}} 1
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The R, Y and D matrices are given by

R =




1
2 0 0 −1

2

−1
2 1 0 −1

2

−1
2 0 1 −1

2

−1
2 0 0 1

2


 , Y =




−1 0 0 1

−1 0 1 0

−1 1 0 0

1 0 0 1


 , D = (13, 0) . (A.1)

Finally, the exponentiated colour factors are

(Y C)1 = ifabgf cdgf edhTa
1T

b
2T

e
3T

c
3T

h
4 − ifabgf cdgf cejTa

1T
b
2T

j
3T

d
4T

e
4 ,

(Y C)2 = −ifabgf cdgf cejTa
1T

b
2T

j
3T

d
4T

e
4 ,

(Y C)3 = ifabgf cdgf edhTa
1T

b
2T

e
3T

c
3T

h
4 − fabgf cdgf cejf edhTa

1T
b
2T

j
3T

h
4 . (A.2)

2. W
(1,0,1)
4,II (1, 1, 2, 2)

This Cweb has two diagrams, one of which is displayed below. The table gives the chosen

order of the two shuffles of the gluon attachments, and the corresponding S factors.

Diagrams Sequences S-factors

C1 {{BA}} 1

C2 {{AB}} 1

The R, Y and D matrices are given by

R =

(
1
2 −1

2

−1
2

1
2

)
, Y =

(
−1 1

1 1

)
, D = (11, 0) . (A.3)

Finally, the only exponentiated colour factor is

(Y C)1 = −ifabgf cdgfaehTh
1T

b
2T

c
2T

d
3T

e
4 . (A.4)

3. W
(1,0,1)
4 (1, 1, 1, 3)

This Cweb has three diagrams, one of which is displayed below. The table gives the cho-

sen order of the three shuffles of the gluon attachments, and the corresponding S factors.

Diagrams Sequences S-factors

C1 {{ABC}} 1

C2 {{BAC}} 0

C3 {{BCA}} 1
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The R, Y and D matrices are given by

R =




1
2 0 −1

2

−1
2 1 −1

2

−1
2 0 1

2


 , Y =




−1 0 1

−1 1 0

1 0 1


 , D = (12, 0) . (A.5)

Finally, the exponentiated colour factors are

(Y C)1 = −ifabgf cdgf cejTa
1T

b
2T

j
2T

d
3T

e
4 + ifabgf cdgf ebhTa

1T
h
2T

c
2T

d
3T

e
4 ,

(Y C)2 = −ifabgf cdgf cejTa
1T

b
2T

j
2T

d
3T

e
4 . (A.6)

4. W
(0,2)
4,I (1, 1, 2, 2)

This Cweb has two diagrams, one of which is displayed below. The table gives the chosen

order of the two shuffles of the gluon attachments, and the corresponding S factors.

Diagrams Sequences S-factors

C1 {{BA}} 1

C2 {{AB}} 1

The R, Y and D matrices are given by

R =

(
1
2 −1

2

−1
2

1
2

)
, Y =

(
−1 1

1 1

)
, D = (11, 0) . (A.7)

Finally, the only exponentiated colour factor is

(Y C)1 = ifabcfdagfdefT
g
1T

b
2T

c
3T

e
4T

f
4 . (A.8)

5. W
(0,2)
4 (1, 1, 1, 3)

This is a three-diagram Cweb, represented by

Diagrams Sequences S-factors

C1 {{ABC}} 1

C2 {{ACB}} 0

C3 {{CAB}} 1

The R, Y and D matrices are given by

R =




1
2 0 −1

2

−1
2 1 −1

2

−1
2 0 1

2


 , Y =




−1 0 1

−1 1 0

1 0 1


 , D = (12, 0) . (A.9)
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Finally, the exponentiated colour factors are

(Y C)1 = ifabcfdefffajTe
1T

j
1T

b
2T

c
3T

d
4 − ifabcfaegfdefT

g
1T

f
1T

b
2T

c
3T

d
4 ,

(Y C)2 = −ifabcfaegfdefT
g
1T

f
1T

b
2T

c
3T

d
4 . (A.10)

6. W
(2,1)
4 (1, 1, 1, 4)

This is a more complicated Cweb, containing twelve diagrams. We find

Diagrams Sequences S-factors

C1 {{EDBA}} 1

C2 {{DEBA}} 1

C3 {{EBDA}} 0

C4 {{BEDA}} 0

C5 {{DBEA}} 0

C6 {{BDEA}} 0

C7 {{EBAD}} 1

C8 {{BEAD}} 0

C9 {{BAED}} 1

C10 {{DBAE}} 1

C11 {{BDAE}} 0

C12 {{BADE}} 1

The R, Y and D matrices are given by

R=
1

6




2 −1 0 0 0 0 −1 0 −1 −1 0 2

−1 2 0 0 0 0 −1 0 2 −1 0 −1

−1 −1 3 0 0 0 −1 0 −1 2 −3 2

−1 2 −3 6 −3 0 2 −3 −1 2 −3 2

−1 −1 0 0 3 0 2 −3 2 −1 0 −1

2 −1 −3 0 −3 6 2 −3 2 2 −3 −1

−1 −1 0 0 0 0 2 0 −1 2 0 −1

−1 2 0 0 −3 0 −1 3 −1 2 0 −1

−1 2 0 0 0 0 −1 0 2 −1 0 −1

−1 −1 0 0 0 0 2 0 −1 2 0 −1

2 −1 −3 0 0 0 2 0 −1 −1 3 −1

2 −1 0 0 0 0 −1 0 −1 −1 0 2




,

Y =




1 −1 0 0 0 0 0 0 −1 0 0 1

1 −1 −1 0 0 0 1 0 −1 0 1 0

0 −1 0 0 0 0 1 0 −1 1 0 0

0 0 1 −1 0 0 −1 1 0 0 0 0

1 −1 0 −1 0 1 0 0 0 0 0 0

0 −1 1 −1 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 1 0 0

0 −1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0

1 1 0 0 0 0 1 0 0 0 0 0




, D=(16,0) .

(A.11)
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Therefore, there are six exponentiated colour structures, given by

(Y C)1 = −ifabcf bgkfdegTa
1T

k
1T

d
2T

c
3T

e
4 − ifabcfaglfdegTl

1T
b
1T

d
2T

c
3T

e
4 ,

(Y C)2 = −ifabcf bgkfdegTa
1T

k
1T

d
2T

c
3T

e
4 − ifabcf bemfdahTh

1T
m
1 Td

2T
c
3T

e
4

− ifabcfdahfhenTn
1T

b
1T

d
2T

c
3T

e
4 − ifabcfaglfdegTl

1T
b
1T

d
2T

c
3T

e
4 ,

(Y C)3 = ifabcf bemfmdvTa
1T

v
1T

d
2T

c
3T

e
4 + ifabcfaejf bduT

j
1T

u
1T

d
2T

c
3T

e
4

− ifabcf bemfdahTh
1T

m
1 Td

2T
c
3T

e
4 − ifabcfdahfhenTn

1T
b
1T

d
2T

c
3T

e
4

− ifabcfaglfdegTl
1T

b
1T

d
2T

c
3T

e
4 ,

(Y C)4 = ifabcf bemfdahTh
1T

m
1 Td

2T
c
3T

e
4 ,

(Y C)5 = −ifabcf bgkfdegTa
1T

k
1T

d
2T

c
3T

e
4 ,

(Y C)6 = −ifabcf bemfmdvTa
1T

v
1T

d
2T

c
3T

e
4 . (A.12)

7. W
(2,1)
4, I (1, 1, 2, 3)

This is a six-diagram Cweb, the first of three with same correlator and attachment

content, for which we find

Diagrams Sequences S-factors

C1 {{EC}, {DBA}} 1

C2 {{CE}, {DBA}} 2

C3 {{EC}, {BDA}} 0

C4 {{CE}, {BDA}} 0

C5 {{EC}, {BAD}} 2

C6 {{CE}, {BAD}} 1

The R, Y and D matrices are given by

R =




1
3 −1

3 0 0 −1
3

1
3

−1
6

1
6 0 0 1

6 −1
6

−1
6

1
6

1
2 −1

2 −1
3

1
3

1
3 −1

3 −1
2

1
2

1
6 −1

6

−1
6

1
6 0 0 1

6 −1
6

1
3 −1

3 0 0 −1
3

1
3




, Y =




1 −1 0 0 −1 1

1 −1 −1 1 0 0

−1 0 0 0 0 1
1
2 0 0 0 1 0

−1
2 0 1 1 0 0

1
2 1 0 0 0 0




, D = (12, 0) .

