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Abstract

This paper is divided into two logical parts. In the first part of this paper, we
prove the following theorem which is the q-analogue of a generalized modular Ray-
Chaudhuri-Wilson Theorem shown in [Alon, Babai, Suzuki, J. Combin. Theory
Series A, 1991]. It is also a generalization of the main theorem in [Frankl and
Graham, European J. Combin. 1985] under certain circumstances.
• Let V be a vector space of dimension n over a finite field of size q. Let K =
{k1, . . . , kr}, L = {µ1, . . . , µs} be two disjoint subsets of {0, 1, . . . , b− 1} with k1 <

· · · < kr. Let F = {V1, V2, . . . , Vm} be a family of subspaces of V such that (a)
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for every i ∈ [m], dim(Vi) mod b = kt, for some kt ∈ K, and (b) for every distinct
i, j ∈ [m], dim(Vi ∩ Vj)mod b = µt, for some µt ∈ L. Moreover, it is given that
neither of the following two conditions hold:

(i) q + 1 is a power of 2, and b = 2

(ii) q = 2, b = 6.

Then,

|F| 6







N(n, s, r, q), if (s+ kr 6 n and r(s− r + 1) 6 b− 1) or (s < k1 + r)

N(n, s, r, q) +
∑

t∈[r]

[

n

kt

]

q

, otherwise,

where N(n, s, r, q) :=

[

n

s

]

q

+

[

n

s− 1

]

q

+ · · ·+

[

n

s− r + 1

]

q

.

In the second part of this paper, we prove q-analogues of results on a recent
notion called fractional L-intersecting family of sets for families of subspaces of a
given vector space over a finite field of size q. We use the above theorem to obtain
a general upper bound to the cardinality of such families. We give an improvement
to this general upper bound in certain special cases.

Mathematics Subject Classifications: 05D05

1 Introduction

Let [n] be the set of all natural numbers from 1 to n. A family F of subsets of [n] is called
intersecting if every set in F has a non-empty intersection with every other set in F .
One of the earliest studies on intersecting families dates back to the famous Erdős-Ko-
Rado Theorem [Erdős et al., 1961] about maximal uniform intersecting families. Ray-
Chaudhuri and Wilson [Ray-Chaudhuri and Wilson, 1975] introduced the notion of L-
intersecting families. Let L = {l1, . . . , ls} be a set of non-negative integers. A family F of
subsets of [n] is said to be L-intersecting if for every distinct Fi, Fj in F , |Fi∩Fj| ∈ L. The
Ray-Chaudhuri-Wilson Theorem states that if F is t-uniform (that is, every set in F is t-
sized), then |F| 6

(

n

s

)

. This bound is tight as shown by the set of all s-sized subsets of [n]
with L = {0, . . . , s−1}. Frankl-Wilson Theorem [Frankl and Wilson, 1981a] extends this

to non-uniform families by showing that |F| 6
s
∑

i=0

(

n

i

)

, where F is any family of subsets

of [n] that is L-intersecting. The collection of all the subsets of [n] of size at most s with
L = {0, . . . s − 1} is a tight example to this bound. The first proofs of these theorems
were based on the technique of higher incidence matrices. Alon, Babai, and Suzuki in
[Alon et al., 1991] generalized the Frankl-Wilson Theorem using a proof that operated on
spaces of multilinear polynomials. They showed that if the sizes of the sets in F belong
to K = {k1, . . . , kr} with each ki > s − r, then |F| 6

(

n

s

)

+ · · · +
(

n

s−r+1

)

. A modular
version of the Ray-Chaudhuri-Wilson Theorem was shown in [Frankl and Wilson, 1981b].
This result was generalized in [Alon et al., 1991]. See [Liu and Yang, 2014] for a survey
on L-intersecting families.
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Researchers have also been working on similar intersection theorems for subspaces
of a given vector space over a finite field. Hsieh [Hsieh, 1975], and Deza and Frankl
[Deza and Frankl, 1983] showed Erdős-Ko-Rado type theorems for subspaces. Let V be
a vector space of dimension n over a finite field of size q. The number of d-dimensional
subspaces of V is given by the q-binomial coefficient (also known as Gaussian binomial

coeffcient)

[

n
d

]

q

= (qn−1)(qn−1−1)···(qn−d+1−1)
(qd−1)(qd−1−1)···(q−1)

. The following theorem which is a q-analog

of the Ray-Chaudhuri-Wilson Theorem by considering families of subspaces instead of
subsets is due to [Frankl and Graham, 1985].

Theorem 1. [Theorem 1.1 in [Frankl and Graham, 1985]] Let V be a vector space over
of dimension n over a finite field of size q. Let F = {V1, V2, . . . , Vm} be a family of
subspaces of V such that dim(Vi)= k, for every i ∈ [m]. Let 0 6 µ1 < µ2 < · · · < µs < b
be integers such that k 6≡ µt (mod b), for any t. For every 1 6 i < j 6 m, dim(Vi ∩ Vj)
≡ µt (mod b), for some t. Then,

|F| 6

[

n
s

]

q

except possibly for q = 2, b = 6, s ∈ {3, 4}.

Example 2 (Remark 3.2 in [Frankl and Graham, 1985]). Let n = k + s. Let F be the
family of all the k-dimensional subspaces of V , where V is an n-dimensional vector space
over a finite field of size q. Observe that, for any two distinct Vi, Vj ∈ F , k − s 6

dim(Vi ∩ Vj) 6 k − 1. This is a tight example for Theorem 1.

Alon et al. in [Alon et al., 1991] proved a generalization of the non-modular version
of the above theorem. This result was subsequently strengthened in [Liu et al., 2018].

Our paper is divided into two logical parts. In the first part (i.e., Section 2), we
prove the following theorem which is a generalization of Theorem 1 due to Frankl and
Graham under certain circumstances. It is also the q-analogue of a generalized modular

Ray-Chaudhuri-Wilson Theorem shown in [Alon et al., 1991]. We assume that

[

a
b

]

q

= 0,

when b < 0 or b > a. Let

N(n, s, r, q) :=

[

n
s

]

q

+

[

n
s− 1

]

q

+ · · ·+

[

n
s− r + 1

]

q

.

