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Abstract 

Escalating global food security concerns across several nations has shifted the focus of policy 

makers towards risk adaptive sustainable food grain operations. This paper builds a sustainable 

food grain transportation model for intermodal transportation operations between two Indian 

states, in the presence of hub disruption. A hub and spoke system is used to connect origin and 

destination warehouses through intermodal hubs in a multi-layered network. The problem is 

formulated as a multi-period mixed integer nonlinear single objective optimization problem 

considering minimization of transportation, hub location, rerouting, environmental and social costs 

with near optimal shipment quantities and hub allocations as the prime decisions. The proposed 

MINLP is solved using Particle Swarm Optimization with Differential Evolution (PSODE), a 

superior metaheuristic to deal with NP-hard problems. Convergence graphs and global optimal 

costs are reported for small, medium and large size instances consisting of 1824, 9768 and 28848 

variables respectively, inspired from food grain industry in the southern part of India. Pareto plots 

are generated to capture the complementarity between economical and socio-environmental cost 

categories for all instances. The effect of hub location, hub disruption, cost consolidation and 

vehicle resource availability factors on individual and total costs is studied through sensitivity 

analysis. Results indicate that food grain demand is fulfilled with 14% increase in the mean total 

cost for single hub disruption case and with 40% increase for multiple hub disruption. Finally, 
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managerial implications provide specific factor level recommendations for different strategic 

objectives.  

Keywords: Intermodal transportation; food grain shipment; disruption; particle swarm 

optimization with differential evolution; Sustainability 

1. Introduction 

Increasing food grain procurement patterns, global food security concerns and the unquenched 

demand for staple food steer the need for realizing efficient food grain management from 

procurement to consumption posing numerous challenges to scientists from operations research, 

decision sciences, and systems engineering community. In developing countries, food grain 

wastage is a prime cause of food shortage to targeted population. Approximately, 33% of the edible 

parts of food produced for human intake, gets wasted globally, which amounts to 1.3 billion ton 

per annum (http://www.fao.org/save-food/resources/keyfindings/en/). Food loss levels observed 

in industrialized countries are almost as same as losses observed in developing countries. The 

difference being that in developing countries more than 40 % of the produce is wasted in initial 

stages of the food supply chain where as in industrialized or developed countries approximately 

same amount of wastage is observed at consumer and retailer levels (http://www.fao.org/save-

food/resources/keyfindings/en/). As a result, alleviating rising food security concerns is a 

challenge in present day context, especially with expanding population. This paper delves into 

intermodal transportation intricacies and attempts to model interstate transportation issues under 

disruption for Indian Food Grain Supply Chain (FGSC), the second largest in the world. 

According to Song et al., (2014), transportation planning plays a pivotal role in determining overall 

costs in any supply chain. Especially, for geographically wide spread procurements end-to-end 

delivery of staple food involves transport through multiple modes, heterogeneous resources, and 

http://www.fao.org/save-food/resources/keyfindings/en/
http://www.fao.org/save-food/resources/keyfindings/en/
http://www.fao.org/save-food/resources/keyfindings/en/
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adherence to time restrictions. Significant wastages are observed at intermodal transfer points, 

manual loading/unloading points and different intermediate stages of the supply chain (CAG 

Report) due to poor infrastructure and inefficient resource planning. Rail freight transport, in India, 

serves majority of the sectors with total freight shipment of over 1.107 billion tons and 

approximately 50 million tons of food grains (Indian Railways annual report, 2011-2012). Food 

Corporation of India (FCI) is a nodal government organization dedicated to manage food supply 

chain operations across the country. Food grain losses are mainly attributed to improper planning, 

infrastructure malfunctioning, and inefficient resource utilization. Further, unexpected disruption 

of an intermodal hub or warehouse facility would severely hamper the customer service level, food 

security and the economy. The aftermath of floods at West Bengal, India, 2016 and earthquake at 

Nepal, 2015 witnessed irreparable losses to food grain storage facilities depriving local population 

of the basic amenity. In such cases, enabling adaptive capacity and diverting the transportation 

operations through alternative hubs is a constructive approach to reduce delays and losses 

(Williams et al., 2017).  Food grains are staple food to India and neighboring countries, and thus, 

by streamlining the food grain transportation in the presence of disruption with simultaneous focus 

to carbon emission reduction and internalization of social cost, this paper strongly relates to 

economic, environmental and social aspects of sustainable logistics.  

This work exploits the four stage categorization of Indian food grain shipment framework 

conceptualized by Maiyar et al. (2015). The first stage involves intra-state food grain allocation 

within surplus or deficit state.  At the end of this stage, food grain surplus states retain the excess 

stock to satisfy the demand of food grain deficit states in the second stage. The second stage 

involves interstate transfer of food grains in between central level storage facilities using multiple 

modes of transport. The third and fourth stages constitute intra-state distribution from central level 
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warehouses to block level warehouses and fair price shops. This paper particularly addresses the 

second stage while focusing on sustainable freight transportation in intermodal context. An 

interstate transportation model is built on a hub and spoke framework with the peripheral nodes 

representing the central level FCI warehouses and the hub nodes representing intermodal hubs. 

Connections between non hub nodes (spokes) represent road transport and hub to hub connections 

represent rail mode of transport. The transportation is allowed to be realized in single or multiple 

time periods as per the availability of vehicle resources and intermodal hub capacity. Here, the 

transportation cost function considers consolidation factor for intermodal transfers. The key 

decisions are to determine the spatial and temporal distribution of food grain shipment quantities 

and origin/destination hubs to be located in the presence of hub disruption. The contributions from 

this work are three fold. Firstly, a sustainable nonlinear mathematical model representing the 

Indian FGSC is formulated considering the minimization of transportation, hub location, rerouting, 

environmental, and social costs simultaneously under hub disruption. The proposed model 

accommodates for multiple route conditions and adheres to hub restrictions, emergency hub 

constraints, flow balance equations, and vehicle capacity restrictions. Secondly, a superior hybrid 

meta-heuristic, PSODE is tailored and employed to solve the proposed MINLP. Thirdly, sensitivity 

analysis is carried out to understand the behavior of transportation, hub location, rerouting, 

environmental, social and total shipment costs under the influence of changing cost consolidation 

factor, vehicle resource availability, hub location and hub disruption levels. Pareto analysis is 

conducted to visualize the complementarity between total shipment cost and socio-environmental 

costs. To the best of our knowledge, this effort is a novel contribution to the domain of intermodal 

transportation and hub location problems in FGSC context fostering economic, ecological and 

social sustainability. 
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The remainder of the paper is structured as follows. Section 2 outlines the relevant literature. 

Section 3 describes the problem with illustrative figures. Section 4 presents the proposed 

mathematical model for Indian FGSC with detailed description of objective function and 

constraints. Section 5 discusses the solution methodology and its adaptation to current context. 

Section 6 presents plan of experiments for computational validation and sensitivity analysis. Later 

section 7 explains the results and insights developed through sensitivity analysis. Finally, section 

8 summarizes the paper with conclusion and future work. 

2. Literature review 

Disruption management in the context of intermodal transportation continues to exist as part of 

transportation research and of particular interest to policy makers since the 1990s. Azad et al. 

(2016) propose an optimization-based methodology considering the trade-off between cost of 

mitigation strategy and the expected cost of disruption in a railroad network. In the literature, many 

studies have found focus on intermodal transportation problems (Barnhart and Ratliff, 1993; 

Boardman et al., 1997; Hokey, 1991; Macharis and Bontekoning, 2004; Southworth and Peterson, 

2000). However, these studies highlight the intermodal transportation planning of transportation 

activities without much focus towards sustainability aspects and disruptions. In the presence of 

environmental disruptions, Kamalahmadi and Parast (2017) analyzed different risk mitigation 

strategies to curb the effect of their impact on supply chain wide costs. In the recent past, risk and 

sustainability have been strategically addressed. (Brusset and Teller, 2017). Beermann, (2011) 

emphasized on the importance of resilience thinking in business perspective for changing climate 

adaption.  Williams et al. (2017) described the implementation of adaptive capacity in 

transportation networks during disruptions and highlighted the importance of disruption aware 

design of sustainable supply chains.  
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In the recent last decade, sustainability is often addressed in the triple bottom line (TBL) 

perspective focusing on economic, environmental and social objectives (Ahi and Searcy, 2015). 

Though, empirical research has significantly dealt with sustainability implementation in the TBL 

perspective, analytical models are yet to be well addressed (Brandenburg et al., 2014). 