(A.13)

This yields two colour structures,

(Y C)1 = −ifabcf bdhfdejTa
1T

h
1T

j
2T

c
3T

e
4 + ifabcfdagfdejT

g
1T

b
1T

j
2T

c
3T

e
4 ,

(Y C)2 = −ifabgf bdhfdejTa
1T

h
1T

j
2T

c
3T

e
4 . (A.14)
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8. W
(2,1)
4, II (1, 1, 2, 3)

Another six-diagram Cweb, the second of three with same correlator and attachment

content, for which we find

Diagrams Sequences S-factors

C1 {{EC}, {DBA}} 2

C2 {{CE}, {DBA}} 1

C3 {{EC}, {BDA}} 0

C4 {{CE}, {BDA}} 0

C5 {{EC}, {BAD}} 1

C6 {{CE}, {BAD}} 2

The R, Y and D matrices are given by

R =




1
6 −1

6 0 0 −1
6

1
6

−1
3

1
3 0 0 1

3 −1
3

−1
3

1
3

1
2 −1

2 −1
6

1
6

1
6 −1

6 −1
2

1
2

1
3 −1

3

−1
3

1
3 0 0 1

3 −1
3

1
6 −1

6 0 0 −1
6

1
6




, Y =




1 −1 0 0 −1 1

1 −1 −1 1 0 0

−1 0 0 0 0 1

2 0 0 0 1 0

1 0 1 1 0 0

2 1 0 0 0 0




, D = (12, 0) .

(A.15)

The exponentiated colour factor are

(Y C)1 = −ifabcf bdhf cejTa
1T

h
1T

d
2T

j
3T

e
4 + ifabcf cejfdagT

g
1T

b
1T

d
2T

j
3T

e
4 ,

(Y C)2 = −ifabcf bdhf cejTa
1T

h
1T

d
2T

j
3T

e
4 . (A.16)

9. W
(2,1)
4, III(1, 1, 2, 3)

Yet another six-diagram Cweb, the third of three with same correlator and attachment

content. We find

Diagrams Sequences S-factors

C1 {{EDC}} 1

C2 {{DEC}} 1

C3 {{ECD}} 1

C4 {{CED}} 1

C5 {{DCE}} 1

C6 {{CDE}} 1

The R, Y and D matrices are given by

R =




1
3 −1

6 −1
6 −1

6 −1
6

1
3

−1
6

1
3 −1

6
1
3 −1

6 −1
6

−1
6 −1

6
1
3 −1

6
1
3 −1

6

−1
6

1
3 −1

6
1
3 −1

6 −1
6

−1
6 −1

6
1
3 −1

6
1
3 −1

6
1
3 −1

6 −1
6 −1

6 −1
6

1
3




, Y =




1 −1 0 −1 0 1

0 −1 1 −1 1 0

−1 0 0 0 0 1

1 1 0 0 1 0

0 −1 0 1 0 0

1 1 1 0 0 0




, D = (12, 0) , (A.17)
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which leads to the colour factors

(Y C)1 = −ifabcf cghfdegTa
1T

b
1T

e
2T

h
3T

d
4 ,

(Y C)2 = −ifabcf cejfdjkTa
1T

b
1T

e
2T

k
3T

d
4 . (A.18)

10. W
(2,1)
4, I (1, 2, 2, 2)

This is the first of five Cwebs with the same correlator and attachment content. Its four

diagrams are

Diagrams Sequences S-factors

C1 {{ED}, {BC}} 1

C2 {{ED}, {CB}} 2

C3 {{DE}, {BC}} 2

C4 {{DE}, {CB}} 1

The R, Y and D matrices are given by

R =




1
3 −1

3 −1
3

1
3

−1
6

1
6

1
6 −1

6

−1
6

1
6

1
6 −1

6
1
3 −1

3 −1
3

1
3


 , Y =




1 −1 −1 1

−1 0 0 1
1
2 0 1 0
1
2 1 0 0


 , D = (11, 0) (A.19)

There is therefore only one colour structure,

(Y C)1 = −ifabcf cdhfdegTa
1T

b
1T

g
2T

h
3T

e
4 . (A.20)

11. W
(2,1)
4, II (1, 2, 2, 2)

This is the second of five Cwebs with the same correlator and attachment content. It

has eight diagrams, which can be organised as follows.

Diagrams Sequences S-factors

C1 {{DA}, {FB}, {EC}} 2

C2 {{DA}, {FB}, {CE}} 1

C3 {{DA}, {BF}, {EC}} 0

C4 {{DA}, {BF}, {CE}} 0

C5 {{AD}, {FB}, {EC}} 0

C6 {{AD}, {FB}, {CE}} 0

C7 {{AD}, {BF}, {EC}} 1

C8 {{AD}, {BF}, {CE}} 2
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The R, Y and D matrices are given by

R=




1
6 −1

6 0 0 0 0 −1
6

1
6

−1
3

1
3 0 0 0 0 1

3 −1
3

−1
3

1
3

1
2 −1

2 0 0 −1
6

1
6

1
6 −1

6 −1
2

1
2 0 0 1

3 −1
3

−1
3

1
3 0 0 1

2 −1
2 −1

6
1
6

1
6 −1

6 0 0 −1
2

1
2

1
3 −1

3

−1
3

1
3 0 0 0 0 1

3 −1
3

1
6 −1

6 0 0 0 0 −1
6

1
6




, Y =




1 −1 0 0 0 0 −1 1

1 −1 0 0 −1 1 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 0 0 0 1

2 0 0 0 0 0 1 0

1 0 0 0 1 1 0 0

1 0 1 1 0 0 0 0

2 1 0 0 0 0 0 0




,

D=(13,0) . (A.21)

The three colour factors are

(Y C)1 = ifabcf cegfdbjTd
1T

a
1T

j
2T

g
3T

e
4 − ifabcfadhf cegTh

1T
b
2T

d
2T

g
3T

e
4 ,

(Y C)2 = −ifabcfadhf cegTh
1T

b
2T

d
2T

g
3T

e
4 ,

(Y C)3 = ifabcf cegfdbjTd
1T

a
1T

j
2T

g
3T

e
4 − fabcfadhf cegfdbjTh

1T
j
2T

g
3T

e
4 . (A.22)

12. W
(2,1)
4, III(1, 2, 2, 2)

The third of five Cwebs with the same correlator and attachment content, also has eight

diagrams.

Diagrams Sequences S-factors

C1 {{DA}, {EB}, {GF}} 1

C2 {{DA}, {EB}, {FG}} 1

C3 {{DA}, {BE}, {GF}} 0

C4 {{DA}, {BE}, {FG}} 1

C5 {{AD}, {EB}, {GF}} 1

C6 {{AD}, {EB}, {FG}} 0

C7 {{AD}, {BE}, {GF}} 1

C8 {{AD}, {BE}, {FG}} 1

The R, Y and D matrices are given by

R =




1
3 −1

6 0 −1
6 −1

6 0 −1
6

1
3

−1
6

1
3 0 −1

6 −1
6 0 1

3 −1
6

−2
3

1
3 1 −2

3
1
3 0 −2

3
1
3

−1
6 −1

6 0 1
3

1
3 0 −1

6 −1
6

−1
6 −1

6 0 1
3

1
3 0 −1

6 −1
6

1
3 −2

3 0 1
3 −2

3 1 1
3 −2

3

−1
6

1
3 0 −1

6 −1
6 0 1

3 −1
6

1
3 −1

6 0 −1
6 −1

6 0 −1
6

1
3




, Y =




2 −1 −1 0 −1 0 0 1

1 0 −1 0 −1 0 1 0

1 −1 0 0 −1 1 0 0

1 −1 −1 1 0 0 0 0

−1 0 0 0 0 0 0 1

0 −1 0 0 0 0 1 0

1 1 0 0 1 0 0 0

1 1 0 1 0 0 0 0




,

D = (14, 0) . (A.23)
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The four colour structures are

(Y C)1 = −ifabcf ebhf edkTa
1T

d
1T

h
2T

c
3T

k
4 − ifabcfdagf edkT

g
1T

b
2T

e
2T

c
3T

k
4

− ifabcfdagf ebhT
g
1T

h
2T

c
3T

e
4T

d
4 ,

(Y C)2 = −ifabcfdagf ebhT
g
1T

h
2T

c
3T

d
4T

e
4 ,

(Y C)3 = −ifabcfdagf edkT
g
1T

b
2T

e
2T

c
3T

k
4 ,

(Y C)4 = −ifabcf ebhf edkTa
1T

d
1T

h
2T

c
3T

k
4 . (A.24)

13. W
(2,1)
4, IV(1, 1, 2, 3)

The fourth Cweb of this set has twelve diagrams.

