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Abstract In this work, we propose a hybrid phase

field model for the brittle fracture analysis of thick

plates subjected to transient dynamic loads. Shear

deformation effects which play important role on the

behavior of thick plates are captured by using Reddy’s

third-order shear deformation theory. The proposed

model preserves the linearity of the elastic equilibrium

equation within the staggered solution approach and

ensures the evolution of damage due to the tensile part

of the strain energy. The governing equations of

motion of the proposed model are derived by seeking

the minimization of the free energy functional. These

governing equations are solved in a finite element

framework using a staggered solution algorithm. The

proposed model is compared with the model with no

tension–compression split. Both these models show

different mechanical response of thick plates. Using

numerical examples, the efficiency of the proposed

model in predicting the nucleation and propagation of

damage in thick plates subjected to transient dynamic

loads is presented.

Keywords Phase field � Free energy functional �
Order parameter �Hybrid model � Thick plate � TSDT �

Transient dynamic loads

1 Introduction

Transient dynamic loads are characterized by being

very short in duration with intense pressure spike.

Plate structures such as those used in aerospace and

automotive industries are often subjected to these

loads. Materials when subjected to these loads,

experience complex fracture phenomena. Therefore

it is important to perform the computational modeling

of fracture to study the mechanical response of these

structures under such loads. The computational frac-

ture models can be classified as discrete models (sharp

crack models) and diffused models. In the discrete

models, the crack is modeled as a discontinuity

whereas in diffused models, a smooth approximation

of crack surface is made thereby avoiding the discon-

tinuity. Because of the discontinuity they possess in

discrete models, they often require remeshing algo-

rithms to track the crack propagation. Computational
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discrete fracture model such as extended finite element

method [1–3] though were able to model the fracture

without remeshing, they fail to describe the nucleation

naturally i.e they need an additional criterion to

determine the nucleation of fracture. On the other

hand, interface finite elements using cohesive zone

models [4] work well only with the pre-existing

interfaces [5]. It is also observed that the diffused

models based on continuum damage mechanics result

in spurious mesh dependencies in modeling softening

phenomena [6, 7]. Nonlocal and gradient damage

models [8–12] proved to overcome this issue. The

phase field model which shares many features of the

nonlocal damage models not only alleviates the need

for sophisticated algorithms for tracing the crack path

but also facilitates the prediction of crack nucleation,

propagation, branching and merging in three dimen-

sions without the need for ad-hoc criteria. The phase

field method has its foundation in variational approach

to fracture. Francfort et al. [13] first posed the problem

of modeling the brittle fracture in a variational setting

where the evolution of fracture can be obtained by

minimizing the free energy functional. This model is

variational equivalent to the Griffith’s linear elastic

fracture model [14]. Phase field method developed by

Bourdin et al. [15] is the regularized version of

discrete model proposed by Francfort et el. [13]. In this

model, the discrete (sharp) crack is approximated as a

diffused crack. This necessitates the introduction of a

field variable known as phase field or order parameter

as the unknown. In doing so, it also introduces the

gradient of the phase field variable which entails the

use of length scale parameter. The phase field takes the

values ranging from 0 to 1 where the value of zero and

one correspond to the undamaged and fully damaged

state of the material respectively. This regularized

model draws the motivation from Ambrosio–Tor-

torelli regularization of theMumford–Shah functional

in image segmentation [16]. It is also seen that, in the

sense ofC convergence, the regularizedmodel reduces

to sharp crack model when the length scale parameter

(l) tends to zero. Since it is a variational approach and

the field variable is included in the free energy

functional as an unknown, the evolution of damage

can be found as part of the solution of the governing

partial differential equations. This makes the method

numerically amicable to standard finite element

method as there is no need of doing remeshing

employing sophisticated algorithms to track the crack

propagation.

The phase field (PF) model has been the most

sought after technique in the recent times for modeling

the fracture (see [17–26]). Some of the applications of

phase field models include modeling ductile fracture

([22, 27–30]), modeling fracture with finite strains

[31–33], fracture modeling in pressure loading envi-

ronment [34] and modeling conchoidal fracture [35].

Due to the variational approach to the damage

modeling, phase field model naturally describes the

evolution of damage which deals with the complex

crack topologies such as branching and merging

without numerical robustness even in three dimen-

sions. Lee et al. [19] and Borden et al. [36] studied the

fracture propagation in three-dimensions. Pham et al.