Nevertheless, combination of economic and environmental objectives are more profound in the 

analytical literature (Hassini et al., 2012). Dey, (2006) has pointed out importance of design for 

failure as a key factor to inculcate sustainability in the ecological dimension. Further, design for 

integration of two or more individual operational objectives has also been considered as 

sustainable practice in the economic dimension. Lejeune, (2006) proposed an integrated inventory-

distribution model to address sustainability in this perspective. Incorporating social sustainability 

is still a challenge both individually and in the TBL perspective. Brandenburg et al., (2014) 

emphasize that the amount of customer and employee satisfaction achieved determines the degree 

of social sustainability in supply chain. Abreu and Camarinha-Matos, (2008) propose a value 

identification system concerning the employees in the collaborative organization context. 

However, customer ended social sustainability is yet to be incorporated into modelling and is open 

domain for research. In this paper, the proposed model gains social importance by internalizing 

the socio-economic impact of non-financial factors (noise pollution, accidents and congestion) 

while designing sustainable freight transportation in the presence of disruption. 

Facility location decisions and network design problems have been rigorously dealt in OR 

literature, both individually and in combination with one another. In a pioneering contribution, 

Minoux (1989) put forth efficient network models and solution methodologies. Balakrishnan et al. 

(2004) provided survivable network design solutions using split connections. An integrated 

approach was proposed by Melkote and Daskin, (2001) to deal with facility location and network 
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design decisions for a transportation problem. Studies have been conducted to optimize location 

of rail or road terminals for freight transport (Arnold et al., 2004) and to develop an integrated 

model for the evaluation of road-rail intermodal freight hub locations (Sirikijpanichkul and 

Ferreira, 2006). Focusing on reliability aspects, Cui et al. (2016) and Li and Ouyang, (2010) 

studied facility location design problems under disruption, while Peng et al. (2011) emphasized on 

reliable logistic network design under facility disruption.  However, studies that capture benefits 

of consolidation in the presence disruption while evaluating shipment quantity and shipment route 

for multiple time periods are limited in literature. This study intends to bridge this gap in the 

domain of food grain transportation.  

Hub and spoke formulations have been studied and implemented in airline, shipping and railway 

sectors to manage traffic congestion, to reap consolidation benefits and to stream line goods 

transfer operations at intermodal points (Bai et al., 2014; Macharis and Bontekoning, 2004). 

Intermodal hub-and-spoke network design problem with multiple stakeholders and multi-type 

containers was dealt by Meng and Wang (2011). In the presence of disruption, Azizi et al. (2016) 

proposed a mathematic model with a hub-and-spoke system for single mode and single time period 

scenario. Parvaresh et al. (2014) modelled a hub and spoke network as a bi-level leader-follower 

based multi-objective problem with p-hub constraints. They captured monetary advantage of flow 

consolidation at hubs by considering discount factor or cost consolidation factor for shipments 

routed through hub to hub links. Sustainable transportation, high fuel efficiency, product safety 

and consistent deliveries are identified as benefits of integrating intermodal transportation with 

hub and spoke system (Bouchery and Fransoo, 2015).  

In the recent past, transportation research in general has marked its appearance into food grain 

domain, especially for rice and wheat. However, the focus of intermodal transportation issues in 
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the presence of disruption for food grain context is limited. A clean review of production and 

distribution operations pertaining to agri-foods is seen in Ahumada and Villalobos, (2009). Asgari 

et al. (2013) proposed a transportation and storage model to facilitate wheat movement in Iran. 

Focusing on silo operations, Mogale et al. (2017) developed a MINLP model adhering to seasonal 

procurement, scientific storage restrictions, varying demand, transportation mode and vehicle 

capacity constraints in Indian context. Hyland et al. (2016) highlighted the importance of shuttle 

train service in domestic grain supply chain considering trucking, elevator storage, and rail 

transportation. A multi-objective optimization model was proposed and solved by Thakur et al. 

(2010) to analyze the tradeoff between grain lot sizes and cost of blending in grain handling 

operations. In the context of risk mitigation, Ge et al. (2016), developed a hybrid optimization-

simulation model to study the Canadian wheat supply chain. A game theory based robust grain 

supply chain design considering post-harvest losses was developed by An and Ouyang, (2016).  

Critical examination of the extant literature (Table 1) reveals that there is a need for a sustainable 

and integrated multi-period model to support intermodal operation to evaluate transportation and 

hub location decisions in the presence of disruptions. The social and environmental dimension 

associated with food grain operations especially in India intensify the need for such a modelling 

approach. In line with the above concern, the underpinning contribution of this paper lies in 

formulating a MINLP model to simultaneously minimize transportation, hub location and 

rerouting, environmental and social costs in the presence of hub disruption for Indian FGSC. The 

environmental cost is calculated by taxing the total carbon emissions released from road and rail 

transport. The social cost captures the social cost of carbon emissions, noise pollution, accidents 

and congestions. The model incorporates emergency hub constraints in addition to several real 

time constraints relevant to multi-period intermodal transportation. A well-known swarm 
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intelligence technique, PSODE is tailored and employed to solve the proposed problem.  

Furthermore, sensitivity analysis is carried out to figure out the effect of cost consolidation factor, 

vehicle resource availability, hub location and hub disruption levels on individual and total costs.  
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Table1. Comparative study of relevant literature with present work 

*L- Linear, NL- Non-linear, ILP- Integer linear problem, MILP- Mixed integer linear problem,  MINLP- mixed integer nonlinear 
problem 

Study TRC HC RC EC SC Emergency 
hub 
constraint 

Noise 
pollution 

p-hubs 
constraint 

Intermodal 
/multimodal 

Vehicle/
hub 
capacity  

Multi 
period 

Model 

Parvaresh et al. 
(2014) 

✓ ✓ ✓   ✓  ✓    MILP* 

Ghaffarinasab and 
Motallebzadeh, 
(2018) 

✓ ✓      ✓    MILP 

Suh and Ryerson, 
(2017) 

  ✓   ✓    ✓  NL* 

Hyland et al. (2016) ✓         ✓  L* 
Azad et al. (2016) ✓  ✓   ✓    ✓  ILP* 
Ishfaq and Sox 
(2011) 

✓ ✓      ✓ ✓   ILP 

Liotta et al. (2015) ✓   ✓     ✓ ✓  MILP 
An and Ouyang 
(2016) 

✓ ✓   ✓     ✓ ✓ MINLP* 

Mogale et al. 
(2017) 

✓ ✓       ✓ ✓ ✓ MINLP 

Asgari et al. (2013) ✓         ✓ ✓ ILP 
Present study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MINLP 
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3. Problem description 

The Indian FGSC is categorized into four stages: (1) Intra-state transportation (2) Inter-state 

transportation (3) Intra-state distribution up to block level and (4) Intra-state distribution from 

block level to fair price shops. As discussed earlier, this paper attempts to particularly address the 

inter-state transportation stage among the four stages. In doing so, the intermodal hub and spoke 

problem developed in this paper, mainly involves two players: Food Corporation of India (FCI) 

and the Indian Railways. FCI is responsible for the portion of transportation occurring through 

road and the Indian Railways is responsible for the hub – hub rail hauls. The intermodal transfer 

points are owned by the FCI and are capped with maximum hub transfer capacity restrictions. In 

our problem, the origin and destination states are divided into finite number of regions and each 

region has finite number of warehouses. The set of potential intermodal hubs is a subset of set of 

warehouses. The food grain shipment is carried out between origin warehouses in the surplus state 

to the destination warehouses in the deficit state through the selected intermodal hubs. A 

diagrammatic illustration of food grain movement in the hub and spoke system is provided in Fig. 

1. 

 

Fig. 1. Network configuration of warehouses and hubs in hub and spoke system  

The unselected potential intermodal hubs act as peripheral nodes (supply or demand nodes) in the 

hub and spoke system. At the origin intermodal hubs, food grains are unloaded from the trucks 

and loaded into trains while at the destination intermodal hubs they are unloaded from trains and 
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loaded into trucks. As mentioned earlier, during the disruption of an origin or destination hub, the 

loss of demand is satisfied by rerouting the food grains through emergency hubs. Fig. 2 gives a 

clear view of the route network of the intermodal operation through emergency hubs.  

While satisfying the demand of food grains for Indian FGSC at minimized total shipment costs the 

paper attempts to address the following questions:  

• What is the optimal combination of origin-destination (o-d) pair of warehouses?  

• How much quantity is to be transported for each o-d pair and through which hub?  

• What is the optimal hub location plan?  

• How will the sudden failure of origin and destination nodes affect the supply network 

costs?   