Theorem 3. Let V be a vector space of dimension n over a finite field of size q. Let
K = {k1, . . . , kr}, L = {µ1, . . . , µs} be two disjoint subsets of {0, 1, . . . , b − 1} with k1 <
· · · < kr. Let F = {V1, V2, . . . , Vm} be a family of subspaces of V such that (a) for every
i ∈ [m], dim(Vi) mod b = kt, for some kt ∈ K, and (b) for every distinct i, j ∈ [m],
dim(Vi ∩ Vj)mod b = µt, for some µt ∈ L. Moreover, it is given that neither of the
following two conditions hold:

(i) q + 1 is a power of 2, and b = 2
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(ii) q = 2, b = 6

Then,

|F| 6







N(n, s, r, q), if (s+ kr 6 nandr(s− r + 1) 6 b− 1) or(s < k1 + r)

N(n, s, r, q) +
∑

t∈[r]

[

n

kt

]

q

, otherwise.

In the second part (i.e., Section 3), we study a notion of fractional L-intersecting
families which was introduced in [Balachandran et al., 2019]. We say a family F =
{F1, F2, . . . , Fm} of subsets of [n] is a fractional L-intersecting family, where L is a set

of irreducible fractions between 0 and 1, if for every distinct i, j ∈ [m],
|Fi∩Fj |

|Fi|
∈ L or

|Fi∩Fj |

|Fj |
∈ L. In this paper, we extend this notion from subsets to subspaces of a vector

space over a finite field.

Definition 4. Let L = {a1
b1
, . . . , as

bs
} be a set of positive irreducible fractions, where every

ai
bi

< 1. Let F = {V1, . . . , Vm} be a family of subspaces of a vector space V over a finite
field. We say F is a fractional L-intersecting family of subspaces if for every two distinct
i, j ∈ [m],

dim(Vi∩Vj)

dim(Vi)
∈ L or

dim(Vi∩Vj)

dim(Vj)
∈ L.

When every subspace in F is of dimension exactly k, it is an L′-intersecting family

where L′ = {a1k
b1
, . . . , ask

bs
}. Applying Theorem 1, we get |F| 6

[

n
s

]

q

. A tight example to

this is the collection of all k-dimensional subspaces of V with L = { 0
k
, . . . , k−1

k
}. However,

the problem of bounding the cardinality of a fractional L-intersecting family of subspaces
becomes more interesting when F contains subspaces of various dimensions. In Section
3, we obtain upper bounds for the cardinality of a fractional L-intersecting family of
subspaces that are q-analogs of the results in [Balachandran et al., 2019]. With the help
of Theorem 3 that we prove in Section 2, we obtain the following result in Section 3.

Theorem 5. Let L = {a1
b1
, a2
b2
, . . . , as

bs
} be a collection of positive irreducible fractions,

where every ai
bi

< 1. Let F be a fractional L-intersecting family of subspaces of a vector

space V of dimension n over a finite field of size q. Let t = max
i∈[s]

bi, g(t, n) =
2(2t+lnn)
ln(2t+lnn)

,

and h(t, n) = min(g(t, n), lnn
ln t

). Then,

|F| 6 2g(t, n)h(t, n) ln(g(t, n))

[

n
s

]

q

+ h(t, n)
s−1
∑

i=1

[

n
i

]

q

.

Further, if 2g(t, n) ln(g(t, n)) 6 n+ 2, then

|F| 6 2g(t, n)h(t, n) ln(g(t, n))

[

n
s

]

q

.

Example 6. Let s be a constant, L = {0
s
, 1
s
, . . . , s−1

s
}, and F be the family of all the

s-sized subspaces of V . Clearly, F is a fractional L-intersecting family showing that the
bound in Theorem 5 is asymptotically tight up to a multiplicative factor of ln2 n

ln lnn
.
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We improve the bound obtained in Theorem 5 for the special case when L = {a
b
},

where b is a prime.

Theorem 7. Let L = {a
b
}, where a

b
is a positive irreducible fraction less than 1 and b is

a prime. Let F be a fractional L-intersecting family of subspaces of a vector space V of

dimension n over a finite field of size q. Then, we have |F| 6 (b− 1)(

[

n
1

]

q

+1)⌈ lnn
ln b

⌉+2.

Example 8. Let L = {1
2
}. Let V be a vector space of dimension n over a finite field of

size q. Let {v1, v2, . . . , vn} be a basis of V . Let V ′ := span({v2, . . . , vn}) be an (n − 1)-

dimensional subspace of V . Let F be the set of all

[

n− 1
1

]

q

2-dimensional subspaces

of V each of which is obtained by a span of v1 and each of the

[

n− 1
1

]

q

1-dimensional

subspaces of V ′. This example shows that when b and q are constants, the bound in
Theorem 7 is asymptotically tight up to a multiplicative factor of lnn.

2 Generalized modular RW Theorem for subspaces

As mentioned before, in this part we prove Theorem 3. The approach followed here
is similar to the approach used in proving Theorem 1.5, a generalized modular Ray-
Chaudhuri-Wilson Theorem for subsets, in [Alon et al., 1991]. We start by stating the
Zsigmondy’s Theorem which will be used in the proof of Theorem 3.

Theorem 9 ([Zsigmondy, 1892]). For any q, b ∈ N, there exists a prime p such that qb ≡ 1
(mod p), qi 6≡ 1 (mod p) ∀i, 0 < i < b, except when (i) q + 1 is a power of 2, b = 2, or
(ii) q = 2, b = 6.

2.1 Notations used in Section 2

Unless defined explicitly, in the rest of this section, the symbols K = {k1, . . . , kr}, r,
L = {µ1, . . . , µs}, s, q, V , F , n, b, m, and V1, . . . , Vm are defined as they are defined in
Theorem 3. We shall use U ⊆ V to denote that U is a subspace of V . Using Zsigmondy’s
Theorem, we find a prime p so that qi 6≡ 1 (mod p) for 0 < i < b and qb ≡ 1 (mod p).
This is possible except in the two cases specified in Theorem 9. We ignore these two cases
from now on in the rest of Section 2.