Diagrams Sequences S-factors

C1 {{CB}, {EDA}} 1

C2 {{BC}, {EDA}} 0

C3 {{CB}, {DEA}} 1

C4 {{BC}, {DEA}} 0

C5 {{CB}, {EAD}} 0

C6 {{BC}, {EAD}} 1

C7 {{CB}, {AED}} 0

C8 {{BC}, {AED}} 1

C9 {{CB}, {DAE}} 1

C10 {{BC}, {DAE}} 0

C11 {{CB}, {ADE}} 0

C12 {{BC}, {ADE}} 1

The R, Y and D matrices are given by

R =
1

6




2 0 −1 0 0 −1 0 −1 −1 0 0 2

−1 3 −1 0 0 −1 0 −1 2 −3 0 2

−1 0 2 0 0 −1 0 2 −1 0 0 −1

2 −3 −4 6 0 −1 0 2 2 −3 0 −1

−1 0 −1 0 3 −1 0 −1 2 0 −3 2

−1 0 −1 0 0 2 0 −1 2 0 0 −1

−1 0 2 0 −3 2 6 −4 −1 0 −3 2

−1 0 2 0 0 −1 0 2 −1 0 0 −1

−1 0 −1 0 0 2 0 −1 2 0 0 −1

2 −3 −1 0 0 2 0 −1 −1 3 0 −1

2 0 −1 0 −3 2 0 −1 −1 0 3 −1

2 0 −1 0 0 −1 0 −1 −1 0 0 2




, (A.25)
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Y =




1 0 −1 0 1 −1 −1 0 0 0 0 1

1 0 −1 0 0 0 −1 0 0 0 1 0

1 −1 −1 0 1 0 −1 0 0 1 0 0

0 0 −1 0 1 0 −1 0 1 0 0 0

0 0 0 0 1 −1 −1 1 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0 0 0

0 0 −1 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0




, D = (16, 0) .

There are thus six colour structures

(Y C)1 = −ifabcf bdkfdegTa
1T

g
1T

k
2T

c
3T

e
4 − ifabcfaehf bdkTd

1T
h
1T

k
2T

c
3T

e
4

+ ifabcfdegfgalTl
1T

d
2T

b
2T

c
3T

e
4 ,

(Y C)2 = ifabcfdegfgalTl
1T

b
2T

d
2T

c
3T

e
4 ,

(Y C)3 = −ifabcf bdkfdegTa
1T

g
1T

k
2T

c
3T

e
4 − ifabcfaehf bdkTd

1T
h
1T

k
2T

c
3T

e
4

+ ifabcfaehfhdmTm
1 Td

2T
b
2T

c
3T

e
4 ,

(Y C)4 = ifabcfaehfhdmTm
1 Tb

2T
d
2T

c
3T

e
4 ,

(Y C)5 = −ifabcfaehf bdkTd
1T

h
1T

k
2T

c
3T

e
4 ,

(Y C)6 = −ifabcf bdkfdegTa
1T

g
1T

k
2T

c
3T

e
4 . (A.26)

14. W
(2,1)
4,V (1, 1, 2, 3)

The last Cweb of this set has six diagrams.

Diagrams Sequences S-factors

C1 {{BC}, {EDA}} 1

C2 {{CB}, {EDA}} 0

C3 {{BC}, {EAD}} 1

C4 {{CB}, {EAD}} 0

C5 {{BC}, {AED}} 1

C6 {{CB}, {AED}} 0

The R, Y and D matrices are given by

R=




1
6 0 −1

3 0 1
6 0

−1
3

1
2 −1

3 0 2
3 −1

2

−1
3 0 2

3 0 −1
3 0

1
6 −1

2 −1
3 1 1

6 −1
2

1
6 0 −1

3 0 1
6 0

2
3 −1

2 −1
3 0 −1

3
1
2




, Y =




2 −1 −2 0 0 1

1 0 −2 0 1 0

1 −1 −1 1 0 0

−2 1 0 0 0 1

−1 0 0 0 1 0

2 0 1 0 0 0




, D=(13,0) (A.27)
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The three colour structures are

(Y C)1 = −ifabcfgehfadgTh
1T

b
2T

c
3T

d
4T

e
4 ,

(Y C)2 = −ifabcfdegfaehTd
1T

h
1T

b
2T

c
3T

g
4 ,

(Y C)3 = −ifabcfadgfdehT
g
1T

e
1T

b
2T

c
3T

h
4 . (A.28)

15. W
(4)
4 (2, 2, 2, 2)

This Cweb, comprising sixteen diagrams, generalises a memebr of an infinite series of

highly symmetrical ‘Multiple Gluon Exchange Webs’, studied in ref. [35]. Explicit cal-

culations confirm the structure of the mixing matrix predicted there. We find

Diagrams Sequences S-factors

C1 {{BA}, {CE}, {DF}, {GH}} 2

C2 {{BA}, {CE}, {DF}, {HG}} 1

C3 {{BA}, {CE}, {FD}, {GH}} 1

C4 {{BA}, {CE}, {FD}, {HG}} 4

C5 {{BA}, {EC}, {DF}, {GH}} 1

C6 {{BA}, {EC}, {DF}, {HG}} 2

C7 {{BA}, {EC}, {FD}, {GH}} 0

C8 {{BA}, {EC}, {FD}, {HG}} 1

C9 {{AB}, {CE}, {DF}, {GH}} 1

C10 {{AB}, {CE}, {DF}, {HG}} 0

C11 {{AB}, {CE}, {FD}, {GH}} 2

C12 {{AB}, {CE}, {FD}, {HG}} 1

C13 {{AB}, {EC}, {DF}, {GH}} 4

C14 {{AB}, {EC}, {DF}, {HG}} 1

C15 {{AB}, {EC}, {FD}, {GH}} 1

C16 {{AB}, {EC}, {FD}, {HG}} 2

The R, Y and D matrices are given by

R=
1

12

















































2 −1 −1 0 −1 0 0 1 −1 0 0 1 0 1 1 −2
−2 3 1 −2 1 −2 0 1 −1 0 2 −1 2 −1 −3 2
−2 1 3 −2 −1 2 0 −1 1 0 −2 1 2 −3 −1 2
0 −1 −1 2 1 0 0 −1 1 0 0 −1 −2 1 1 0
−2 1 −1 2 3 −2 0 −1 1 0 2 −3 −2 1 −1 2
0 −1 1 0 −1 2 0 −1 1 0 −2 1 0 −1 1 0
6 −3 −9 6 −9 6 12 −9 −3 0 6 −3 6 −3 −9 6
2 1 −1 −2 −1 −2 0 3 −3 0 2 1 2 1 −1 −2
−2 −1 1 2 1 2 0 −3 3 0 −2 −1 −2 −1 1 2
6 −9 −3 6 −3 6 0 −3 −9 12 6 −9 6 −9 −3 6
0 1 −1 0 1 −2 0 1 −1 0 2 −1 0 1 −1 0
2 −1 1 −2 −3 2 0 1 −1 0 −2 3 2 −1 1 −2
0 1 1 −2 −1 0 0 1 −1 0 0 1 2 −1 −1 0
2 −1 −3 2 1 −2 0 1 −1 0 2 −1 −2 3 1 −2
2 −3 −1 2 −1 2 0 −1 1 0 −2 1 −2 1 3 −2
−2 1 1 0 1 0 0 −1 1 0 0 −1 0 −1 −1 2

















