 

Fig. 2. Intermodal network with emergency hubs  

 

 

4. Mathematical model 
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Generally, intermodal problems with simultaneous hub location decision are closely associated to 

p-hub median allocation problem (Ishfaq and Sox, 2011). Parvaresh et al. (2014)  studied the 

problem in the presence interdictions and referred to it as p-hub median problem with intentional 

disruption (PHMI). The mathematical model developed in the current paper is an extension of 

PHMI formulation. It is important to mention that since the p-hub median problem is a proved NP- 

hard problem (Alumur and Kara, 2008), the extended formulation is also NP hard. Sustainable 

factors can be included in the modelling of transportation and hub location networks across 

different dimensions. In the context of this problem, economic sustainability is incorporated at the 

objective function level in the form of rerouting costs. With respect to the modelling carried out in 

this paper, it is important to highlight the following assumptions: 

• Single food grain commodity is transported 

• Demand is deterministic in nature 

• Vehicles carry Full Truck Load (FTL) transport 

• At least one warehouse is present in each region 

• At least one hub is open in each state 

• Seasonal variations are ignored 

• Emergency hubs are not disrupted 

• The shipment is realized in single time period 

In this formulation, separate indices are defined for regions and warehouses of origin and 

destination states as shown in Table 2.  The problem is defined with the help of eight independent 

finite sets (Table 3). The set of potential hub locations is a strategic decision input and is taken as 

a subset of set of warehouses in the respective origin or destination state. 

Table 2. Table of Indices 
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Index Name 
 o  Origin state 
d  Destination state 
i  Origin FCI warehouse 
j  Destination FCI warehouse 
p  Origin region 
q  Destination region 
k  Origin hub 
m  Destination hub 
e  Emergency hub at origin state 
f  Emergency hub at destination state 

  Road 
  Rail/Rake 
  Route condition 

t  Time period 

Table 3. Table of Sets 

Set Definition 

o
R  Set of regions in origin state o  

d
R  Set of regions in destination state d  

pW  Set of FCI warehouses in origin region p  

o
W  Set of FCI warehouse in origin state, 

1

oR

o p

p

W W
=

=  

qW  Set of FCI warehouses in destination region q  

d
W  Set of FCI warehouses in destination state, 

1

dR

d q

q

W W
=

=  

o
H  Set of potential hub locations in origin state o , 

1

oR

o p

p

H W
=

  

d
H  Set of potential hub locations in destination state d , 

1

dR

d q

q

H W
=

  

Z   Set of route conditions (road/rail) 

T  Set of time periods 

In the literature, benefit of flow consolidation at the intermodal hubs is quantitatively captured 

through cost consolidation factor ( | (0 1)   ). Given that, the unconsolidated unit 

transportation cost through intermodal hubs k ( )
o

k H  and m ( )
d

m H  in time period t ( )t T  
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and route condition  ( )Z  , is 
km tTR  , the actual hub to hub unit transportation cost is calculated 

as, ( )km tTR  , where, 1 −  represents the fractional reduction in the unconsolidated price (
km tTR 

), by virtue of scale economies in consolidation. 

, , , , , ,t

ikmj ik t km t mj tCT RO TR RD i j k m t


   = + +            (1)  

A linear cost function as shown in Eq. (1) is used to calculate intermodal transportation cost for 

single unit of food grain from warehouse i  ( o
i W ) to warehouse j  ( )

d
j W  in time period t  

( )t T  and route condition  ( )Z  . Here, the unit transportation cost, t

ikmj
CT

  is realized as the 

summation of three components. First, the unit cost of transportation by road from warehouse i  (

o
i W ) to origin hub k ( )

o
k H in time period t ( )t T  and route condition  ( )Z  , 

represented by ik tRO  , second,  the unit hub-hub transportation cost ( km tTR  ), and third, the unit 

cost of transportation by road from destination hub m  to warehouse j ( )
d

j W  in time period t

( )t T  and route condition  ( )Z  , represented by mj tRD  .  

The problem consists of the following six types of decision variables and aims to capture the 

shipment quantity, shipment route, hubs located and the hubs disrupted across origin and 

destination states: 

t

ikmjx
  Quantity of food grain flow from origin warehouse i  to destination warehouse j of 

through intermodal hubs k  and m  having route condition   in time period t   , where, 

d
i W , d

j W , o
k H , d

m H , Z  , t T  

t

ikmjy
  = 1, if there is flow from origin warehouse i  to destination warehouse j  through origin 

hub k  and destination hub m in time period t , where, o
i W , d

j W , o
k H , d

m H , 

Z  , t T , 0 otherwise. 
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ktz  = 1, if hub k  is open in time period t , 0 otherwise 

mtw  = 1, if hub m  is open in time period t , 0 otherwise 

kt  = 1, if hub k  is disrupted in time period t , 0 otherwise 

mt  = 1, if hub m  is disrupted in time period t , 0 otherwise 

Minimize TC = TRC+HC+RC+EC+SC       (2) 

TRC   = 
, , , , ,

(1 )(1 ) t t

kt mt ikmj ikmj

t i k m j

CT x
 



 − −         (3)  

The objective function (Eq. (2)) minimizes the total costs (TC) and is calculated, with the decision 

variables defined as above, as the summation of following five major cost components: (1) 

Transportation cost (TRC) (2) Hub location cost (HC), (3) Rerouting cost (RC), (4) Environmental 

cost (EC), and (5) Social cost (SC). The fourth and fifth components in the total cost equation are 

included to capture the purview of environmental and social sustainability simultaneously while 

minimizing total shipment costs. The first term of the objective function, TRC (Eq. (3)), aggregates 

the transportation cost from individual shipments being transported across all the routes passing 

through non-disrupted origin and destination hubs. The multiplication (1 )(1 )kt mt − −  ensures that 

the aggregated cost excludes the cost of transporting disrupted shipments.  

HC = HCo + HCd,           (4) 

HCo = 
,

k kt

k t

F z           (5) 

HCd  = 
,

m mt

m t

F w           (6) 

The second term of the objective function, HC,  is calculated according to Eq. (4), where HCo and 

HCd are the total hub location costs at the origin and destination states respectively and are 
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evaluated as shown in  Eq. (5) and (6), where, kF  and mF , are the fixed costs of opening the hubs 

at k  ( )
o

k H  and m ( )
d

m H  respectively. 

RC = RCo + RCd + RCod         (7) 

RCo   =
, , , , ,

(1 ) t t

kt mt iemj ikmj

t i k m j

C x
 



 −         (8) 

RCd   =
, , , , ,

(1 ) t t

kt mt ikfj ikmj

t i k m j

C x
 



 −         (9) 

RCod =
, , , , ,

t t

kt mt iefj ikmj

t i k m j

C x
 



           (10) 

The third term of the objective function, RC, is estimated based on the occurrence of one of the 

following three cases. First, disruption at only origin hub, second, disruption at only destination 

hub, and third, disruption at both origin and destination hubs. The rerouting cost associated with 

first, second and third cases is obtained from Eq. (8), (9), and (10) respectively, where t

iemjC
 , t

ikfjC


, and t

iefjC
  are the corresponding unit transportation charges for routing the flow through the origin 

emergency hub, e  and, destination emergency hub, f ,as appropriate. Due to the difference in the 

nature of routing, the above three cases are independent and mutually exclusive. Hence, for a 

general case, the rerouting cost, RC is calculated by simple summation of the three costs, as shown 

in Eq. (7). 

(1 ,1 , , ) ( , , , ) (1 ,1 , , ) ( ,1 , , )kt mt kt mt kt mt kt mtE E k m E e f E k m E e m          = − − + + − − + −  

       (1 , , , ) ( , , , )kt mt kt mtE k f E e f    + − +         (11) 

where, ( ) ' '

, ,' ' '

, , ,

( , , , )

t t

ikmj ikmj

m j i k

ik m j
t i k m j

x x

E K L k m KA LA
V V

 

    
  

 
    
    = + +    
       

 
        (12a) 
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and, ( ) ' '

,' ' '

, , ,

( , , , ) ,

t

ikmj

i j

k m
t k m

x

E K L k m KLA
V



   
 

 
 
 = +  
  


     (12b)

     ' '( , ) 0,1 , ,o dK L k H e m H f                

The fourth term in Eq. (2), EC represents the total environmental costs incurred and is estimated 

as EC = C E , where E  is the total emissions (Eq. (11)). C  represents the price of carbon tax 

expressed in rupees per tonne of CO2 released. ' '( , , , )E K L k m (Eq. (12a)) and ' '( , , , )E K L k m

(Eq. (12b)) calculate the total CO2 emissions as a function of binary variables, K  and L , and 

intermodal hub indices, '
k  and '

m , for road and rail transport respectively defined to collectively 

capture disruption scenarios inbetween origin and destination states. K , L , '
k  and '

m  take values 

as shown in Eq. (11) for respective scenarios of disruption as discussed earlier.   and '
  are 

full and empty load CO2 emissions (gCO2) respectively for transport by road in condition 

( )Z  , whereas   and '
  hold similar meanings for rail transport. V  and V  are the 

capacities of a single truck and rake respectively. ikA  , mjA  , and kmA   are geographical distances 

for intermodal linkages as defined in Table 4. 