2.2 Möbius inversion over the subspace poset

Consider the partial order defined on the set of subspaces of the vector space V over a
finite field of size q under the ‘containment’ relation. Let α be a function from the set
of subspaces of V to Fp. A function β from the set of subspaces of V to Fp is the zeta
transform of α if for every W ⊆ V, β(W ) =

∑

U⊆W α(U). Then, applying the Möbius
inversion formula we get for all W ⊆ V , α(W ) =

∑

U⊆W µ(U,W )β(U), where α is called
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the Möbius transform of β and µ(U,W ) is the Möbius function for the subspace poset. In
the proposition below, we show that the Möbius function for the subspace poset is defined
as

µ(X, Y ) =

{

(−1)dq(
d

2), ifX ⊆ Y

0, otherwise,

∀X, Y ⊆ V with d = dim(Y ) − dim(X). The following proposition gives the Möbius
inversion formula for the subspace lattice. See [Mathew et al., 2020] for a proof.

Proposition 10. Let α and β be functions from the set of subspaces of V to Fp. Then,
∀ W ⊆ V ,

β(W ) =
∑

U⊆W

α(U) ⇐⇒ α(W ) =
∑

U⊆W
d=dim(W )−dim(U)

(−1)dq
d(d−1)

2 β(U).

Definition 11. Given two subspaces U and W of the vector space V , we define their
union space U ∪W as the span of union of sets of vectors in U and W .

The proposition below follows from the definitions of α and β. See [Mathew et al., 2020]
for a proof.

Proposition 12. Let α and β be functions as defined in Proposition 10. Then, ∀ W,Y
such that W ⊆ Y ⊆ V ,

∑

T : W⊆T⊆Y
d=dim(Y )−dim(T )

(−1)dq
d(d−1)

2 β(T ) =
∑

U : U∪W=Y

α(U).

Corollary 13. For any non-negative integer g, the following are equivalent for functions
α and β defined in Proposition 10:

(i) α(U) = 0, ∀U ⊆ V with dim(U) > g.

(ii)
∑

W⊆T⊆Y
d=dim(Y )−dim(T )

(−1)dq
d(d−1)

2 β(T ) = 0, ∀W,Y ⊆ V with dim(Y )− dim(W ) > g.

Definition 14. Let H = {h1, h2, . . . , ht} be a subset of {0, 1, . . . , n} where h1 < h2 <
· · · < ht. We say H has a gap of size > g if either h1 > g − 1, n − ht > g − 1, or
hi+1 − hi > g for some i ∈ [t− 1].

Lemma 15. Let α and β be functions as in Proposition 10. Let H ⊆ {0, 1, . . . , n} be a
set of integers and g an integer, 0 6 g 6 n. Suppose we have the following conditions:

(i) ∀U ⊆ V , we have α(U) = 0 whenever dim(U) > g.

(ii) ∀T ⊆ V , we have β(T ) = 0 whenever dim(T ) /∈ H.
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(iii) H has a gap > g + 1.

Then, α = β = 0.

Proof. Let H = {h1, h2, . . . , h|H|}. Suppose, for some i ∈ [|H|], hi − hi−1 > g or h1 > g,
then we have hi ∈ H and hi − j /∈ H for 1 6 j 6 g and hi − g > 0. Choose any two
subspaces, say U and W , of V of dimensions hi and hi−g, respectively. Since dim(U) > g,
α(U) = 0. We know from Corollary 13 that

∑

W⊆T⊆U
d=dim(U)−dim(T )

(−1)dq
d(d−1)

2 β(T ) = 0

But whenever dim(T ) < hi, it lies between hi − g and hi − 1, and hence β(T ) = 0. Then,

∑

W⊆T⊆U
d=dim(U)−dim(T )

(−1)dq
d(d−1)

2 β(T ) = β(U) = 0

Since our choice of U was arbitrary, we may conclude that β(U) = 0, for all U ⊆ V with
dim(U) = hi. Thus, we can remove hi from the set H, and then use the same procedure
to further reduce the size of H till it is an empty set. If H is empty, β(U) = 0, for all
U ⊆ V , giving α(U) = β(U) = 0 as required.

Now suppose n − h|H| > g. In this case, we take U of dimension h|H| and W of
dimension h|H| + g to show that β(U) = 0, and remove h|H| from H. Note that removing
a number from the set H can never reduce the gap.

2.3 Defining functions fx,y and gx,y

Consider all the subspaces of the vector space V . We can impose an ordering on the
subspaces of same dimension, and use the natural ordering across dimensions, so that
every subspace can be uniquely represented by a pair of integers 〈d, e〉, indicating that

it is the eth subspace of dimension d, 0 6 d 6 n, 1 6 e 6

[

n
d

]

q

. Let us call that

subspace Vd,e. Let S be the number of subspaces of V of dimension at most s, that is,

S =
∑s

t=0

[

n
t

]

q

. Let each subspace Vd,e of dimension at most s be represented as a 0-1

containment vector vd,e of S entries, each entry of the vector denoting whether a particular
subspace of dimension 6 s is contained in Vd,e or not.

vx,yd,e =

{

1, if Vx,y is a subspace of Vd,e

0, otherwise

The vector vd,e consists of vx,yd,e values for 0 6 x 6 s, 1 6 y 6
[

n
x

]

q

, making it a vector of

size S. Thus, vx,yd,e is simply the indicator function of whether Vx,y is a subspace of Vd,e.
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For 0 6 x 6 s, 1 6 y 6

[

n
x

]

q

we define functions fx,y : FS
2 → Fp as

fx,y(v) = fx,y(v0,1, v1,1, . . . , v
1,

[

n
1

]

q , . . . , vs,1, . . . , v
s,

[

n
s

]

q ) := vx,y.