, (A.29)
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Y =



















































−3 2 2 −1 2 −1 −1 0 2 −1 −1 0 −1 0 0 1
−1 0 1 0 1 0 −1 0 1 0 −1 0 −1 0 1 0
−1 1 0 0 1 −1 0 0 1 −1 0 0 −1 1 0 0
−1 1 1 −1 0 0 0 0 1 −1 −1 1 0 0 0 0
−1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 − 1

2
− 1

2
0 0 0 0 0 0 0 0 0 1 0 0 0

−2 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 − 1

2
1
2

0 0 0 0 0 0 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
−2 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1

2
− 1

2
0 0 1 0 0 0 0 0 0 0 0 0 0

2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1

2
1
2

1 0 0 0 0 0 0 0 0 0 0 0 0



















































, D=(15,0) ,

and the five colour structure are

(Y C)1 = if
ach

f
dbk

f
dcjTa

1T
b
1T

h
2T

j
3T

k
4+if

abg
f
dbk

f
dcjTg

1T
c
2T

a
2T

j
3T

k
4

−if
abg

f
ach

f
dbkTg

1T
h
2T

c
3T

d
3T

k
4−if

abg
f
ach

f
dcjTg

1T
h
2T

j
3T

b
4T

d
4 ,

(Y C)2 =−if
abg

f
ach

f
dcjTg

1T
h
2T

j
3T

b
4T

d
4 ,

(Y C)3 =−if
abg

f
ach

f
dbkTg

1T
h
2T

c
3T

d
3T

k
4 ,

(Y C)4 = if
abg

f
dbk

f
dcjTg

1T
c
2T

a
2T

j
3T

k
4−f

abg
f
ach

f
dbk

f
dcjTg

1T
h
2T

j
3T

k
4 ,

(Y C)5 = if
ach

f
dbk

f
dcjTa

1T
b
1T

h
2T

j
3T

k
4 . (A.30)

16. W
(4)
4 (1, 1, 2, 4)

We now come to one of the largest Cwebs of the set, with twenty-four diagrams.

Diagrams Sequences S-factors

C1 {{ABCD}, {EF}} 1

C2 {{ABCD}, {FE}} 0

C3 {{BACD}, {EF}} 1

C4 {{BACD}, {FE}} 0

C5 {{ACBD}, {EF}} 1

C6 {{ACBD}, {FE}} 0

C7 {{CABD}, {EF}} 1

C8 {{CABD}, {FE}} 0

C9 {{BCAD}, {EF}} 1

C10 {{BCAD}, {FE}} 0

C11 {{CBAD}, {EF}} 1

C12 {{CBAD}, {FE}} 0

C13 {{ACDB}, {EF}} 1

C14 {{ACDB}, {FE}} 0

C15 {{CADB}, {EF}} 1

C16 {{CADB}, {FE}} 0

C17 {{CDAB}, {EF}} 1

C18 {{CDAB}, {FE}} 0

C19 {{BCDA}, {EF}} 1

C20 {{BCDA}, {FE}} 0

C21 {{CBDA}, {EF}} 1

C22 {{CBDA}, {FE}} 0

C23 {{CDBA}, {EF}} 1

C24 {{CDBA}, {FE}} 0

– 33 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
8

The R, Y and D matrices are given by

R=
1

6



































































































1 0 0 0 −1 0 −1 0 −1 0 1 0 0 0 1 0 0 0 0 0 1 0 −1 0

−1 2 1 −1 −1 0 −1 0 −1 0 1 0 1 −1 1 0 1 −1 1 −1 1 0 −3 2

0 0 1 0 −1 0 1 0 −1 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0

1 −1 −1 2 −1 0 1 0 −1 0 −1 0 1 −1 1 0 −3 2 1 −1 1 0 1 −1

−1 0 0 0 2 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 −2 0 1 0

0 −1 1 −1 −1 3 0 0 0 0 0 0 0 −1 0 0 1 −1 −1 2 1 −3 −1 2

−1 0 1 0 0 0 2 0 0 0 −2 0 0 0 0 0 −1 0 0 0 0 0 1 0

0 −1 −1 2 3 −3 −4 6 3 −3 −2 0 −2 2 3 −3 0 −1 −2 2 3 −3 −1 2

0 0 −1 0 0 0 0 0 2 0 0 0 1 0 −2 0 1 0 −1 0 0 0 0 0

1 −1 0 −1 0 0 0 0 −1 3 0 0 −1 2 1 −3 −1 2 0 −1 0 0 1 −1

1 0 −1 0 0 0 −2 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 −1 0

−1 2 0 −1 3 −3 −2 0 3 −3 −4 6 −2 2 3 −3 −1 2 −2 2 3 −3 0 −1

0 0 0 0 −1 0 1 0 1 0 −1 0 1 0 −1 0 0 0 −1 0 1 0 0 0

1 −1 1 −1 −1 0 1 0 1 0 −1 0 −1 2 −1 0 1 −1 −3 2 1 0 1 −1

0 0 1 0 0 0 0 0 −2 0 0 0 −1 0 2 0 −1 0 1 0 0 0 0 0

1 −1 −1 2 0 0 0 0 1 −3 0 0 0 −1 −1 3 0 −1 −1 2 0 0 1 −1

0 0 −1 0 1 0 −1 0 1 0 1 0 0 0 −1 0 1 0 0 0 −1 0 0 0

1 −1 −3 2 1 0 −1 0 1 0 1 0 1 −1 −1 0 −1 2 1 −1 −1 0 1 −1

0 0 0 0 1 0 −1 0 −1 0 1 0 −1 0 1 0 0 0 1 0 −1 0 0 0

1 −1 1 −1 1 0 −1 0 −1 0 1 0 −3 2 1 0 1 −1 −1 2 −1 0 1 −1

1 0 0 0 −2 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 2 0 −1 0

−1 2 1 −1 1 −3 0 0 0 0 0 0 −1 2 0 0 1 −1 0 −1 −1 3 0 −1

−1 0 0 0 1 0 1 0 1 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 1 0

−3 2 1 −1 1 0 1 0 1 0 −1 0 1 −1 −1 0 1 −1 1 −1 −1 0 −1 2



































































































,

Y =



































































































−2 1 2 −1 0 0 2 0 0 0 −2 0 0 0 0 0 0 −1 0 0 0 0 0 1

−1 0 1 0 0 0 2 0 0 0 −2 0 0 0 0 0 −1 0 0 0 0 0 1 0

−1 1 2 −1 0 −1 1 0 −1 0 −1 0 −1 1 1 0 0 −1 0 0 0 1 0 0

0 0 1 0 −1 0 1 0 −1 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0

0 0 2 −1 0 0 0 0 −2 0 0 0 −2 1 2 0 0 −1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 −2 0 0 0 −1 0 2 0 −1 0 1 0 0 0 0 0

0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

−1 1 1 −1 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 −1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

−2 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

−1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 −1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



































































































,

D=(19,0) . (A.31)
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As a consequence, there are nine colour structures.