SC  = ( ) 1 1(1 ,1 , , ) ( , , , )s n c kt mt kt mtC E C C k m e f     + +  − − +  

          2 2 3(1 ,1 , , ) ( , , , ) (1 ,1 , , )a kt mt kt mt e kt mtC k m e f C k m      +  − − + +  − −  

          3 3 3( ,1 , , ) (1 , , , ) ( , , , )kt mt kt mt kt mte m k f e f     + − + − +    (13) 

where,      ' '( , ) 0,1 , ,o dK L k H e m H f          

' '

, ,' '
1

, , , , , ,

( , , , ) 2 2

t t

ikmj ikmj

m j i k

ik m j
t i k t m j

x x

K L k m KA LA
V V

 

 
  

       
        = +       
             

 
     (14) 
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' '

' '
2

, , , , , , , ,

( , , , ) t t

ikmj ikmjik m j
t i k m j t m j i k

K L k m KA x LA x
 

 
 

    
 = +    

    
        (15) 

' '

,' '
3

, , ,

( , , , )

t

ikmj

i j

k m
t k m

x

K L k m KLA
V




 

  
   =   
    


        (16)  

The final term in the objective function (Eq. (2)), SC, captures the total accumulated internalized 

social costs. SC is evaluated using Eq. (13) - (16),  where Eq. (13) aggregates four individual 

components of social cost. While the first component quantizes the social cost of carbon emissions 

as a function of total emissions evaluated using Eq. (12), the second and third components quantify 

the economic impact of noise pollution, congestion, and accidents for road transport using non-

linear estimation functions 1  (Eq. (14)) and 2  (Eq. (15)) which represent total vehicle 

kilometers and ton-kilometers travelled. Similarly, the fourth component of SC measures the total 

social cost of negative externalities from total vehicle-kilometers travelled for rail transport using 

3  (Eq. (16)). The list of parameters required for understanding remainder of the formulation 

carried out in this paper are described in Table 4.   

, , , , , ,t t

ikmj ikmjx My i k m j t
                 (17) 

( )
, , ,

, ,t

ikmj o d d kt

i m j

y Z W H W z k t




          (18) 

( )
, , ,

, ,t

ikmj o o d mt

i k j

y Z W H W w m t




          (19) 

, ,kt ktz k t              (20) 

 

 

 

 



20 
 

Table 4. List of problem parameters 

Parameter Definition 

 jtD  Demand for food grains at warehouse i  region q  in time period t , d
j W

,  t T  

itI  Food grain inventory at warehouse i  of region p  observed in time period 

t , o
i W , t T    

itP  Food grain procurement at warehouse i  of region p  observed in time 

period t , o
i W , t T    

kU  Intermodal handling capacity of hub k , o
k H  

mU  Intermodal handling capacity of hub m , d
m H  

o
n  Number of origin hubs allowed to be disrupted in any time period 

d
n  Number of destination hubs allowed to be disrupted in any time period 

it  Number of trucks available in warehouse i  of region p  in time period t , 

o
i W , t T    

kt  Number of rakes available in origin hub k  in time period t , o
k H , t T    

mt  Number of trucks available in destination hub m  in time period t , d
m H

, t T  

ikA   Geographical distance by road from warehouse i  of region p  to 

intermodal hub k , o
i W  , o

k H  

mjA   Geographical distance by road from intermodal hub m  to warehouse j  of 

region q , d
m H , d

j W  

kmA   Geographical distance by rail from intermodal hub k  to intermodal hub 

m  o
k H , d

m H   

sC  Social cost conversion factor for emissions (Rs/tonne of CO2) 

nC   Social cost conversion factor for noise pollution in road travel 
(Rs/vehicle- km) 

cC   Social cost conversion factor for congestion in road travel (Rs/vehicle-
km) 

aC   Social cost conversion factor for accidents in road travel (Rs/ton-km) 

eC   Combined social cost conversion factor for negative externalities in rail 
travel (Rs/vehicle-km) 

, ,mt mtw m t              (21) 

The problem is subjected to constraints defined in the Eq. (17) - (45). Eq. (17) links the shipment 

quantity allocation and route selection variables through a large number, M in such a way that 

there is positive movement quantity only if there exists a route in that direction. Eq. (18) and (19) 
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ensure that flow is routed through a hub only if it is open for origin and destination states 

respectively. Similarly, Eq. (20) and (21) enforce the restriction that only open origin or destination 

hubs are allowed to disrupt. 

, , , , , ,
1

t

ikmjt

ikmj t

ikmj

x
y i k m j t

x




 
 

=       
+  

       (22) 

1, , , , ,t

ikmj

Z

y i k m j t




               (23) 

,kt

k

z a t=              (24) 

,mt

m

w b t=             (25) 

, , ,

, ,t

ikmj jt

i k m

x D j t




             (26) 

, , ,

, ,t

ikmj it

k m j

x I i t




             (27) 

( 1)
, , ,

, ,t

i t it ikmj it

k m j

I P x I i t



− + − =            (28) 

, , ,

, ,t

ikmj k kt

i m j

x U z k t




            (29) 

, , ,

, ,t

ikmj m mt

i k j

x U w m t




            (30) 

The least integer function in Eq. (22) is defined to avoid the empty transport between origin and 

destination warehouses. The second constraint (Eq. (23)) ensures that single type of route condition 

is selected for a given route. Eq. (24) and (25), restrict the number of hubs located in origin and 

destination hubs in any time period to a and b respectively. The demand, available inventory and 

flow balance constraints are represented by Eq. (26), (27) and (28) respectively. The intermodal 

hub capacity restrictions for origin and destination hubs are enforced in Eq. (29) and (30).  

, , ,

(1 ) , ,t

i ikmj it

k m j

x V i t





 −             (31) 
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, , ,

, ,t

ikmj kt kt

i m j

x z V k t





            (32) 

, , ,

, ,t

ikmj mt mt

i k j

x w V m t





            (33) 

It is ensured that the food grain flow adheres to vehicle capacity restriction by Eq. (31), (32) and 

(33). A binary parameter, i  is explicitly defined to establish the difference between a hub node 

and a non-hub node in Eq. (31), where  i  equals 1 if  th
i  origin warehouse is a potential hub and 

equals 0 otherwise. The equation takes care of vehicle capacity restriction only at the origin non-

hub nodes, whereas the Eq. (32) and (33) are written to ensure vehicle capacity restrictions at 

origin and destination hubs respectively.  

2, , , , ,t

iemj kt kt mt

Z

y z w i m j t m f







 + + −            (34) 

1, , , , ,t

ikfj mt mt

Z

y w i k j t k e







 + −             (35) 

3, , , , ,t

iefj kt mt kt mt

Z

y z w i k m j t




 


 + + + −            (36) 

After a hub is disrupted, there is a possibility that flow is routed through non-disrupted hubs. 

However, since the non-disrupted hubs are associated with limited intermodal handling and vehicle 

capacities, the possibility of traffic congestion and further flow disruption is large.  Hence, in this 

paper, the demand of food grains after disruption is routed through the emergency hubs. They are 

equipped with high intermodal capacity and routing through them is associated with relatively 

higher cost of transportation. In this context, Eq. (34), (35) and (36) ensure that emergency route 

is selected respectively for the first, second and the third cases of disruption described earlier. 

1,etz t T=               (37) 

1,ftw t T=              (38) 

0,et t T =              (39) 
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0,ft t T =              (40) 

,
kt o

k

n t T =             (41) 

,
mt d

m

n t T =             (42) 

The allocations made with respect to the emergency hubs, e  and f , in Eq. (37) and (38) ensure 

that they are always open. Constraints in Eq. (39) and (40) eliminate the possibility of emergency 

hubs being disrupted. Further, the number of disrupted hubs in the origin and destination hubs are 

restricted to o
n  and d

n respectively by Eq. (41) and (42).  

0, , , , , ( , )t

ikmj ox i j t i k H
 =              (43) 

0, , , , , ( , )t

ikmj dx i j t j m H
 =              (44) 

0,t

ikmjx
   , , , , 0,1 , , , , , ,t

ikmj kt kt mt mty z w i j k m t
               (45) 

According to the hub and spoke topology, transportation occurs between the hubs of the origin and 

destination states but not in between the hubs of the same state. The Eq. (43) and (44) are written 

to ensure that there is no flow between two hubs of the same state. Finally, Eq. (45) represents 

non-negativity and integrality constraints for the given problem.  