For 0 6 x 6 s− r, 1 6 y 6

[

n
x

]

q

, we define functions gx,y : FS
2 → Fp as

gx,y(v) = fx,y(v)
∏

t∈[r]











[

n
1

]

q
∑

j=1

v1,j −

[

kt
1

]

q











Let Ω denote F
S
2 . The functions fx,y and gx,y reside in the space F

Ω
p . Note that the

functions gx,y do not exist if s < r.

2.4 Swallowing trick: linear independence of functions fx,y and gx,y

Lemma 16. Let s + kr 6 n and r(s − r + 1) 6 b − 1. The functions gx,y, 0 6 x 6

s− r, 1 6 y 6

[

n
x

]

q

, are linearly independent in the function space F
Ω
p over Fp.

Proof. If s < r, then the statement of the lemma is vacuously true. Assume s > r.
We wish to show that the only solution to

∑

06x6s−r

16y6

[

n
x

]

q

αx,ygx,y = 0 is the trivial solution

αx,y = 0, ∀x, y. We define function α from the set of all subspaces of V to Fp as:

α(Vd,e) =

{

αd,e, if 0 6 d 6 s− r

0, if d > s− r

We show that functions α and β(U) :=
∑

T⊆U

α(T ) satisfy the conditions of Lemma 15,

thereby implying α(U) = 0, for all U ⊆ V , including α(Vd,e) = αd,e = 0 for 0 6 d 6 s− r,
which will in turn imply that the functions gx,y above are linearly independent.

Let H = {x : 0 6 x 6 n, x ≡ kt (mod b), t ∈ [r]}. We claim that H has a gap of
size at least s − r + 2. Suppose n > b + k1. Then, k1 < k2 < · · · < kr < b + k1 6 n.
Since it is given that r(s − r + 1) 6 b − 1, by pigeonhole principle, there is a gap of at
least s− r + 2 between some ki and ki+1, i ∈ [r − 1], or between kr and b+ k1. Suppose
s + kr 6 n < b + k1. Then, there is a gap of at least s + 1 right above kr. This proves
the claim. We now need to show that for T ⊆ V , β(T ) = 0 whenever dim(T ) /∈ H, or
whenever dim(T ) 6≡ kt (mod b), for any t ∈ [r]. Suppose vT is the S-sized containment
vector for T . When dim(T ) 6≡ kt (mod b) for any t ∈ [r], it follows from the property of
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the prime p given by Theorem 9 that
∑

16j6
[

n
1

]

q

v1,jT −

[

kt
1

]

q

6= 0 in Fp, for every t ∈ [r].

β(T ) =
∑

U⊆T

α(U) =
∑

dim(U)6s−r
U⊆T

α(U) =
∑

06d6s−r

16e6
[

n
d

]

q

α(V d,e)fd,e(vT )

Since
∑

16j6
[

n
1

]

q

v1,jT −

[

kt
1

]

q

6= 0 in Fp for every t ∈ [r], fd,e(vT ) = c(T )gd,e(vT ) where c(T ) 6= 0.

Then,

β(T ) = c(T )
∑

06d6s−r

16e6
[

n
d

]

q

α(V d,e)gd,e(vT ) = c(T )
∑

06d6s−r

16e6
[

n
d

]

q

αd,egd,e(vT ) = c(T ) · 0 = 0.

Since the set H and the functions α and β satsify the conditions of Lemma 15, we have
α = 0. This proves the lemma.

Recall that we are given a family F = {V1, V2, . . . , Vm} of subspaces of V such that for
every i ∈ [m], dim(Vi) mod b = kt, for some kt ∈ K. Further, dim(Vi ∩ Vj) mod b = µt,
for some µt ∈ L and K and L are disjoint subsets of {0, 1, . . . , b − 1}. Let vi be the
containment vector of size S corresponding to subspace Vi ∈ F . We define the following
functions from F

S
2 → Fp.

gi(v) = gi(v0,1, v1,1, . . . , v
1,

[

n
1

]

q , . . . , vs,1, . . . , v
s,

[

n
s

]

q )

:=
s
∏

j=1











∑

16y6

[

n
1

]

q

(

v1,yi v1,y
)

−

[

µj

1

]

q











Let v = vj. Then,
∑

16y6

[

n
1

]

q

(v1,yi v1,y) counts the number of 1-dimensional subspaces

common to Vi and Vj. That is,
∑

16y6

[

n
1

]

q

v1,yi v1,y =
[

dim(Vi ∩ Vj)
1

]

q

. In Fp,
[

dim(Vi ∩ Vj)
1

]

q

6=
[

µt

1

]

q

for any 1 6 t 6 s, if i = j, and
[

dim(Vi ∩ Vj)
1

]

q

=
[

µt

1

]

q

for some 1 6 t 6 s if i 6= j.

Accordingly, gi(vj) =

{

0, i 6= j

6= 0, i = j.

Lemma 17 (Swallowing trick 1). Let s+ kr 6 n and r(s− r+1) 6 b− 1. The collection

of functions gi, 1 6 i 6 m together with the functions gx,y, 0 6 x 6 s− r, 1 6 y 6

[

n
x

]

q

are linearly independent in F
Ω
p over Fp.
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Proof. Let
∑

16i6m

αigi +
∑

06x6s−r

16y6

[

n
x

]

q

αx,ygx,y = 0 (1)

We know that gi(vj) = 0 whenever i 6= j, and gx,y(vi) = 0, 1 6 i 6 m. The latter holds
because dim(Vi) ≡ kt (mod b), say equal to bl + kt, for some t ∈ [r]. Consequently, it

follows that the number of 1-dimensional subspaces in Vi is

[

bl + kt
1

]

q

which is equal to

[

kt
1

]

q

in Fp. Suppose we evaluate L.H.S. of Equation (1) on v1, then all terms except the

first one vanish. This gives us α1 = 0, and reduces the relation by one term from left.
Next, we put v = v2 to get α

2 = 0, and so on. Finally, all αi terms are zero, and we are left
only with functions gx,y. These αx,y values are zero from Lemma 16. Therefore, we have

shown that (1) implies that αi = 0, 1 6 i 6 m and αx,y = 0, 0 6 x 6 s− r, 1 6 y 6

[

n
x

]

q

,

and hence the given functions are linearly independent.