(Y C)1 = ifabef bghf cdgTh
1T

a
1T

e
2T

c
3T

d
4 + ifahkf bghf cdgTk

1T
b
2T

a
2T

c
3T

d
4−

2fabefahkf bghf cdgTk
1T

e
2T

c
3T

d
4 ,

(Y C)2 = ifabef bghf cdgTh
1T

a
1T

e
2T

c
3T

d
4 + ifahkf bghf cdgTk

1T
b
2T

a
2T

c
3T

d
4

− fabefahkf bghf cdgTk
1T

e
2T

c
3T

d
4 ,

(Y C)3 = ifabef bghf cdgTh
1T

a
1T

e
2T

c
3T

d
4 − fabefahkf bghf cdgTk

1T
e
2T

c
3T

d
4

− ifabefacnf bdmTn
1T

m
1 Te

2T
c
3T

d
4 − ifauvf bdmfmcuTv

1T
b
2T

a
2T

c
3T

d
4

+ fabefauvf bdmfmcuTv
1T

e
2T

c
3T

d
4 ,

(Y C)4 = −ifauvf bdmfmcuTv
1T

b
2T

a
2T

c
3T

d
4 + fabefauvf bdmfmcuTv

1T
e
2T

c
3T

d
4

+ ifabefadmfmcuTu
1T

b
1T

e
2T

c
3T

d
4 ,

(Y C)5 = −ifabef bdmfacnTn
1T

m
1 Te

2T
c
3T

d
4 + ifauvf bdmf cmuTv

1T
b
2T

a
2T

c
3T

d
4

− 2fabefauvf bdmf cmuTv
1T

e
2T

c
3T

d
4 + ifabef bdmf cmuTu

1T
a
1T

e
2T

c
3T

d
4

+ ifadmf bcnfmnqT
q
1T

b
2T

a
2T

c
3T

d
4 ,

(Y C)6 = ifabefadmf bcnTn
1T

m
1 Te

2T
c
3T

d
4 + ifauvf bdmf cmuTv

1T
b
2T

a
2T

c
3T

d
4

− fabefauvf bdmf cmuTv
1T

e
2T

c
3T

d
4 − ifabefadmf cmuTu

1T
b
1T

e
2T

c
3T

d
4

+ ifadmf bcnfmnqT
q
1T

b
2T

a
2T

c
3T

d
4 − fabefadmf bcnfmnqT

q
1T

e
2T

c
3T

d
4 ,

(Y C)7 = −ifabef bdmf canTn
1T

m
1 Te

2T
c
3T

d
4 ,

(Y C)8 = ifabef bghf cdgTh
1T

a
1T

e
2T

c
3T

d
4 − fabefahkf bghf cdgTk

1T
e
2T

c
3T

d
4 ,

(Y C)9 = −fabefauvf bdmf cmuTv
1T

e
2T

c
3T

d
4 + ifabef bdmf cmuTu

1T
a
1T

e
2T

c
3T

d
4 . (A.32)

17. W
(4)
4 (1, 1, 3, 3)

This Cweb comprises eighteen diagrams.

Diagrams Sequences S-factors

C1 {{DCA}, {EBG}} 2

C2 {{DCA}, {BEG}} 1

C3 {{DCA}, {EGB}} 1

C4 {{DCA}, {GEB}} 0

C5 {{DCA}, {BGE}} 0

C6 {{DCA}, {GBE}} 0

C7 {{CDA}, {EBG}} 1

C8 {{CDA}, {BEG}} 2

C9 {{CDA}, {EGB}} 1

C10 {{CDA}, {GEB}} 0

C11 {{CDA}, {BGE}} 0

C12 {{CDA}, {GBE}} 0

C13 {{DAC}, {EBG}} 1

C14 {{DAC}, {BEG}} 1

C15 {{DAC}, {EGB}} 2

C16 {{DAC}, {GEB}} 0

C17 {{DAC}, {BGE}} 0

C18 {{DAC}, {GBE}} 0
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The R, Y and D matrices are given by

R =
1

6




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 −2 0 0 0 0 −1 1 0 0 0 0 −1 1 0 0 0

0 −2 2 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0

0 1 −1 3 −3 0 0 0 0 −1 1 0 0 −1 1 −2 2 0

0 −1 1 −3 3 0 0 1 −1 2 −2 0 0 0 0 1 −1 0

6 −3 −3 −3 −3 6 −3 2 1 2 1 −3 −3 1 2 1 2 −3

0 0 0 0 0 0 2 −1 −1 0 0 0 −2 1 1 0 0 0

0 −1 1 0 0 0 −1 1 0 0 0 0 1 0 −1 0 0 0

0 1 −1 0 0 0 −1 0 1 0 0 0 1 −1 0 0 0 0

0 1 −1 0 0 0 −1 2 −1 2 −2 0 1 −3 2 −2 2 0

0 −1 1 0 0 0 −1 0 1 −1 1 0 1 1 −2 1 −1 0

0 0 0 0 0 0 −1 1 0 −1 −2 3 1 −1 0 1 2 −3

0 0 0 0 0 0 −2 1 1 0 0 0 2 −1 −1 0 0 0

0 −1 1 0 0 0 1 0 −1 0 0 0 −1 1 0 0 0 0

0 1 −1 0 0 0 1 −1 0 0 0 0 −1 0 1 0 0 0

0 1 −1 0 0 0 1 −2 1 −1 1 0 −1 1 0 1 −1 0

0 −1 1 0 0 0 1 2 −3 2 −2 0 −1 −1 2 −2 2 0

0 0 0 0 0 0 1 0 −1 2 1 −3 −1 0 1 −2 −1 3




, (A.33)

Y =




−1 0 1 1 0 −1 1 0 −1 0 0 0 0 0 0 −1 0 1

0 −1 1 1 −1 0 0 1 −1 0 0 0 0 0 0 −1 1 0

0 1 −1 0 0 0 1 −1 0 0 0 0 −1 0 1 0 0 0

0 −1 1 0 0 0 1 0 −1 0 0 0 −1 1 0 0 0 0

−1 1 0 1 0 −1 1 −1 0 −1 0 1 0 0 0 0 0 0

0 1 −1 1 −1 0 0 −1 1 −1 1 0 0 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1
2 0 −2 −2 0 −1

2 0 0 0 0 0 0 0 0 0 1 0

0 −1
2 0 1 1 0 −1

2 0 0 0 0 0 0 0 0 1 0 0

0 −1
2 0 0 0 0 −1

2 0 0 0 0 0 0 0 1 0 0 0

0 1
2 0 0 0 0 −1

2 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1
2 0 1 1 0 1

2 0 0 0 1 0 0 0 0 0 0 0

0 −1
2 0 −2 −2 0 1

2 0 0 1 0 0 0 0 0 0 0 0

0 −1
2 0 0 0 0 1

2 0 1 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, D = (16, 0) .
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There are six colour factors, given by

(Y C)1 = ifahjfdchf bagT
j
1T

g
2T

d
2T

b
3T

c
4 ,

(Y C)2 = ifahjfdchf bdgT
j
1T

a
2T

g
2T

b
3T

c
4 + ifahjfdchf bagT

j
1T

g
2T

d
2T

b
3T

c
4 ,

(Y C)3 = −ifahjf bdgfdchT
j
1T

g
2T

a
2T

b
3T

c
4 − ifagjf bdgfdchTa

1T
h
1T

j
2T

b
3T

c
4 ,

(Y C)4 = ifahjf bagfdchT
j
1T

g
2T

d
2T

b
3T

c
4 − ifdglf bagfdchTh

1T
a
1T

l
2T

b
3T

c
4 ,

(Y C)5 = −if bdgfdchfagjTa
1T

h
1T

j
2T

b
3T

c
4 ,

(Y C)6 = −ifagjf bdgfdchTa
1T

h
1T

j
2T

b
3T

c
4 + ifdgjf bagfdchTa

1T
h
1T

j
2T

b
3T

c
4 . (A.34)

18. W
(0,2)
4,II (1, 1, 2, 2)

This Cweb, with two three-gluon correlators, has the same correlator and attachment

content as Cweb number 4, presented above, eqs. (A.7) and (A.8). It has four diagrams.

Diagrams Sequences S-factors

C1 {{DA}, {EB}} 1

C2 {{DA}, {BE}} 0

C3 {{AD}, {EB}} 0

C4 {{AD}, {BE}} 1

The R, Y and D matrices are given by

R =




1
2 0 0 −1

2

−1
2 1 0 −1

2

−1
2 0 1 −1

2

−1
2 0 0 1

2


 , Y =




−1 0 0 1

−1 0 1 0

−1 1 0 0

1 0 0 1


 , D = (13, 0) , (A.35)

while the colour factors are

(Y C)1 = ifabcfdeff ebhTd
1T

a
1T

h
2T

c
3T

f
4

+ ifabcfdagfdefT
g
1T

b
2T

e
2T

c
3T

f
4 ,

(Y C)2 = ifabcfdagfdefT
g
1T

b
2T

e
2T

c
3T

f
4 ,

(Y C)3 = ifabcfdeff ebhTa
1T

d
1T

h
2T

c
3T

f
4 . (A.36)

19. W
(4)
4,I (1, 2, 2, 3)

This is the first of two Cwebs with the same correlator and attachment content. It has
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twelve diagrams.