The above formulation is unique in the following aspects. First, the simultaneous minimization of 

transportation, hub location rerouting, environmental and social costs in the presence of disruption 

is novel to transportation modelling and particularly to food grain context. Second, along with the 

demand and flow conservation constraints, the vehicle capacity constraints for hub and non-hub 

nodes, constraints linking the different types of variables, default allocations, and emergency hub 

constraints, are engineered specifically to this context.  
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5. Solution approach        

As discussed earlier, the extended version of p-hub median problem formulated in this paper poses 

to be NP-hard. Given that, for a particular instance of the problem, 1n , 2n , 3n , 4n , 5n  and 6n  

denote the number of origin warehouses, origin hubs, destination hubs, destination warehouses, 

number of route conditions and time periods respectively,  the general expressions for aggregated 

total number of variables 1( )   and constraints 2( )  for the problem instance are shown in Eq. 

(46) and (47). 

1 1 2 3 4 5 2 3 62( )n n n n n n n n = + +          (46)

1 2 3 4 5 1 2 3 4 1 2 3 4 3 4 2 1 2 5

2 6

1 2 3 3 4 5

4 2 3 5 5 ( 1)( )

( 1)( ) 8

n n n n n n n n n n n n n n n n n n n
n

n n n n n n

+ + + + + + − + 
 =  + − + + 

   (47) 

For each instance, the problem has to deal with 1 2 3 4 5 6( )O n n n n n n  and 6 1 2 3 4 5( (O n n n n n n   

2 3 5 2 4 1 3( )))n n n n n n n+ +  variables and constraints respectively. Furthermore, due to the 3-degree 

nonlinear objective function, few 2-degree constraints and a least integer function, the feasible 

region for the given problem is highly discrete. As a result, the nature of the objective function 

increasingly tends to become non-continuous, non-differentiable and non-convex, thus, classifying 

the problem to be of complex nature. 

In the literature, such complex problems are often addressed by metaheuristic approaches, as it 

becomes computationally intractable by exact solution algorithms. Parvaresh et al. (2014) 

addressed the PHMI problem using simulated annealing and tabu search techniques. However, in 

these approaches, the solution evolves through a single point and significant amount of time is 

consumed to arrive at near optimal solutions. To overcome this concern, Azizi et al. (2016) 

proposed a genetic algorithm based approach to solve PHMI variants based on multiple start 

points. In recent times, many metaheuristics including genetic algorithm (GA), simulated 
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annealing (SA), chemical reaction optimization (CRO), and ant colony optimization (ACO) have 

been implemented (Asgari et al. 2013; Mogale et al. 2016) on food grain supply chain problems. 

Owing to the computational complexity of the proposed MINLP and NP hard nature of its own, in 

this paper, a superior variant of particle swarm optimization (PSO) algorithm known as particle 

swarm optimization with differential evolution (PSODE) (Epitropakis et al. 2012) is used to solve 

the problem.  

Particle swarm optimization (Kennedy and Eberhart, 1995) and differential evolution (DE) 

algorithms have been individually employed on wide range of complex optimization problems. 

However, both the algorithms individually lack the dexterity to escape local optimums and conquer 

immature convergence. Hybridization perspectives exploiting the benefits from both the sides 

were presented by many authors (Liu et al. 2010; Thangaraj et al. 2011; Xin et al. 2011). 

Epitropakis et al. 2012 implemented the hybridization and proposed PSODE, a combined form of 

canonical PSO and DE algorithms. The algorithm exploits the benefits of differential evolution 

strategy in social and cognitive dimensions experienced by each particle in the swarm to direct the 

search process. Due to its special characteristics, PSODE has a fast convergence rate as compared 

to it’s hybrid counterparts. In this paper, the algorithm has been appropriately tailored and 

employed to tackle the proposed constrained non-linear optimization problem. The detailed 

description of PSO, DE and PSODE algorithms and its adaptation to the current context is 

elucidated with suitable diagrams in the following sub-sections. 

5.1 Particle swarm optimization 

Particle swarm optimization (PSO) was invented by Kennedy and Eberhart, (1995) motivated by 

the natural phenomenon of birds flocking and fish schooling in search of food. Members of these 

species reach to their food by socially interacting with their neighbors with the fittest member 
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guiding the entire swarm of population in the right direction. The solution information is encoded 

in the form of a particle in PSO. Each particle of the population evolves through its experience and 

reaches the best solution. The canonical form of PSO was designed for continuous variables and 

later adapted for discrete and mixed integer formulations. For a swarm of population size, N  and 

iteration size T , the process of evolution of a D-dimensional particle, , ,( , )t t

i j i jx v , where 

{1, 2,3,... }i D , {1, 2,3,... }j N  , and  {1, 2,3,... }t T  is guided by the position and velocity update 

rules as shown in Eq. (48) and (49). 

1
, , 1 1 , , 2 2 ,( ) ( )t t t t t t

i j i j i j i j j i jv v c r pbest x c r gbest x+ = + − + −       (48) 

1 1
, , ,

t t t

i j i j i jx x v
+ += +           (49) 

In the Eq (48), ,
t

i jpbest  and t

jgbest  are best positions achieved by the particle and the entire swarm 

in the th
t  iteration. Here,  , 1c , 2c  are the inertia and acceleration coefficients, 1r  and 2r  are 

uniformly distributed random numbers in between [0, 1]. However, a remarkable disadvantage of 

this approach is the local entrapment of the search process due to poor exploration capability of 

the algorithm.  

5.2 Differential evolution 

Differential evolution (DE) algorithm is a stochastic global optimization technique developed to 

efficiently explore complex contours. It was developed by Storn and Price, (1996) to solve 

nonlinear and multimodal problems with computationally intensive cost functions. The algorithm 

uses weighted difference of the evolution between two randomly chosen individuals to modify the 

current state of solution. ‘Larger the better’ or ‘smaller the better’ greedy rule is used to select the 

survival individual appropriately in each iteration. The algorithm has fast convergence 

characteristics and better exploration capability.  The mutation, crossover and selection operators 
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used in the algorithm guide the search pricess towards the global optimum. For a given individual 

t

i
X = 1 2 3{ , , ,..., }t t t t

i i i inx x x x , such that, {1, 2,3,..., }i D  , the list of commonly used mutation strategies 

to evaluate the mutated individual 't
iX = ' ' ' '

1 2 3{ , , ,..., }t t t t

i i i in
x x x x  are provided in Eq. (50)-(54), where, 

1r , 2r , 3r , 4r , 5r  are uniformly distributed random numbers in the range [1, D], ( )
t

best jx  is the best 

known solution for t  iterations.   

1 2 3

' ( )t t t t

ij r j r j r jx x x x= + −           (50) 

1 2

'
( ) ( )t t t t

ij best j r j r jx x x x= + −          (51) 

1 2

'
( )( ) ( )t t t t t t

ij ij best j ij r j r jx x x x x x = + − + −        (52) 

1 2 3 4

'
( ) ( ) ( )t t t t t t

ij best j r j r j r j r jx x x x x x = + − + −        (53) 

1 2 3 4 5

' ( ) ( )t t t t t t

ij r j r j r j r j r jx x x x x x = + − + −        (54) 

Here,  ( [0, 2])   is an amplification factor defined according to Eq. (55), where, 1i , 2i , and 3i  

are uniformly distributed  random numbers in between [1, D] and 1 2 3i i i  .  

1 2 3(0,0.5)( )i i i iF F N F F= + −          (55) 

The crossover operator in DE algorithm is guided by a crossover probability, [0,1]CR . The 

resulting individual, '' '' '' '' ''
1 2 3{ , , ,..., }t t t t t

i i i i inX x x x x  by the crossover between two individuals,  t

i
X  

and 't
iX  are evaluated based on Eq. (56), where rand and randj  are uniformly distributed random 

numbers in between [0, 1], and [1, n] respectively. Finally, the selection of the survivor individual, 

1t

i
X

+ , for a minimization problem is carried out by using the greedy rule at the end of each iteration 

t  as per Eq. (57), where ( )f X  is the fitness evaluation function defined for individual X . 
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''
,    if  or 

,    otherwise

t

ij randt

ij t

ij

y rand CR j j
x

x

  == 


        (56) 

1
,    if ( ) ( )

,    otherwise

t t t

i i it

i t

i

Z f Z f X
X

X

+
 = 


        (57) 

5.3 Particle swarm optimization with differential evolution 

Amalgamating the procedures of PSO and DE, a versatile variant of these two approaches was 

proposed by Liu et al. (2010) for constrained optimization problems and later generalized by 

Epitropakis et al. (2012). In this approach, the hybrid algorithm is initialized with two different 

equal sized populations, 1pop  and 2pop . The particle best from 1pop is stored in 2pop . The 

members of 1pop  are sorted according to constraint violations in descending order and the 

members of 2pop  are mapped according to their particle best values. However, both the 

populations evolve separately, and the position and velocity of 50 % population of 1pop  is updated 

according to PSO procedure. Violating individuals are redirected to the feasible region by using 

reflection operator as shown in Eq. (58)  

'

0.5( ( ) ),     if ( )

0.5( ( ) ),    if ( )

,    otherwise

t t

ij ij

t t t

ij ij ij

t

ij

l j x x l j

x u j x x u j

x

 + 
= + 



        (58) 

Next, DE procedure is applied on 2pop . In this paper, each member of 2pop generates three new 

offsprings based on mutation strategies shown in Eq. (50), (52) and (54). Here, these strategies are 

chosen in order obtain the maximum diversity in the resulting individuals. Boundary violations are 

repaired by treating the violated individuals with Eq. (59), where t

ijw  and 't
ijw  are violated and 

corrected offsprings respectively. Later, the selection procedure of DE is applied on the offsprings 
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to update the particle best members of 2pop  at the end of iteration t  according to Eq. (60), where 

( )G X  function evaluates the constraint violations of candidate solution X .  