2.5 Proof of Theorem 3: in the case when s+ kr 6 nandr(s− r + 1) 6 b− 1

Lemma 18. The collection of functions fx,y, 0 6 x 6 s, 1 6 y 6
[

n
x

]

q

, spans all the

functions gx,y, 0 6 x 6 s− r, 1 6 y 6
[

n
x

]

q

as well as the functions gi, 1 6 i 6 m.

Proof. Let v ∈ F
S
2 . The key observation here is that the product fx,y(v)f 1,z(v), 0 6 x 6

s − 1, 1 6 y 6

[

n
x

]

q

, 1 6 z 6

[

n
1

]

q

may be replaced by the function fx′,w(v), where

x 6 x′ 6 x + 1, 1 6 w 6

[

n
x′

]

q

. If V1,z ⊆ Vx,y, it is trivial that fx,y(v)f 1,z(v) = fx,y(v),

since fx,y(v) = 1 only if f 1,z(v) = 1. If V1,z 6⊆ Vx,y, we let Vx′,w be the span of union of
vectors of V1,z and Vx,y. Suppose, a vector space U contains both V1,z and Vx,y. Then, it is
clear that it must contain the span of their union as well. Similarly, a vector space U that
does not contain either V1,z or Vx,y, cannot contain Vx′,w. Thus, f

x,y(v)f 1,z(v) = fx′,w(v).
To see why x′ = x + 1 (in case V1,z 6⊆ Vx,y), the space Vx′,w may be obtained by taking
any (non-zero) vector of V1,z and introducing it into the basis of Vx,y. The space spanned
by this extended basis is exactly Vx′,w by definition, and the size of basis has increased by
exactly 1.

By induction, it follows that,

f 1,y1(v)f 1,y2(v) · · · f 1,yl(v) = fx,y(v)

for some x, y where, 1 6 x 6 l, 1 6 y 6

[

n
x

]

q

. That is, a product of l functions of the

form f 1,y may be replaced by a single function fx,y where x is at most l.
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Now consider functions

gi(v) = gi(v0,1, v1,1, · · · , v
1,

[

n
1

]

q , · · · , vs,1, · · · , v
s,

[

n
s

]

q )

=
s
∏

j=1











∑

16y6

[

n
1

]

q

(

v1,yi v1,y
)

−

[

µj

1

]

q











=
s
∏

j=1











∑

16y6

[

n
1

]

q

(

v1,yi f 1,y(v)
)

−

[

µj

1

]

q











Since the functions fx,y only take 0/1 values, we can reduce any exponent of 2 or
more on the function after expanding the product to 1. Moreover, the terms will all be
products of the form f 1,y1f 1,y2 · · · f 1,yl(v), 1 6 l 6 s. These are replaced according to the
observation above by single function of the form fx,y(v), and thus the set of functions

fx,y, 0 6 x 6 s, 1 6 y 6

[

n
x

]

q

span all functions gi(v). Note that f 0,1(v) is the constant

function 1.

Similarly, for 0 6 x 6 s− r, 1 6 y 6

[

n
x

]

q

,

gx,y(v) = fx,y(v)
∏

t∈[r]











[

n
1

]

q
∑

j=1

v1,j −

[

kt
1

]

q











= fx,y(v)
∏

t∈[r]











[

n
1

]

q
∑

j=1

f 1,j(v)−

[

kt
1

]

q











= fx,y(v)











r
∑

x′=0

[

n
x′

]

q
∑

y′=1

cx′,y′f
x′,y′(v)











(cx′,y′ are constants)

=
s

∑

x′=0

[

n
x′

]

q
∑

y′=1

cx′,y′f
x′,y′(v) (cx′,y′ are constants)

Thus, the set of function fx,y, 0 6 x 6 s, 1 6 y 6

[

n
x

]

q

span all functions gx,y(v), 0 6 x 6
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s− r, 1 6 y 6

[

n
x

]

q

.

This means that the above functions gx,y and gi belong to the span of functions fx,y

which is a function space of dimension at most S. From Lemma 17, we know that gx,y

and gi are together linearly independent. Thus,

s−r
∑

j=0

[

n
j

]

q

+m 6 S =
s

∑

j=0

[

n
j

]

q

.

⇒ |F| = m 6

[

n
s

]

q

+

[

n
s− 1

]

q

+ · · ·+

[

n
s− r + 1

]

q

.

2.6 Proof of Theorem 3

Let X ⊆ {0, . . . , s − r} be the set of those integers that are not congruent to any k ∈
K. The, in the following lemma, we show that the family gx,y with x ∈ X is linearly
independent.

Lemma 19. The collection of functions

{gx,y | 0 6 x 6 s− r, 1 6 y 6

[

n
x

]

q

, andforallt ∈ [r], x 6≡ kt (mod b)}

are linearly independent in the function space F
Ω
p over Fp.

Proof. Recall that

gx,y(v) = fx,y(v)
∏

t∈[r]











[

n
1

]

q
∑

j=1

v1,j −

[

kt
1

]

q











.

The statement of the lemma is vacuously true, if s < r. Assume s > r. Assume, for
the sake of contradiction,

∑

06x6s−r
x 6≡kt (mod p),∀t∈[r]

αx,ygx,y = 0 with at least one αx,y as non-zero.