[21] developed a 3D finite element model for the phase

field model of brittle fracture and validated with the

results obtained from the experiments. Kasirajan

et al.[37] modeled brittle fracture in quasi brittle

materials using natural neighbor Galerkin method.

Applications of phase field model for interface frac-

ture model [22, 38–44] and modeling fracture in

composites [45–48] are also reported in the literature.

The standard phase field model assumes the phase

field variable to be isotropic i.e it is directionally

independent at a given material point. This limits the

use of this model to capture the crack propagation in

anisotropic materials such as polymers, organic

materials etc. Raina et al. [17] studied the crack

propagation in arterial walls by introducing an

anisotropic failure criterion. Solmaz et al. [49] devel-

oped a phase field formulation by incorporating the

anisotropic surface energy to study the crystal growth.

Rajagopal et al [50] used a C1 natural neigh-

bourGalerkin method to solve the four order Cahn-

Hilliard phase field equations. Bin et al. [51] proposed

a phase field model with strongly anisotropic surface

energy which results in fourth order phase field

equation in contrast to the standard second order

equation. These works rely on defining the anisotropic

surface energy by enriching it with higher order

gradients of damage variable. Bleyer et al. [47]

proposed a new model which accounts for both the

elastic anisotropy and the damage anisotropy.

There have been several works reported so far, that

deal with the dynamic fracture in plane problems.

Karma et al. [52] first provided a phase field model for
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modeling mode III dynamic fracture. Hofacker et al.

[53] developed a phase field model for dynamic

fracture by employing a tension–compression split in

the strain energy. This model ensures the degradation

of the tensile part of the strain energy only which is

physically more appealing. Borden et al. [54] studied

the dynamic fracture in two and three dimensions.

Here the authors used T-splines which ensure the local

adaptive refinement to simulate the fracture in three

dimensions. Recently Nguyen et al. [55] developed a

phase field regularized cohesive zone model for

modeling dynamic brittle fracture. This model is

insensitive to the choice of the length scale parameter

unlike the standard phase field model. Very limited

studies are available on the application of phase field

method to model fracture in thick plates subjected to

transverse loads. Amiri et al. [56] first studied fracture

behavior in thin shells using Kirchhoff–Love shell

theory. Kiendl et al. [57] presented a more accurate

model for the fracture analysis in thin plates and shells

using Kirchhoff–Love shell model. Raghu et al. [58]

presented a hybrid phase field model to model the

fracture in thick plates. Areias et al. [59] performed

finite strain analysis of plates and shells. Recently, Lai

et al. [60] developed a phase field model to study the

brittle fracture in Euler– Bernoulli beam accounting

transverse part-through fracture. In all these models,

the load is considered to be static. There are no works

reported so far to study fracture in plates under

transient dynamic loads using the phase field method.

In this work, we aim to develop a new hybrid phase

field model to study the damage propagation in plates

under transient dynamic loads.

The classical theories such as Euler–Bernoulli and

Kirhchhoff–Love are more suitable for the analysis of

thin structures where shear deformations can be

neglected. However in thick plates where shear

deformation significantly affects the overall behavior

of the plate, one must use more realistic theories such

as shear deformation theories to correctly capture the

mechanical behavior. The novelty of this work

includes proposing a hybrid phase field model for

the fracture modeling in thick plates by invoking a

higher-order shear deformation theory such as Red-

dy’s TSDT [61], which requires no shear correction

factor and represents the transverse shear stresses

quadratically through the plate thickness. The standard

phase field model as first proposed by Bourdin et al.

[15] causes physically unappealing results as this

model predicts cracking in pure compression also. To

avoid this discrepancy, Amor et al. [62] and Miehe

et al. [63] modified the Bourdin’s phase field model by

introducing the decomposition of the strain energy

into the formulation. In these models, the degradation

is applied only on the tensile part of strain energy in

defining the stress. However, this split makes the

elastic equilibrium equation nonlinear which increases

the computational cost. The proposed phase field

model not only retains the linearity of the elastic

equilibrium equation within the staggered approach

and also ensures the evolution of damage caused only

by the tensile part of strain energy. More details on this

model are presented in Sect. 3.1.