Diagrams Sequences S-factors

C1 {{CBA}, {GF}, {DE}} 1

C2 {{CBA}, {GF}, {ED}} 3

C3 {{CBA}, {FG}, {DE}} 0

C4 {{CBA}, {FG}, {ED}} 0

C5 {{BCA}, {GF}, {DE}} 2

C6 {{BCA}, {GF}, {ED}} 2

C7 {{BCA}, {FG}, {DE}} 0

C8 {{BCA}, {FG}, {ED}} 0

C9 {{BAC}, {GF}, {DE}} 3

C10 {{BAC}, {GF}, {ED}} 1

C11 {{BAC}, {FG}, {DE}} 0

C12 {{BAC}, {FG}, {ED}} 0

The R, Y and D matrices are given by

R =




1
6 −1

6 0 0 −1
3

1
3 0 0 1

6 −1
6 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−1
6

1
6

1
3 −1

3 −1
3

1
3 0 0 1

2 −1
2 −1

3
1
3

1
6 −1

6 −1
6

1
6 0 0 0 0 −1

6
1
6

1
6 −1

6

−1
6

1
6 0 0 1

3 −1
3 0 0 −1

6
1
6 0 0

1
6 −1

6 0 0 −1
3

1
3 0 0 1

6 −1
6 0 0

0 0 −1
6

1
6 −1

6
1
6

1
2 −1

2
1
6 −1

6 −1
3

1
3

−1
6

1
6

1
3 −1

3
1
6 −1

6 −1
2

1
2 0 0 1

6 −1
6

0 0 0 0 0 0 0 0 0 0 0 0

−1
6

1
6 0 0 1

3 −1
3 0 0 −1

6
1
6 0 0

1
6 −1

6 −1
6

1
6 0 0 0 0 −1

6
1
6

1
6 −1

6

−1
2

1
2

1
3 −1

3
1
3 −1

3 0 0 1
6 −1

6 −1
3

1
3




,

Y =




−2 2 1 −1 2 −2 0 0 0 0 −1 1

−1 1 0 0 2 −2 0 0 −1 1 0 0

−1 1 1 −1 1 −1 −1 1 0 0 0 0

2 0 −1 0 0 0 0 0 0 0 0 1

−1
2 0 1

2 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0
1
2 0 −1

2 0 0 0 1 1 0 0 0 0

−1 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

−1
2 0 1

2 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0




, D = (13, 0) .

(A.37)

– 38 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
8

The colour factors are

(Y C)1 = −ifabhf cbjf cdgTa
1T

j
1T

h
2T

g
3T

d
4 + if cbjf cdgf jamTm

1 Tb
2T

a
2T

g
3T

d
4

− fabhf cbjf cdgf jamTm
1 Th

2T
g
3T

d
4 ,

(Y C)2 = −ifabhf cbjf cdgTa
1T

j
1T

h
2T

g
3T

d
4 + if cbjf cdgf jamTm

1 Tb
2T

a
2T

g
3T

d
4 ,

(Y C)3 = −ifabhf cbjf cdgTa
1T

j
1T

h
2T

g
3T

d
4 . (A.38)

20. W
(4)
4,II(1, 2, 2, 3)

Our last Cweb connecting four Wilson lines has twenty-four diagrams.

Diagrams Sequences S-factors

C1 {{CBA}, {DE}, {GF}} 2

C2 {{CBA}, {DE}, {FG}} 1

C3 {{CBA}, {ED}, {GF}} 0

C4 {{CBA}, {ED}, {FG}} 1

C5 {{BCA}, {DE}, {GF}} 1

C6 {{BCA}, {DE}, {FG}} 2

C7 {{BCA}, {ED}, {GF}} 0

C8 {{BCA}, {ED}, {FG}} 1

C9 {{CAB}, {DE}, {GF}} 2

C10 {{CAB}, {DE}, {FG}} 0

C11 {{CAB}, {ED}, {GF}} 1

C12 {{CAB}, {ED}, {FG}} 1

C13 {{ACB}, {DE}, {GF}} 1

C14 {{ACB}, {DE}, {FG}} 0

C15 {{ACB}, {ED}, {GF}} 2

C16 {{ACB}, {ED}, {FG}} 1

C17 {{BAC}, {DE}, {GF}} 1

C18 {{BAC}, {DE}, {FG}} 1

C19 {{BAC}, {ED}, {GF}} 0

C20 {{BAC}, {ED}, {FG}} 2

C21 {{ABC}, {DE}, {GF}} 1

C22 {{ABC}, {DE}, {FG}} 0

C23 {{ABC}, {ED}, {GF}} 1

C24 {{ABC}, {ED}, {FG}} 2
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The R, Y and D matrices are given by

R=
1

12



































































































2 −1 0 −1 −1 0 0 1 0 0 −1 1 −1 0 0 1 −1 1 0 0 1 0 1 −2

−2 3 0 −1 1 −2 0 1 0 0 1 −1 −1 0 2 −1 1 −1 0 0 1 0 −3 2

−4 1 6 −3 −1 2 0 −1 2 0 −3 1 1 0 −2 1 5 −3 −6 4 −3 0 5 −2

−2 −1 0 3 1 0 0 −1 2 0 −1 −1 1 0 0 −1 1 1 0 −2 −3 0 1 2

−2 1 0 1 3 −2 0 −1 0 0 −1 1 1 0 2 −3 −1 1 0 0 −1 0 −1 2

0 −1 0 1 −1 2 0 −1 0 0 1 −1 1 0 −2 1 1 −1 0 0 −1 0 1 0

4 −3 −6 5 −9 6 12 −9 2 0 −3 1 −3 0 6 −3 5 −3 −6 4 1 0 −3 2

0 1 0 −1 −1 −2 0 3 2 0 −1 −1 −3 0 2 1 1 1 0 −2 1 0 −1 0

0 −1 0 1 −1 0 0 1 2 0 −1 −1 −1 0 0 1 1 1 0 −2 −1 0 1 0

2 −3 0 1 1 −2 0 1 −4 6 1 −3 −1 0 2 −1 −3 5 0 −2 5 −6 −3 4

0 1 0 −1 −1 2 0 −1 −2 0 3 −1 1 0 −2 1 1 −3 0 2 1 0 −1 0

2 −1 0 −1 1 0 0 −1 −2 0 −1 3 1 0 0 −1 −3 1 0 2 1 0 1 −2

0 −1 0 1 1 2 0 −3 −2 0 1 1 3 0 −2 −1 −1 −1 0 2 −1 0 1 0

2 −3 0 1 −3 6 0 −3 4 −6 −3 5 −9 12 6 −9 1 −3 0 2 5 −6 −3 4

0 1 0 −1 1 −2 0 1 0 0 −1 1 −1 0 2 −1 −1 1 0 0 1 0 −1 0

2 −1 0 −1 −3 2 0 1 0 0 1 −1 −1 0 −2 3 1 −1 0 0 1 0 1 −2

−2 1 0 1 −1 0 0 1 2 0 1 −3 −1 0 0 1 3 −1 0 −2 −1 0 −1 2

0 −1 0 1 1 −2 0 1 2 0 −3 1 −1 0 2 −1 −1 3 0 −2 −1 0 1 0

4 −3 −6 5 −1 2 0 −1 −2 0 5 −3 1 0 −2 1 −3 1 6 −4 1 0 −3 2

0 1 0 −1 1 0 0 −1 −2 0 1 1 1 0 0 −1 −1 −1 0 2 1 0 −1 0

2 1 0 −3 −1 0 0 1 −2 0 1 1 −1 0 0 1 −1 −1 0 2 3 0 −1 −2

−2 5 0 −3 1 −2 0 1 4 −6 −3 5 −1 0 2 −1 1 −3 0 2 −3 6 1 −4

2 −3 0 1 −1 2 0 −1 0 0 −1 1 1 0 −2 1 −1 1 0 0 −1 0 3 −2

−2 1 0 1 1 0 0 −1 0 0 1 −1 1 0 0 −1 1 −1 0 0 −1 0 −1 2



































































































,

Y =



































































































−2 1 1 0 2 −1 −1 0 −1 1 1 −1 2 −1 −1 0 0 0 0 0 −1 0 0 1

−1 0 1 0 1 0 −1 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 1 0

−1 1 0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1 0 0

−1 1 1 −1 2 −1 −1 0 −2 1 1 0 2 −1 −1 0 −1 0 0 1 0 0 0 0

0 0 0 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1 0 1 0 0 0 0 0

0 0 0 0 1 −1 0 0 −1 1 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0

−1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

−2 −1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1
2

0 1 − 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−2 − 1
2
0 −1 − 1

2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

−1 − 1
2
0 0 − 1

2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2 3
2

0 1 − 1
2

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

2 1
2

0 1 1
2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 − 1
2
0 −1 1

2
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 − 3
2
0 −1 1

2
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1
2

0 0 1
2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



































































































,

D=(18,0) . (A.39)
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The eight colour structures are