Let 〈x0, y0〉 be the first subspace, based on the ordering of subspaces defined in Section
2.3, such that αx0,y0 is non-zero. Evaluating both sides on vx0,y0 , we see that all f

x,y (and
therefore gx,y) with 〈x, y〉 higher in the ordering than 〈x0, y0〉 will vanish (due to the virtue
of our ordering), and so we get αx0,y0 = 0 which is a contradiction. Here we have crucially
used the fact that by ignoring x ≡ kt (mod p) cases, for any t ∈ [r], we make sure that
vx0,y0 used above always has x0 6≡ kt (mod b) and therefore











[

n
1

]

q
∑

j=1

v1,jx0,y0
−

[

kt
1

]

q











6≡ 0 (mod p), ∀t ∈ [r].
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Lemma 20 (Swallowing trick 2). The collection of functions gi, 1 6 i 6 m together with

the functions gx,y, 0 6 x 6 s− r, x 6≡ kt (mod b), for all t ∈ [r], 1 6 y 6

[

n
x

]

q

are linearly

independent in F
Ω
p over Fp.

Proof. Proof is similar to the proof of Lemma 17.

Since s < b, for any 0 6 x 6 s− r and for any t ∈ [r], x 6≡ kt (mod b) is equivalent to
x 6= kt. Combining Lemmas 19, 20 and 18, we have

∑

06j6s−r,
j 6=kt,t∈[r]

[

n
j

]

q

+m 6

s
∑

j=0

[

n
j

]

q

.

This implies,

|F| = m 6















N(n, s, r, q), if s < k1 + r

N(n, s, r, q) +
∑

t∈[r]

[

n

kt

]

q

, otherwise.

We thus have the following theorem which combined with the result in Section 2.5 yields
Theorem 3.

Theorem 21. Let V be a vector space of dimension n over a finite field of size q. Let K =
{k1, . . . , kr}, L = {µ1, . . . , µs} be two disjoint subsets of {0, 1, . . . , b−1} with k1 < · · · < kr.
Let F = {V1, V2, . . . , Vm} be a family of subspaces of V such that for all i ∈ [m], dim(Vi)
≡ kt (mod b), for some kt ∈ K; for every distinct i, j ∈ [m], dim(Vi ∩ Vj) ≡ µt (mod b),
for some µt ∈ L. Moreover, it is given that neither of the following two conditions hold:

(i) q + 1 is a power of 2, and b = 2

(ii) q = 2, b = 6

Then,

|F| 6







N(n, s, r, q), if (s < k1 + r)

N(n, s, r, q) +
∑

t∈[r]

[

n

kt

]

q

, otherwise.

3 Fractional L-intersecting families of subspaces

Let L = {a1
b1
, . . . , as

bs
} be a collection of positive irreducible fractions, each strictly less than

1. Let V be a vector space of dimension n over a finite field of size q. Let F be a family
of subspaces of V . Recall that, we call F a fractional L-intersecting family of subspaces
if for all distinct A,B ∈ F , dim(A ∩ B) ∈ {ai

bi
dim(A), ai

bi
dim(B)}, for some ai

bi
∈ L. In

Section 3.1, we prove a general upper bound for the size of a fractional L-intersecting
family using Theorem 3 proved in Section 2. In Section 3.2, we improve this upper bound
for the special case when L = {a

b
} is a singleton set with b being a prime number.
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3.1 A general upper bound

The key idea we use here is to split the fractional L intersecting family F into subfamilies
and then use Theorem 3 to bound each of them.

Lemma 22. Let L = {a1
b1
, a2
b2
, . . . , as

bs
}, where every ai

bi
is a irreducible fraction in the open

interval (0, 1). Let F = {V1, . . . , Vm} be a fractional L-intersecting family of subspaces
of a vector space V of dimension n over a finite field of size q. Let k > 0 and p >
max(b1, b2, . . . , bs). Let Fp

k denote subspaces in F whose dimensions leave a remainder k
(mod p), where p is a prime number. That is, Fp

k := {W ∈ F | dim(W ) ≡ k (mod p)}.
Then,

|Fp
k | 6























[

n

s

]

q

, if (2p 6 n+ 2) or (s < k + 1)

[

n

s

]

q

+

[

n

k

]

q

, otherwise.

Proof. Apply Theorem 3 with family F replaced by Fp
k , K = {k}, r = 1, b replaced by

p, and each µi replaced by (ai
bi
k) mod p = (b−1

i aik) mod p, where b−1
i is the multiplicative

inverse of bi in Fp. Let s′ (6 s) be the number of distinct µi’s. Notice that k > 0, and
p > bi > ai ensure that k 6≡ ai

bi
k (mod p) or k 6= µi. Thus Fp

k is a family of subspaces
of V such that (a) for every W ∈ Fp

k , dim(W ) mod p = k, and (b) for every distinct
U,W ∈ Fp

k , dim(U ∩W ) mod p ∈ L, where L = {µ1, . . . , µs′} and k /∈ L. Moreover, since
s′ 6 p − 1 and k 6 p − 1, we have s′ + k 6 n if 2p 6 n + 2. Since p > bi and every
bi > 2, we have p > 2. This avoids bad case (i) of Theorem 3. That p is a prime avoids
bad case (ii) of Theorem 3. Thus, we satisfy the premise of Theorem 3 and the conclusion
follows.

Suppose 2p 6 n + 2. The above lemma immediately gives us a bound of |F| 6

|Fp
0 |+ (p− 1)

[

n
s

]

q

. But it could be that most subspaces belong to Fp
0 . To overcome this

problem, we instead choose a set of primes P such that no subspace can belong to Fp
0

for every p ∈ P . A natural choice is to take just enough primes in increasing order so
that the product of these primes exceeds n, because then any subspace with dimension
divisible by all primes in P will have a dimension greater than n, which is not possible.