'

2 ( ) ),     if ( )

2 ( ) ),    if ( )

,    otherwise

t t

ij ij

t t t

ij ij ij

t

ij

l j w w l j

w u j w w u j

w

 − 
= − 



        (59) 

1
,          if   ( ) ( ) ( ) ( )

,    otherwise

t t t t t

i i i i it

i t

i

W f W f pbest G W G pbest
pbest

pbest

+
   = 


    (60) 

The process is continued in a loop until the maximum iteration size, E , is reached. This method 

has a twofold advantage over the other known similar techniques. First, the approach requires less 

number of iterations to converge to better solutions as the particle best evolves rapidly towards the 

global best due to the efficient constraint violation and boundary condition handling schemes. 

Second, the hybrid approach easily escapes local entrapment by virtue of multiple mutation 

strategies which help to maintain adequate solution diversity in the random search process.  

5.4 Adaption of PSODE  

In this section, the adaption of PSODE to solve the proposed MINLP is described. 

5.4.1 Particle encoding scheme 

In swarm intelligence, particle encoding scheme defines the mapping between the problem and the 

algorithm. In the context of the current problem, the particle consists of an array of decision 

variables arranged according to the order, t

ikmjx
 , t

ikmjy
 , ktz  , mtw , kt , and mt .   For example, in an 

instance where 1 6n = , 2 3n = , 3 5n = , 4 9n = , 5 2n = , and 6 3n =  the total number of variables is 

9768 ( 1n , 2n , 3n , 4n , 5n ,and 6n  hold the same meanings as defined at the start of section 5).   The 

particle matrix is initialized with dimensions [ , ]N D  , where, N  is the population size and D  is 

the total number of decision variables in a problem instance. Fig. 3 illustrates the encoding scheme 



30 
 

for this example showing the number and position of decision variables in a particle one after the 

other. 

 

Fig. 3. Particle encoding scheme for problem instance (6,3,5,9, 2,3)   

 

5.4.2 Discretization 

Discretization is a boundary condition handling technique used in stochastic search processes 

while dealing with mixed integer problems. After the evolution of a particle according to PSO and 

DE, the integer variables of the problem may belong to outside the feasible region or may be 

converted to continuous numbers. In such cases, the discretization process is used to enforce 

integrality constraints on the corresponding violated variables. Based on the nature of the integer 

variables, two types of discretization schemes are used: Integer variable discretization and Binary 

variable discretization. One should easily understand that binary variable discretization is a special 

case of integer variable discretization. In this paper, the binary variables t

ikmjy
 , ktz  , mtw , kt , and 

mt  are  treated with binary variable discretization scheme before updating the particle.  

5.4.3 Pattern generation 

Pattern generation is a procedure followed with respect to the variables and parameters while 

coding and decoding the particle encoding scheme. In a particle, each decision variable column is 
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associated with a number, i , where {1, 2,3,..., }i D . The number is used to recall the decision 

variable as and when required while dealing with the objective function and constraints.  

Table 5. Sample decision variable pattern sequences for demand constraint (Eq. (19)) 

Right hand 
side ( jtD  ) 

j  t  Pattern for t

ikmjx
  

11D  1 1 1, 10, 19, …, 802, …, 1612 

21D  2 1 2, 11, 20, …, 803, …, 1613 

31D  3 1 3, 12, 21, …, 804, …, 1614 

91D  9 1 9, 18, 27, …, 810, …, 1620 

12D  1 2 1621, 1630, 1639, …, 2422, …, 3232 

93D  9 3 3249, 3258, 3267, …, 4050, …, 4860  

A separate pattern for each expression that involves a decision variable is evaluated using i . For 

example, the pattern sequences for t

ikmjx
  in the demand constraint (Eq. (19)) for different 

combinations of j  and t  while solving medium size problem are as shown in Table 5. All the 

other expressions in the objective function and constraints are evaluated using similar mapping 

technique. 

5.4.4 Fitness evaluation 

The global fitness is the sum of objective function value and the constraint violation costs. The 

global fitness, ( )G X , for a given solution vector X  is evaluated according to Eq. (57). Here, 

( )nV X is the degree of violation of th
n  constraint and n  is penalty for violating the constraint.  

( )G X = TC+ ( )n n

n

V X           (57) 

Given that ( )l lH X B  and ( )m mH X B=  are the set of inequality and equality constraints of the 

problem respectively, ( )nV X  is calculated for each of these cases differently as per Eq. (58) 
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 ( )   if 
( )

( )     if 

l l

n

m m

H X B n l
V X

H X B n m

+ − == 
− =

        (58) 

5.4.5 Flow diagram and pseudo code 

The flow diagram for PSODE implementation is described in Fig. 4 and its pseudo code is provided 

later in Fig. 5.    

 

Fig. 4. Flow diagram for PSODE implementation 
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Fig. 5. Pseudocode for PSODE 

6. Dataset and experiments 

The mathematical model is initially validated on small dataset and later implemented for medium 

and large size datasets inspired from real geographical scenario of South India. The type of food 

grain considered for the experimental study is rice. The total number of variables in a dataset is 

considered as basis for determining the problem size. The rail and road unit transportation costs 

reflect the actual fares required for transporting the rice in between origin (Andhra Pradesh) and 

destination (Tamil Nadu) states. The real data collected through field survey comprised of monthly 

procurement, FCI warehouse storage capacities, and warehouse level food grain demand statistics 

for the financial year 2014-2015. The carbon tax prices for rail and road are adopted from reliable 

Algorithm PSODE 

Initialize 1 1 2 3 4 5 6 1 2 1 2 3 4 5, , , , , , , , , , , , , ,pop n n n n n n c c r r r r r   

Set 2 1pop pop=  

2 2_ _ ( )pop convert to feasible pop=  

Set iter = 0 

dowhile iter < Maximum iteration 

     foreach member afirst half of 1pop  

           calculate pbest , objective function value(f) and constraint penalties(G) 

           update position and velocity using Eq. (44) and (45) 

           if f(new pbest )+G(new pbest )< f(old pbest )+G(old pbest )  

          2 ( )pop a = new pbest  

     end for 

     Set 2( )gbest gbest pop=    

     foreach member  2b pop  

             perform mutation, crossover and selection using Eq. (46),(48),(50),(52), and (53) 

            2 2_ _ ( )pop convert to feasible pop=  

             update pbest  using Eq. (56) 

     end for 

     Compare and update gbest 

     iter=iter+1 
end 
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online sources (http://www.iasparliament.com/current-affairs/carbon-tax-in-india). . Due to  

scarcity in the avaialability of social cost data for Indian context, the social cost conversion factors 

are approximated based on previous studies in similar context by Reza et al. 2011. Information 

that was directly inaccessible such as intermodal capacity, fixed cost of locating a hub, unit 

rerouting costs and vehicle resource availability are hypothetically simulated to the actual scale 

from secondary sources. A clear description of problem sets is given in Table 6 and Table 7 gives 

the region wise warehouse distribution in origin and destination states. 

Table 6. Problem set description 

Problem  
set  

Origin  
regions 

Destination 
regions 

Configuration 

1 2 3 4 5 6( , , , , , )n n n n n n   

Number of 
variables  

Number of 
constraints 

Small 3 3 (5, 3, 3, 5, 2, 2) 1824 6056 
Medium 3 4 (6, 3, 5, 9, 2, 3) 9768 32733 
Large 3 4 (10, 4, 4, 10, 3, 3) 28848 87624 

Table 7. Region wise warehouse distribution 

Problem 
set 

State type Hub type Region 1 Region 2 Region 3 Region 4 

Small 
 

Origin  
 

Hub  1 1 1 - 
Non hub  1 1 0 - 

Destination  Hub  1 1 1 - 
Non hub  0 1 1 - 

Medium 
 

Origin  
 

Hub  1 1 1 - 
Non hub  1 2 0 - 

Destination Hub  1 1 2 1 
Non hub  0 2 1 1 

Large 
 

Origin  Hub  1 2 1 - 
Non hub  2 2 2 - 

Destination  Hub  1 1 2 0 
Non hub  0 2 1 3 

Later, sensitivity analysis is performed to observe the effect of changing problem conditions on 

the nature and scale of variation in the transportation, hub location, rerouting and total shipment 

costs. The problem condition is varied by considering different combinations of factors as defined 

http://www.iasparliament.com/current-affairs/carbon-tax-in-india
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in Table 8. These factors are chosen to represent the four key dimensions of the problem: hub 

location decisions, hub disruption, intermodal operations, and vehicle capacities. The design of 

experiments in sensitivity test follows L27 orthogonal array with three levels of each factor. The 

description of factor levels is provided in Table 9. A hub disruption level equal to zero indicates 

there is no disruption. Further details on results obtained from sensitivity analysis are discussed in 

the subsequent section. 