The outline of the paper is as follows. In Sect. 2, we

present both the sharp and phase field crack topologies

and the regularized crack functional. In Sect. 3, we

present the proposed hybrid phase field formulation

for the transient dynamic analysis. Finite element

model of the governing equations are also presented in

this section. In Sect. 4, we present the implementation

aspects. Sect. 5 presents different numerical examples

to show the effectiveness of the present model. Finally

Sect. 6 presents the conclusions drawn from the work.

2 Phase-field description of fracture

In this section, we introduce the phase field method in

the context of fracture modeling. PF method serves an

approximation to the discrete fracture models in the

sense that the sharp crack surface is approximated by a

diffused crack surface. As shown in Fig. 1, a sharp

crack topology is approximated as a diffused crack

spread over region of radius equal to twice the length

scale parameter l. The variable introduced here

ensures the smooth transition between undamaged

and fully damaged material. The range of phase field

varies from 0 to 1 with the value zero corresponds to

the undamagedmaterial and the value one corresponds

to the fully damaged material.

The regularized crack surface functional can be

written as (see 15, 64),

Cl ¼

Z

X

cð/;r/Þ dV ð1Þ

where, c is the crack surface density, which can be

expressed in terms of crack phase field (/) and its
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gradient with in the localization region (dV ¼ Cdz, C

is the crack surface) as

cð/;r/Þ ¼
/2

2l
þ

l

2
jr/j2 ð2Þ

3 Formulation

Following the regularized variational fracture model

of Bourdin et al. [15], the free energy functional for

plate structures with a regularized crack surface

density can be written as,

El ¼

Z

X

�

gð/Þwes � wek

�

dV þ

Z

X

w/ dV ð3Þ

where

Z

w/ð/;r/Þ dV ¼

Z

A

Z h
2

�h
2

w/ dA dz

¼

Z

A

hGc

n/2

2l
þ

l

2
jr/j2

o

dA

ð4Þ

where wes and wek represent the elastic strain energy

density and the kinetic energy density respectively and

A represents the surface area of the midplane of the

plate. The damage parameter / is assumed to be

uniform through the thickness; h represents the

thickness of the plate and Gc represents the Griffith’s

critical energy density. gð/Þ is called the degradation

function which is introduced to ensure the degradation

of stiffness as the damage progresses in the bulk

material.

The degradation function can be taken as

gð/Þ ¼ ð1� gÞð1� /Þ2 þ g ð5Þ

where g is a very small positive scalar value (\\1)

introduced to avoid the ill conditioning of the stiffness

matrix when / ¼ 1. As it can be seen the gð/Þ attains
the value 1 and g � 1 in the undamaged state and

fully damaged state respectively. Thermodynamic

conjugate force F ¼ �g0ð/Þwes takes the value zero

when the material is fully damaged as g0ð1Þ ¼ 0.

3.1 Hybrid phase field model of brittle fracture

for plates

To avoid the nonlinearity in the elastic equilibrium

equation due to tension–compression split of the strain

energy, in this section we propose a hybrid phase field

model for the analysis of plates under transient

dynamic loads.

In the hybrid model, the linearity of the elastic

equilibrium equation is preserved (within the stag-

gered approach) as there is no split applied on wes in

defining the stress. Though the hybrid model possesses

variational inconsistency, an alternate approach can be

presented to derive the evolution equation as shown in

Ambati et al. [26] where the authors proposed this first

for the plane problems. The model also does not

violate the second law of thermodynamics[65]. To

ensure the evolution of damage only due to the tensile

part of the strain energy, the history variable based on

wþ
es is supplied to the phase field evolution equation.

Therefore the regularized free energy functional for

the analysis of plates can be written as

(a) (b)

Fig. 1 2D representation of

a sharp crack topology and

b phase field crack topology
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El ¼

Z

A

�

gð/Þws � wk þ hGcf
/2

2l
þ

l

2
jr/j2g

�

dA

ð6Þ

where ws and wk are the elastic strain energy density

and the kinetic energy obtained after integrating

through the thickness.

wa ¼

Z h
2

�h
2

wea ðzÞ dz ð7Þ

where a takes the symbols s and k. The thickness-wise

integration can be done using the Simpson’s rule.