Lemma 23. Let L = {a1
b1
, a2
b2
, . . . , as

bs
}, where every ai

bi
is an irreducible fraction in the open

interval (0, 1). Let F = {V1, . . . , Vm} be a fractional L-intersecting family of subspaces of
a vector space V of dimension n over a finite field of size q. Let t := max(b1, b2, . . . , bs)

and g(t, n) := 2(2t+lnn)
ln(2t+lnn)

. Suppose 2g(t, n) ln(g(t, n)) 6 n+ 2. Then,

|F| 6 2g2(t, n) ln(g(t, n))

[

n
s

]

q
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Proof. For some β to be chosen later, choose P to be the set {pα+1, pα+2, . . . , pβ} where
pl denotes the l

th prime number and pα 6 t < pα+1 < pα+2 < · · · < pβ. Let l# denote the
product of all primes less than or equal to l. Thus, pl# which is known as the primorial
function, is the product of the first l primes. It is known that pl# = e(1+o(1))l ln l and
l# = e(1+o(1))l. We require the following condition for the set P :

pβ#

t#
> n

Using the bounds for pl# and l# discussed above, we find that it is sufficient to choose
β >

2(2t+lnn)
ln(2t+lnn)

:= g(t, n). Let β = g(t, n). From the Prime Number Theorem, it follows

that pβ (and so pα+1, pα+2, . . . , pβ−1 as well) is at most 2g(t, n) ln(g(t, n)). We are given
that 2p 6 2pβ 6 n+ 2, for every p ∈ P . We apply Lemma 22 with p = pα+1 to get

|F| 6 |F
pα+1

0 |+ (pα+1 − 1)

[

n
s

]

q

Next, apply Lemma 22 on F
pα+1

0 with p = pα+2 and so on. As argued above, no
subspace is left uncovered after we reach pβ. This means,

|F| 6 (pα+1 + pα+2 + · · ·+ pβ − (β − α))

[

n
s

]

q

< (β − α)pβ

[

n
s

]

q

< βpβ

[

n
s

]

q

6 2g2(t, n) ln(g(t, n))

[

n
s

]

q

Lemma 24. Let L = {a1
b1
, a2
b2
, . . . , as

bs
}, where every ai

bi
is an irreducible fraction in the open

interval (0, 1). Let F = {V1, . . . , Vm} be a fractional L-intersecting family of subspaces of
a vector space V of dimension n over a finite field of size q. Let t := max(b1, b2, . . . , bs)

and g(t, n) := 2(2t+lnn)
ln(2t+lnn)

. Then,

|F| 6 2g2(t, n) ln(g(t, n))

[

n
s

]

q

+ g(t, n)
s−1
∑

i=1

[

n
i

]

q

Proof. Let P = {pα+1, pα+2, . . . , pβ}, where β = g(t, n) and pβ 6 2g(t, n) ln(g(t, n)). The
proof is similar to the proof of Lemma 23. We apply Lemma 22 with p = pα+1 to show
that

|F| 6 |F
pα+1

0 |+ (pα+1 − 1)

[

n
s

]

q

+
s−1
∑

i=1

[

n
i

]

q
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Next, we apply Lemma 22 on F
pα+1

0 with p = pα+2 and so on as shown in the proof of
Lemma 23 to get the desired bound.

|F| 6 (pα+1 + pα+2 + · · ·+ pβ − (β − α))

[

n
s

]

q

+ (β − α)
s−1
∑

i=1

[

n
i

]

q

< (β − α)
(

pβ

[

n
s

]

q

+
s−1
∑

i=1

[

n
i

]

q

)

< β
(

pβ

[

n
s

]

q

+
s−1
∑

i=1

[

n
i

]

q

)

6 2g2(t, n) ln(g(t, n))

[

n
s

]

q

+ g(t, n)
s−1
∑

i=1

[

n
s

]

q

Since pα+1 > t, we have pα+1pα+2 · · · pβ > tβ−α. This implies that, if tβ−α > n, then
the product of the primes in P will be greater than n as desired. Substituting β−α with
lnn
ln t

(and pβ with 2g(t, n) ln(g(t, n))) in the second inequality above, we get another upper

bound of |F| 6 2g(t, n) ln(n) ln(g(t,n))
ln t

[

n
s

]

q

+ lnn
ln t

s−1
∑

i=1

[

n
i

]

q

. We can do a similar substitution

for β − α in the calculations done at the end of the proof of Lemma 23 to get a similar
bound.

Combining all the results in this section, we get Theorem 5

3.2 An improved bound for singleton L

In this section, we improve the upper bound for the size of a fractional L-intersecting
family obtained in Theorem 5 for the special case L = {a

b
}, where b is a constant prime.

Before we give the proof, below we restate the the statement of Theorem 7.

Statement of Theorem 7: Let L = {a
b
}, where a

b
is a positive irreducible fraction

less than 1 and b is a prime. Let F be a fractional L-intersecting family of subspaces
of a vector space V of dimension n over a finite field of size q. Then, we have |F| 6

(b− 1)(

[

n
1

]

q

+ 1)⌈ lnn
ln b

⌉+ 2.

Proof. We assume that all the subspaces in the family except possibly one subspace,
say W , have a dimension divisible by b. Otherwise, F cannot satisfy the property of a
fractional a

b
-intersecting family. Let us ignore W in the discussion to follow. For any

subspace Vi that is not the zero subspace, let k be the largest power of b that divides
dim(Vi). Then, dim(Vi) = rbk+1 + jbk, for some 1 6 j < b, r > 0. Consider the subfamily,

F j,k = {Vi : bk|dim(Vi), b
k+1 6 |dim(Vi), dim(Vi) = rbk+1+jbk for some r > 0, j ∈ [b−1]}

The subfamily F j,k, 1 6 k 6 ⌈ lnn
ln b

⌉, 1 6 j < b, cover each and every subspace (except the

zero subspace and the subspaceW ) of F exactly once. We will show that |F j,k| 6

[

n
1

]

q

+1,
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which when multiplied with the number of values j and k can take will immediately imply
the theorem.