(Y C)1 = −ifadhf bcmfdbjTa
1T

m
1 Th

2T
j
3T

c
4 − ifacpfadhfdbjTb

1T
p
1T

h
2T

j
3T

c
4

+ if bcmfdbjfmanTn
1T

d
2T

a
2T

j
3T

c
4 − ifadhf bcmfmanTn

1T
h
2T

b
3T

d
3T

c
4 ,

(Y C)2 = −ifadhf bcmfmanTn
1T

h
2T

b
3T

d
3T

c
4 ,

(Y C)3 = if bcmfdbjfmanTn
1T

a
2T

d
2T

j
3T

c
4 ,

(Y C)4 = −ifadhf bcmfdbjTa
1T

m
1 Th

2T
j
3T

c
4 − ifacpfadhfdbjTb

1T
p
1T

h
2T

j
3T

c
4

+ ifacpfdbjfpbqT
q
1T

d
2T

a
2T

j
3T

c
4 − ifacpfadhfpbqT

q
1T

h
2T

b
3T

d
3T

c
4 ,

(Y C)5 = −ifacpfadhfpbqT
q
1T

h
2T

b
3T

d
3T

c
4 ,

(Y C)6 = ifacpfdbjfpbqT
q
1T

a
2T

d
2T

j
3T

c
4 ,

(Y C)7 = ifadhfacpfdbjTb
1T

p
1T

h
2T

j
3T

c
4 ,

(Y C)8 = −ifadhf bcmfdbjTa
1T

m
1 Th

2T
j
3T

c
4 . (A.40)

A.2 Cwebs connecting five Wilson lines

1. W
(1,0,1)
5 (1, 1, 1, 1, 2)

A simple two-diagram Cweb,

Diagrams Sequences S-factors

C1 {{EA}} 1

C2 {{AE}} 1

The R, Y and D matrices are given by

R =

(
1
2 −1

2

−1
2

1
2

)
, Y =

(
−1 1

1 1

)
, D = (11, 0) , (A.41)

and the single colour factor is

(Y C)1 = ifabgf cdgf eahTh
1T

b
2T

c
3T

d
4T

e
5 . (A.42)

2. W
(0,2)
5 (1, 1, 1, 1, 2)

Another simple two-diagram Cweb,

Diagrams Sequences S-factors

C1 {{DA}} 1

C2 {{AD}} 1
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The R, Y and D matrices are given by

R =

(
1
2 −1

2

−1
2

1
2

)
, Y =

(
−1 1

1 1

)
, D = (11, 0) , (A.43)

and there is a single colour factor,

(Y C)1 = −ifabcfdeffdahTh
1T

b
2T

c
3T

e
4T

f
5 . (A.44)

3. W
(2,1)
5 (1, 1, 1, 1, 3)

A six-diagram Cweb,

Diagrams Sequences S-factors

C1 {{EDA}} 1

C2 {{DEA}} 1

C3 {{EAD}} 1

C4 {{AED}} 1

C5 {{DAE}} 1

C6 {{ADE}} 1

where the R, Y and D matrices are given by

R =




1
3 −1

6 −1
6 −1

6 −1
6

1
3

−1
6

1
3 −1

6
1
3 −1

6 −1
6

−1
6 −1

6
1
3 −1

6
1
3 −1

6

−1
6

1
3 −1

6
1
3 −1

6 −1
6

−1
6 −1

6
1
3 −1

6
1
3 −1

6
1
3 −1

6 −1
6 −1

6 −1
6

1
3




, Y =




1 −1 0 −1 0 1

0 −1 1 −1 1 0

−1 0 0 0 0 1

1 1 0 0 1 0

0 −1 0 1 0 0

1 1 1 0 0 0




, D = (12, 0) ,

(A.45)

and there are two colour structures,

(Y C)1 = ifabcfdegfgahTh
1T

b
2T

c
3T

d
4T

e
5 ,

(Y C)2 = −ifabcfaejfdjmTm
1 Tb

2T
c
3T

d
4T

e
5 . (A.46)

4. W
(2,1)
5, I (1, 1, 1, 2, 2)

A four-diagram Cweb, one of two with this set of correlators and attachments.

Diagrams Sequences S-factors

C1 {{DA}, {EB}} 2

C2 {{DA}, {BE}} 1

C3 {{AD}, {EB}} 1

C4 {{AD}, {BE}} 2
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The R, Y and D matrices are given by

R =




1
6 −1

6 −1
6

1
6

−1
3

1
3

1
3 −1

3

−1
3

1
3

1
3 −1

3
1
6 −1

6 −1
6

1
6


 , Y =




1 −1 −1 1

−1 0 0 1

2 0 1 0

2 1 0 0


 , D = (11, 0) , (A.47)

The single colour factor is

(Y C)1 = −ifabcfadhf begTh
1T

g
2T

c
3T

d
4T

e
5 . (A.48)

5. W
(2,1)
5, II (1, 1, 1, 2, 2)

The second Cweb of the set, also with four diagrams.

Diagrams Sequences S-factors

C1 {{DA}, {EC}} 1

C2 {{DA}, {CE}} 2

C3 {{AD}, {EC}} 2

C4 {{AD}, {CE}} 1

The R, Y and D matrices are given by

R =




1
3 −1

3 −1
3

1
3

−1
6

1
6

1
6 −1

6

−1
6

1
6

1
6 −1

6
1
3 −1

3 −1
3

1
3


 , Y =




1 −1 −1 1

−1 0 0 1
1
2 0 1 0
1
2 1 0 0


 , D = (11, 0) . (A.49)

The single colour factor is

(Y C)1 = −ifabcfadhfdegTh
1T

b
2T

c
3T

g
4T

e
5 . (A.50)

6. W
(4)
5 (1, 1, 1, 2, 2)

A Cweb with eight diagrams

Diagrams Sequences S-factors

C1 {{BA}, {CE}, {DG}} 3

C2 {{BA}, {CE}, {GD}} 4

C3 {{BA}, {EC}, {DG}} 1

C4 {{BA}, {EC}, {GD}} 2

C5 {{AB}, {CE}, {DG}} 2

C6 {{AB}, {CE}, {GD}} 1

C7 {{AB}, {EC}, {DG}} 4

C8 {{AB}, {EC}, {GD}} 3
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The R, Y and D matrices are given by

R=




1
12 − 1

12 − 1
12

1
12 − 1

12
1
12

1
12 − 1

12
− 1

12
1
12

1
12 − 1

12
1
12 − 1

12 − 1
12

1
12

− 1
4

1
4

1
4 − 1

4
1
4 − 1

4 − 1
4

1
4

1
12 − 1

12 − 1
12

1
12 − 1

12
1
12

1
12 − 1

12
− 1

12
1
12

1
12 − 1

12
1
12 − 1

12 − 1
12

1
12

1
4 − 1

4 − 1
4

1
4 − 1

4
1
4

1
4 − 1

4
1
12 − 1

12 − 1
12

1
12 − 1

12
1
12

1
12 − 1

12
− 1

12
1
12

1
12 − 1

12
1
12 − 1

12 − 1
12

1
12




,

Y =




−1 1 1 −1 1 −1 −1 1
1 0 0 0 0 0 0 1
−1 0 0 0 0 0 1 0
−3 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
−1 0 0 1 0 0 0 0
3 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0




,

D=(11,0) .