Table 8. Definition of factors for sensitivity analysis 

Factor Definition 
Hub location level (F1) The total number of hubs located in origin and 

destination states 
Hub disruption level (F2) Total number of hubs disrupted in origin and 

destination states 
Cost consolidation factor (F3) Amount of reduction in unit transportation cost 

as a result of flow consolidation 
Vehicle resource availability (F4) Maximum arc capacity of the network 

Table 9. Level-wise description of factors for sensitivity analysis 

Level Hub location 
level ( a +b ) 

Hub disruption  

level ( o
n + d

n ) 

Cost Consolidation 
factor ( ) 

Vehicle resource 
availability (MT) 

1  6 (3+3) 0 0.2  600000 
2  7 (3+4) 1 0.5  900000 
3 8(3+5) 2 0.8  1200000 

*MT - Metric ton 

7. Result and discussion 

PSODE was implemented in MATLAB and executed on Windows 8, 64-bit Operating System 

consisting of 8 GB RAM and Intel Core i7 1.8 GHz processor. Initially, the experiments were run 

on small size data sets with 5 origin and destination warehouses, 3 potential origin and destination 

intermodal hubs, 2 types of route conditions and 2 time periods, in which case, the total number 

of variables and constraints amounted to 1824 and 6056 respectively (Table 6) . The algorithm 

was able to solve the problem instance within 175 sec (Table 10). However, to validate the 
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approach for larger instances, later, the problem size was increased to 15 and 20 warehouses 

including both origin and destination states. In the expanded problems (medium and large size), 

due to the explosion in number of possible linkages the number of variables and constraints was 

found to increase exponentially (Table 6).  The computational times also witnessed a significant 

increase with increase in problem size for medium and large size datasets.  However, given the 

complexity and size of the problem, the computational times are found to lie within reasonable 

limits (Table 10). The model and algorithm settings for the experiments on small, medium and 

large size problems are shown in Tables 11 and 12 respectively. Fig. 6 shows global fitness 

convergence characteristics for all the three instances. Subsequently, the decision variables 

including shipment quantity, route selection and hub location pertaining to the global optimal costs 

are evaluated. However, as the decision variable count is high for all cases, their values are not 

presented here. The emphasis of the discussion carried out in this section is more cost implicative.   

Table 10. Summary of results for small, medium and large size instances using PSODE 

Dataset Small  Medium  Large 
Transportation cost (Rs)   221418719.9 868992296 1671722311 
Hub location cost  (Rs) 10600000 26400000 25800000 
Rerouting cost (Rs) 924684585 1990627198 2350973797 
Environmental cost (Rs) 927467.49 4235135.88 11832632.52 
Social cost (Rs) 183147595.6 412798578 1284664921 
Total cost (Rs) 1340778367 3303053208 5344993661 
Average execution time (s) 174.2 1123.36 2964.84 

Table 11. Model settings 

Instance 
 

Hub location level 
( a +b ) 

Cost Consolidation 
factor ( ) 

Hub disruption  

level ( o
n + d

n  ) 
Vehicle resource 
availability (MT) 

Small  3+3=6 0.8 1+1=2 364500 
Medium  3+5=8 0.8 1+1=2 600000 
Large  4+4=8 0.8 1+1=2 1141500 
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Table 12. Algorithm settings 

Parameter N  E    1c
 2c

 
Value 300 0.9 0.9 0.1 0.98 

 

Fig. 6. Convergence of global fitness 

As mentioned earlier, the paper captures sustainability in a holistic purview by including 

environmental and social cost components as shown in Eq. (2). The total cost obtained is the 

summation of two broad conflicting categories: (1) Total shipment costs (TRC+HC+RC) and (2) 

Sustainability costs (EC+SC). The appropriate choice of route condition for a given route from 

origin to destination state is required to ensure balanced sustainable transportation. The pareto plot 

capturing the two conflicting categories on the coordinate plane are shown in Figs. 7(a), 7(b), 7(c) 

for each of the three instances. Fig. 7 presents the best three solution fronts obtained by non-

dominated sorting of the updated local solution pool after 300 iterations of the single objective 

optimization problem. The solution points to the top left corner of the graphs represent 

economically sustainable food grain transportation at high cost of environmental and social 

compatibility owing to substantial selection of lesser quality of route condition. In contrast, the 
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bottom right points represent economically and socially viable solutions achievable at significantly 

higher total shipment costs. The possibility to explore multi-objective solutions by considering the 

two cost categories as separate objectives makes an interesting research question. The appropriate 

choice of tradeoff between the conflicting cost categories keeping the interests of the stakeholders 

is left to the decision makers. The focus of the current work is limited to explore the possibility of 

mathematically capturing the aforesaid cost components using single objective optimization 

approach. 

 

Fig. 7 (a). Top three ranks of pareto fronts obtained for small dataset 
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Fig. 7 (b). Top three ranks of pareto fronts obtained for small dataset 

 

Fig. 7 (c). Top three ranks of pareto fronts obtained for small dataset 
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Finally, sensitivity test is conducted on medium size datasets to develop explicit insights on the 

behavior of individual and total costs against the model parameters described earlier in section 6. 

Table 13 summarizes the results of transportation cost, hub location cost, rerouting cost, 

environmental cost, social cost and the total shipment cost for different combinations of the factors 

described in Tables 8 and 9.  Observations reveal that as the level of disruption escalates to higher 

levels, the mean transportation cost is initially reduced by 5.4 %  at level 2 and further reduces by 

2% at level 3 (Fig. 8). It is useful to recollect that transportation cost is actually the portion of the 

total shipment cost that represents the transportation through non-disrupted hubs. The reduction in 

the mean transportation cost at level 2 and level 3 disruptions is attributed to the rerouting of the 

disrupted consignment through the emergency hubs and corresponding increase in the rerouting 

costs. The effect of increasing hub disruption levels on the hub location cost is seen in Fig. 9. Here, 

the initial rise in the mean hub location cost by 5.6 % at disruption level 2 is because of the need 

to select high capacity hubs to accommodate for the loss of demand as the disruption level 

increases. At disruption level 3, a significant portion of the food grains is routed through the 

emergency hubs. Hence, the need to select high capacity hubs is reduced and the mean hub location 

cost is reduced by 7%. A substantial increase in the mean rerouting cost is observed with increasing 

level of disruption (Fig. 10). The social and environmental costs exhibit similar behavior and are 

observed to increase exponentially owing to substantial increase in vehicle kilometers with 

increasing level of disruption. (Figs. 11 and 12). The total cost is increased by 14 % and 40% as 

the disruption level rises from level 1 to level 2 and level 3 respectively (Fig 13). 

By definition, increase in cost consolidation factor implies a reduction in the benefit of 

consolidation. The mean transportation and mean total costs are found to increase by 77% and 

57% respectively as the benefit of consolidation is reduced from level 1 to level 2, whereas they 
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are increased by 30% and 27% respectively as the benefit is reduced from level 2 to level 3 (Figs. 

8 and 13). Hence, it is observed that the rate of increase in the benefit of flow consolidation in 

terms of total cost is reduced as the benefit of consolidation increases from level 3 to level 2 and 

level 2 to level 1 respectively. According to Fig. 9, the hub location cost is almost unaffected as 

the cost consolidation factor is increased from level 2 to level 3, or, as the benefit of consolidation 

is increased from level 3 to level 2. The mean rerouting cost is found to significant increase (Fig 

10) with increase in the cost consolidation factor from level 1 to level 2 and level 3. While the 

environmental cost exhibits random behavior with changing cost consolidation factor (Fig. 11), 

the social costs are found to proportionally increase with decreasing levels of consolidation due to 

the large number of vehicles used at lower levels of consolidation. (Fig. 12).   