Let mj,k = |F j,k|. Let M j,k be an mj,k ×

[

n
1

]

q

0-1 matrix whose rows correspond to

the subspaces of F j,k in any given order, whose columns correspond to the 1-dimensional
subspaces of V in any given order, and the (i-l)th entry is 1 if and only if the ith subspace
of F j,k contains the lth 1-dimensional subspace. Let N j,k = M j,k · (M j,k)T . Any diagonal
entry N j,k

i,i is the number of 1-dimensional subspaces in the ith subspace in F j,k, and an

off-diagonal entry N j,k
i,l is number of 1-dimensional subspaces common to the ith and lth

subspaces of F j,k. In the rest of the proof, to reduce notational clutter, we shall use

G(x, y, z) to denote the Gaussian binomial coefficient

[

x
y

]

z

. We have

N j,k
i,i = G(r1b

k+1 + jbk, 1, q) = G(bk−1, 1, q)G(r1b
2 + jb, 1, qb

k−1

),

N j,k
i,l = G(r2ab

k + jabk−1, 1, q) = G(bk−1, 1, q)G(r2ab+ ja, 1, qb
k−1

),

for some r1, r2 (may be different for different values of i, l). Let P j,k be the matrix over
R obtained by dividing each entry of N j,k by G(bk−1, 1, q).

det(N j,k) = G(bk−1, 1, q)m
j,k

det(P j,k)

We will show that det(P j,k) is non-zero, thereby implying det(N j,k) is also non-zero.
Consider det(P j,k) (mod G(b, 1, qb

k−1
)).

P j,k
i,i ≡ G(r1b

2 + jb, 1, qb
k−1

) (mod G(b, 1, qb
k−1

)) ≡ 0 (mod G(b, 1, qb
k−1

)),

P j,k
i,l ≡ G(r2ab+ ja, 1, qb

k−1

) (mod G(b, 1, qb
k−1

)) ≡ G(r3, 1, q
bk−1

) (mod G(b, 1, qb
k−1

)),

where r3 = ja mod b and 1 6 r3 6 b − 1 (since j < b, a < b, and b is a prime, we have
1 6 r3 6 b− 1). We know that the determinant of an r× r matrix where diagonal entries
are 0 and off-diagonal entries are all 1 is (−1)r−1(r − 1).

det(P j,k) ≡ (G(r3, 1, q
bk−1

))m
j,k

(−1)m
j,k−1(mj,k − 1) (mod G(b, 1, qb

k−1

))

Let Qj,k be the matrix formed by taking all but the last row and the last column of P j,k.

det(Qj,k) ≡ (G(r3, 1, q
bk−1

))m
j,k−1(−1)m

j,k−2(mj,k − 2) (mod G(b, 1, qb
k−1

))

We will now show that one of det(P j,k) or det(Qj,k) is non-zero (mod G(b, 1, qb
k−1

))
and therefore non-zero in R. First, we show that G(r3, 1, q

bk−1
)m

j,k

is not divisible by
G(b, 1, qb

k−1
). Suppose s3 ≡ r−1

3 (mod b).

G(r3, 1, q
bk−1

)m
j,k

G(s3, 1, q
r3b

k−1

)m
j,k

= G(r3s3, 1, q
bk−1

)m
j,k

G(r3s3, 1, q
bk−1

)m
j,k

≡ G(1, 1, qb
k−1

)m
j,k

(mod G(b, 1, qb
k−1

)) ≡ 1 (mod G(b, 1, qb
k−1

))
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Therefore, G(r3, 1, q
bk−1

)m
j,k

is invertible modulo G(b, 1, qb
k−1

), and hence the former is
not divisible by the latter. Suppose G(r3, 1, q

bk−1
)m

j,k

(−1)m
j,k−1(mj,k − 1) is divisible by

G(b, 1, qb
k−1

). We may ignore (−1)m
j,k−1 for divisibility purpose. Then, there must be

a product of prime powers that is equal to (mj,k − 1) multiplied by G(r3, 1, q
bk−1

)m
j,k

such that this product is divisible by G(b, 1, qb
k−1

). Observe that, G(r3, 1, q
bk−1

)m
j,k−1

has only lesser powers of the same primes, and mj,k − 1 and mj,k − 2 cannot have any
prime in common. So, the product G(r3, 1, q

bk−1
)m

j,k−1(mj,k − 2) cannot be divisible by
G(b, 1, qb

k−1
), which is what we wanted to prove.

Therefore, either P j,k or Qj,k is a full rank matrix, or rank(P j,k) > mj,k − 1. Being
a non-zero multiple of P j,k, rank(N j,k) > mj,k − 1. But we know that rank(AB) 6

min(rank(A), rank(B)), for any two matrices A,B.

mj,k − 1 6 rank(N j,k) 6 min(rank(M j,k), rank((M j,k)T ))

= rank(M j,k)

6 G(n, 1, q)

Or, mj,k 6 G(n, 1, q) + 1, as required. It follows that,

|F| = m 6 2 +
∑

16k6⌈ lnn
ln b

⌉
16j<b

mj,k
6 (b− 1)(G(n, 1, q) + 1)

⌈

lnn

ln b

⌉

+ 2.

4 Concluding remarks

In Theorem 3, for |F| to be at most N(n, s, r, q), one of the necessary conditions is
r(s− r + 1) 6 b− 1. When r = 1, this condition is always true as L ⊆ {0, 1, . . . , b− 1}.
However, when r > 2, it is not the case. Would it be possible to get the same upper bound
for |F| without having to satisfy such a strong necessary condition? Another interesting
question concerning Theorem 3 is regarding its tightness. From Example 2, we know that
Theorem 3 is tight when r = 1. However, since Theorem 3 requires the sets K and L to
be disjoint it is not possible to extend the construction in Example 2 to obtain a tight
example for the case r > 2. Further, we know of no other tight example for this case.
Therefore, we are not clear whether Theorem 3 is tight when r > 2.

We believe that the upper bounds given by Theorems 5 and 7 are not tight. Proving
tight upper bounds in both the scenarios is a question that is obviously interesting. One
possible approach to try would be to answer the following simpler question. Consider the
case when L = {1

2
}. We call such a family a bisection-closed family of subspaces. Let F

be a bisection closed family of subspaces of a vector space V of dimension n over a finite

field of size q. From Theorem 7, we know that |F| 6 (

[

n
1

]

q

+1) log2 n+2. We believe that

|F| 6 c

[

n
1

]

q

, where c is a constant. Example 8 gives a ‘trivial’ bisection-closed family of
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size

[

n− 1
1

]

q

where every subspace contains the vector v1. It would be interesting to look

for non-trivial examples of large bisection-closed families.
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