(A.51)

While large, this Cweb has only one exponentiated colour factor,

(Y C)1 = ifachfabgf bdjT
g
1T

h
2T

j
3T

c
4T

d
5 . (A.52)

7. W
(4)
5 (1, 1, 1, 2, 3)

A Cweb with twelve diagrams,

Diagrams Sequences S-factor

C1 {{CBA},{DE}} 2

C2 {{CBA},{ED}} 1

C3 {{BCA},{DE}} 1

C4 {{BCA},{ED}} 1

C5 {{CAB},{DE}} 2

C6 {{CAB},{ED}} 1

C7 {{ACB},{DE}} 2

C8 {{ACB},{ED}} 1

C9 {{BAC},{DE}} 1

C10 {{BAC},{ED}} 1

C11 {{ABC},{DE}} 2

C12 {{ABC},{ED}} 1

with R, Y and D matrices given by

R=
1

12




2 −2 −1 1 −1 1 −1 1 −1 1 2 −2
−2 2 1 −1 1 −1 1 −1 1 −1 −2 2
−2 2 3 −3 −1 1 3 −3 −1 1 −2 2
0 0 −1 1 1 −1 −1 1 1 −1 0 0
0 0 −1 1 1 −1 −1 1 1 −1 0 0
2 −2 1 −1 −3 3 1 −1 −3 3 2 −2
0 0 1 −1 −1 1 1 −1 −1 1 0 0
2 −2 −3 3 1 −1 −3 3 1 −1 2 −2
−2 2 −1 1 3 −3 −1 1 3 −3 −2 2
0 0 1 −1 −1 1 1 −1 −1 1 0 0
2 −2 −1 1 −1 1 −1 1 −1 1 2 −2
−2 2 1 −1 1 −1 1 −1 1 −1 −2 2




, (A.53)
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Y =




−1 1 1 −1 0 0 1 −1 0 0 −1 1
0 0 1 −1 −1 1 1 −1 −1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 1 0
− 1

2 0 − 1
2 0 0 0 0 0 0 1 0 0

2 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
− 1

2 0 − 1
2 0 0 0 1 0 0 0 0 0

−2 0 −1 0 0 1 0 0 0 0 0 0
1
2 0 1

2 0 1 0 0 0 0 0 0 0
1
2 0 1

2 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0




, D=(12,0) .

and two colour factors,

(Y C)1 = ifachf bdmf bhvTv
1T

a
2T

m
3 Td

4T
c
5 − ifabgf bdmf cguTu

1T
a
2T

m
3 Td

4T
c
5 ,

(Y C)2 = ifachf bdmf bhvTv
1T

a
2T

m
3 Td

4T
c
5 . (A.54)

8. W
(4)
5 (1, 1, 1, 1, 4)

Last, but not least, a Cweb with twenty-four diagrams

Diagrams Sequences S-factor

C1 {ABCD} 1

C2 {DCBA} 1

C3 {CDBA} 1

C4 {DBCA} 1

C5 {BDCA} 1

C6 {CBDA} 1

C7 {BCDA} 1

C8 {DCAB} 1

C9 {CDAB} 1

C10 {DACB} 1

C11 {ADCB} 1

C12 {CADB} 1

C13 {ACDB} 1

C14 {DBAC} 1

C15 {BDAC} 1

C16 {DABC} 1

C17 {ADBC} 1

C18 {BADC} 1

C19 {ABDC} 1

C20 {CBAD} 1

C21 {BCAD} 1

C22 {CABD} 1

C23 {ACBD} 1

C24 {BACD} 1
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with R, Y and D matrices given by

R=
1

12



































































































3 −1 −1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 1 −1 1 −1 1 1 1 1 −3

−1 3 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1 1 1 −3 −1 1 1 1 −1 1

−1 −1 3 −1 1 −1 −1 1 1 1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 −3 1 1

−1 1 −1 3 −1 −1 −1 1 1 1 1 −3 1 −1 −1 1 −1 −1 1 −1 −1 1 1 1

−1 −1 1 −1 3 −1 1 −1 −1 1 1 1 1 −1 1 −3 1 1 −1 1 −1 −1 −1 1

1 −1 −1 −1 −1 3 1 −1 1 −3 1 1 1 −1 −1 1 1 1 1 −1 −1 1 −1 −1

−1 1 −1 −1 −1 1 3 −1 −1 −1 −1 1 1 1 −1 1 1 −1 1 1 −1 1 −3 1

1 −1 −1 1 −1 −1 −1 3 −1 1 −1 −1 1 1 −1 1 −3 1 1 1 −1 1 1 −1

−1 1 1 1 −1 1 −1 −1 3 −1 1 −1 −1 −1 −1 1 1 −1 1 −3 1 −1 1 1

−1 1 1 1 1 −3 −1 1 −1 3 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 1

1 −1 −1 1 1 1 −1 −1 1 −1 3 −1 1 −3 1 −1 1 1 −1 −1 −1 1 1 −1

1 −1 1 −3 1 1 1 −1 −1 −1 −1 3 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1

−1 −1 −1 1 1 −1 1 1 −1 1 1 −1 3 −1 −1 −1 −1 1 1 1 −3 1 −1 1

−1 1 1 −1 −1 −1 1 1 −1 1 −3 1 −1 3 −1 1 −1 −1 1 1 1 −1 −1 1

1 1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1 3 −1 1 −1 −3 1 1 1 1 −1

1 1 −1 1 −3 1 −1 1 1 −1 −1 −1 −1 1 −1 3 −1 −1 1 −1 1 1 1 −1

−1 1 1 −1 1 1 1 −3 1 −1 1 1 −1 −1 1 −1 3 −1 −1 −1 1 −1 −1 1

1 −3 1 −1 1 1 −1 1 1 −1 1 1 1 −1 −1 −1 −1 3 1 −1 −1 −1 1 −1

−1 −1 1 −1 −1 1 1 1 1 −1 −1 1 1 1 −3 1 −1 1 3 −1 −1 −1 −1 1

1 −1 −1 −1 1 −1 1 1 −3 1 −1 1 1 1 1 −1 −1 1 −1 3 −1 1 −1 −1

1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −3 1 1 1 1 −1 −1 −1 3 −1 1 −1

1 1 −3 1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1 3 −1 −1

1 −1 1 1 1 −1 −3 1 1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1 −1 3 −1

−3 1 1 1 1 −1 1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 3
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Y =



































































































−1 1 0 1 0 −1 0 0 0 1 0 −1 0 0 0 0 0 −1 0 0 0 0 0 1

0 0 0 1 0 −1 −1 1 0 1 0 −1 0 0 0 0 −1 0 0 0 0 0 1 0

0 1 −1 1 −1 0 0 0 0 0 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0

0 1 0 0 −1 0 0 0 0 0 −1 0 −1 1 0 1 0 −1 0 0 1 0 0 0

0 0 0 0 0 −1 0 1 −1 1 −1 0 0 1 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 −1 0 0 1 −1 1 −1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 − 1
3

1
3

5
3

4
3

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

−2 − 1
3
− 2

3
− 4

3
− 5

3
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 2
3

− 2
3
− 1

3
1
3

0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 − 2
3

2
3

1
3

− 1
3

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

−1 − 2
3
− 4

3
− 2

3
− 1

3
0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 1
3

− 1
3
− 5

3
− 4

3
0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 2
3

4
3

2
3

1
3

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1
3

2
3

4
3

5
3

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 0 −1 −2 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



































































































, D=(16,0) ,
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so that only six independent colour factors are present, given by

(Y C)1 = ifahjf bghf cdgT
j
1T

a
2T

b
3T

c
4T

d
5 ,

(Y C)2 = −ifagkf cdgfkbmTm
1 Ta

2T
b
3T

c
4T

d
5 ,

(Y C)3 = −ifahjf bdgfgchT
j
1T

a
2T

b
3T

c
4T

d
5 ,

(Y C)4 = −ifahjf bdgfgchT
j
1T

a
2T

b
3T

c
4T

d
5

+ ifackf bdgfgkmTm
1 Ta

2T
b
3T

c
4T

d
5 ,

(Y C)5 = ifadhf bjkf chjTk
1T

a
2T

b
3T

c
4T

d
5 ,

(Y C)6 = ifadhf bhlf clmTm
1 Ta

2T
b
3T

c
4T

d
5 . (A.56)

This completes our listing of all Cwebs with a perturbative expansion starting at O(g8),

and connecting four and five Wilson lines.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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