It is clear from Figs. 8-13 that the economic advantage of hub location level on the individual and 

total costs are visible at higher levels of the factor. There is a decrease in the mean transportation 

cost, mean environmental cost, mean social cost and mean total cost as the hub location level 

increases from level 2 to level 3 by approximately 8%, 4%, 2% and 6% respectively. The hub 

location cost is increased by 24% and 15% as the hub location level increases from level 1 to level 

2 and level 3. The mean rerouting cost is observed to decrease by 36% and 4% for 2nd and 3rd 

levels of hub location. This decrease is attributed to decrease in the portion of total shipment shared 

by a single hub as more number of hubs are located and thus observing a lesser economic loss 

under disruption.   

Finally, the increase in the level of vehicle resource availability has a positive effect on all the 

costs except for one case (Fig. 9). Unlike other cases, as the vehicle resource availability increases 

from level 1 to level 2, mean hub location cost is increased by 3.5%. This is because a higher 

capacity hub is selected given higher vehicle resources and the increase in hub location cost is 
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compensated by the significant decrease in the transportation and rerouting costs. The total costs 

are found to decrease approximately by 8% and 5 % as the vehicle resource availability increases 

from level 1 to level 2 and level 3. The social and environmental cost are found to decrease at 

higher levels of vehicle resource availability because of the increasing potential of the transport to 

be accommodated through shorter distances. 

 

Fig. 8. Effect of factors F1-F4 on mean transportation cost 
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Fig. 9. Effect of factors F1-F4 on mean hub location cost 

 

Fig. 10. Effect of factors F1-F4 on mean rerouting cost 
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Fig. 11. Effect of factors F1-F4 on mean environmental cost 

 

 

 

 

Fig. 12. Effect of factors F1-F4 on mean social cost 
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Fig. 13. Effect of factors F1-F4 on mean total shipment cost 

In a multi-level organization, the final outcome strictly aligns itself with the focus of the strategic 

decision makers and their choice of decision might belong to one of the following four categories. 

According to the first, if the agenda is restricted to minimizing solely the transportation cost, it is 

then intuitively favorable to maintain low hub location level, low cost consolidation factor and 

high vehicle resource availability. Fig. 8 validates the above conditions for this dataset and also 

reveals that the aforementioned objective is best achieved under situations of high level disruption. 

In the second category, if decision makers are aligned towards minimizing the hub location cost, 

then, results suggest that it is preferable to maintain low levels of hub location, medium level of 

cost consolidation factor, and higher vehicle resource availability (Fig. 9). Further, results indicate 

that this strategy is more applicable for conditions of high disruption. In the third category, where 

the management decision is inclined towards minimizing the rerouting costs, then, it is economical 

to maintain high level of hub location, low level of cost consolidation and medium level of vehicle 

resource availability (Fig. 10).  
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Table 13. Result summary of sensitivity test for experiments 1 to 27  

Exp. 
No. 

Level Transportation  
Cost (Rs) 

Hub 
Location  
Cost (Rs) 

Rerouting 
Cost (Rs) 

Environmental 
Cost (Rs) 

Social Cost 
(Rs) 

Total Cost (Rs) 

F1 F2 F3 F4   
1 1 1 1 1 678837716.2 17400000 0 1737340.56 203568798 901543854.3 
2 1 1 1 1 691159827.7 17400000 0 1848451.67 191225583 901633862.2 
3 1 1 1 1 566525392.9 17400000 0 1626118.05 215881344 801432855 
4 1 2 2 2 944186091.7 18000000 257333732 2882311.64 309331107 1531733242 
5 1 2 2 2 931864960.2 18000000 242172314 2671079.01 298207650 1492916004 
6 1 2 2 2 957297203.5 18000000 275444843 2794623.99 311452320 1564988991 
7 1 3 3 3 1155805561.2 17000000 1121274875 1926039.84 238080542 2534087019 
8 1 3 3 3 1043464215.6 17000000 1076918495 2037253.04 225737419 2365157382 
9 1 3 3 3 1266920682.7 17000000 1155664945 1804727.18 249225666 2690616021 
10 2 1 2 3 1019566197.8 19600000 0 1899646.92 247605366 1288671210 
11 2 1 2 3 1000434782.4 19600000 0 1778325.15 231481909 1253295016 
12 2 1 2 3 1130677309.2 19600000 0 2011168.87 260817687 1413106166 
13 2 2 3 1 1480411192.4 23600000 345003226 2734466.4 340924885 2192673770 
14 2 2 3 1 1324300079.3 23600000 326881314 2623143.1 321803672 1999208208 
15 2 2 3 1 1591623303.8 23600000 358416216 2855811.9 353046096 2329541428 
16 2 3 1 2 607005572.9 22000000 528683033 4523929.28 395702130 1557914665 
17 2 3 1 2 620124384.4 22000000 499669555 4600472.73 403357006 1549751418 
18 2 3 1 2 594728350.7 22000000 558626849 4747386.02 392825697 1572928283 
19 3 1 3 2 1353804976.0 26400000 0 3968564.16 374036420 1758209960 
20 3 1 3 2 1242237864.5 26400000 0 3857561.5 391159544 1663654970 
21 3 1 3 2 1465072199.4 26400000 0 4069665.49 362865301 1858407166 
22 3 2 1 3 473651432.8 25400000 67096031.6 2328619.8 224543941 793020025.2 
23 3 2 1 3 484863554.3 25400000 65183682.7 2449965.25 212420817 790318019.5 
24 3 2 1 3 461483621.2 25400000 68919949.7 2217277 236715755 794736603.3 
25 3 3 2 1 1026046806.6 23200000 771030148 2569732.68 359825374 2182672061 
26 3 3 2 1 1137170258.1 23200000 746315258 2458500.01 347668662 2256812678 
27 3 3 2 1 1008925694.9 23200000 799420394 2720967.51 377936486 2212203543 
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In any case, lower the disruption level, higher is the benefit from this strategy. In the case where, 

the focus of the organization tends towards minimizing environmental and social costs, the lower 

levels of hub location, medium level of cost consolidation and higher levels of vehicle resource 

availability is much preferred.  According to the holistic approach, where the management is 

willing to adopt an integrated sustainable strategy that would simultaneously minimize 

transportation, hub location, rerouting, environmental and social costs, our results suggest that high 

hub location and low cost consolidation and high vehicle resource availability are favorable (Fig. 

13).  

8. Conclusion and future work 

The contributions of this research are three fold. First, it extends the present research in the domain 

of inter-modal transportation for the context of food grain supply chain, specifically under hub 

disruption. The paper addresses economic, environmental and social sustainability by 

incorporating rerouting costs, carbon emission costs and by quantifying negative externalities of 

emissions and freight transportation. Emergency hub restrictions are enforced to ensure the 

continuous flow of food grain shipments during disruptions. Further, it is marked by significant 

social relevance as it addresses staple food concerns with respect to Indian population. Thus, it 

strongly relates to economic, environmental and social dimensions of sustainability in the TBL 

perspective. Second, a mixed integer nonlinear optimization model is formulated that minimizes 

transportation, hub location, rerouting, environmental and social cost objectives in a multi-period 

setting for single food grain commodity. The resulting model is embedded in a hub and spoke 

system to satisfy food grain demand between origin and destination states. The proposed model 

accommodates for multiple route conditions and incorporates hub capacity, vehicle capacity and 

hub location restrictions in addition to demand and flow conservation constraints. Third, Particle 
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Swarm Optimization with Differential Evolution (PSODE) algorithm, a superior variant of 

traditional PSO, was tailored and employed to solve the proposed MINLP. The optimal 

combination of origin-destination (o-d) pair of warehouses and the respective shipment quantities 

are determined by incorporating decision variables t

ikmjx
  and t

ikmjy
 . The decisions ktz , and mtw  are 

incorporated to evaluate allocation of origin and destination hubs respectively.  

The model was tested on small, medium and large size datasets inspired from Indian food grain 

industry.  PSODE was able to solve the small, medium and large instances within 174s, 1123s and 

2965s respectively. Sensitivity analysis reveals that food grain demand is fulfilled with 14% 

increase in the mean total cost for single hub disruption case (level 1 disruption) and with 40% 

increase for multiple hub disruption (level 2 disruption). In addition to shipment quantity, route 

allocation and hub location decisions, the above formulation could also be helpful to the policy 

makers to determine the additional investment required by FCI to fulfill the demand through the 

emergency hubs during disruption. The distribution managers can be sensitized with respect to the 

variation in the costs as additional rakes and trucks are made available at the hub and non-hub 

nodes while fostering economic, ecological and social sustainability.  

This study can be extended to other food grain commodities by incorporating perishability aspects, 

stochastic demand, uncertain travel times, service time constraints and other product specific 

attributes in the model.  The benefits of cost consolidation is not limited to food grain context and 

may be implemented for geographically widespread manufacturing sectors. The social dimension 

can be further strengthend by quantifying customer and employee satisfaction levels. The 

applicability of the model may be widened to neighboring countries and other sectors with subtle 

changes in the model owing to variation in geographical territories and supply chain structure.  
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