3.1.1 Plate kinematics

To capture the shear deformation effects especially in

thick plates, Reddy’s third order shear deformation

theory [61] has been used in this work for deriving the

elastic equilibrium equations. The in-plane displace-

ments are expanded up to the third degree of the

thickness coordinate hence TSDT predicts the quad-

ratic variation of transverse shear strains through the

thickness of the plate. Therefore TSDT does not

require a shear correction factor. The deformation of

the normal line according to TSDT is shown in Fig. 2.

The total displacement of a point a as shown in

Fig. 2 can be written as

uðx; y; zÞ ¼ u0ðx; yÞ þ z/x

�
4z3

3h2
/xð

þ
ow0

ox

�

vðx; y; zÞ ¼ v0ðx; yÞ þ z/y

�
4z3

3h2
/y

�

þ
ow0

oy

�

wðx; y; zÞ ¼ w0ðx; yÞ

ð8Þ

where ðu0; v0Þ are in-plane displacements of a point on

the mid-plane (i.e., z ¼ 0) and w0 represents the

transverse displacement. /x and /y represent the

rotations of a transverse normal line at the mid-plane

(/x ¼
ou
oz and /y ¼

ov
oz) and h represents the thickness of

the plate.

3.1.2 Strain–displacement relations

The strain components for the linear strains of third-

order shear deformation theory are

exx

eyy

cxy

8

>

<

>

:

9

>

=

>

;

ð9Þ

Fig. 2 Undeformed and

deformed shape of the plate

according to TSDT
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cyz

cxz

� �

ð10Þ

where

e
ð0Þ
xx

e
ð0Þ
yy

c
ð0Þ
xy

8

>

<

>

:

9

>

=

>

;

¼

ou0
ox
ov0
oy

ou0
oy

þ
ov0
ox

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

;

e
ð1Þ
xx

e
ð1Þ
yy

c
ð1Þ
xy

8

>

<

>

:

9

>

=

>

;

¼

o/x

ox
o/y

oy
o/x

oy
þ
o/y

ox

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

ð11Þ

e
ð3Þ
xx

e
ð3Þ
yy

c
ð3Þ
xy

8

>

<

>

:

9

>

=

>

;

¼ �c1

o/x

ox
þ
o2w0

ox2

o/y

oy
þ
o2w0

oy2

o/x

oy
þ
o/y

ox
þ 2

o2w0

oxoy

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

ð12Þ

c
ð0Þ
yz

c
ð0Þ
xz

( )

¼
/y þ

ow0

oy

/x þ
ow0

ox

8

>

>

<

>

>

:

9

>

>

=

>

>

;

;
c
ð2Þ
yz

c
ð2Þ
xz

( )

¼ �c2

/y þ
ow0

oy

/x þ
ow0

ox

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð13Þ

c2 ¼ 3c1, c1 ¼
4
3h2

. As it can be seen in Eq. (10), the

transverse shear strains vary quadratically through the

thickness of the plate.

3.1.3 Governing equations

The expressions for the strain energy and the kinetic

energy can be written as

Z

wes dV ¼
1

2

Z

A

Z h
2

�h
2

�

rxxexx þ ryyeyy þ rxycxy þ rxzcxz þ ryzcyz

�

dA dz

ð14Þ

Z

wek dV ¼
1

2

Z

A

Z h
2

�h
2

q
�

_u2 þ _v2 þ _w2
�

dA dz ð15Þ

where _u; _v; _w represent the time derivatives of

u, v, w respectively.

The governing equations can be obtained by

invoking the Euler equation. For a given functional I

and Lagrangian L of the form,

I ¼

Z

X

Lða;raÞ dX ð16Þ

the Euler equation is written as,

dI

da
¼

oL
oa

�r �
oL
ora

¼ 0 ð17Þ

The Euler equation leads to the following two sets of

governing equations

oNxx

ox
þ
oNxy

oy
¼ I0 €u0 þ J1 €/x � c1I3

o €w0

ox
ð18aÞ

oNxy

ox
þ
oNyy

oy
¼ I0 €v0 þ J1 €/y � c1I3

o €w0

oy
ð18bÞ

o �Qx

ox
þ
o �Qy

oy
þ c1

o2Pxx

ox 2
þ 2

o2Pxy

ox oy
þ
o2Pyy

oy 2

� �

þ q

¼ I0 €w0 � c21I6

�o2 €w0

ox2
þ
o2 €w0

oy2

�

þ c1

h

I3

�o€u0
ox

þ
o€v0
oy

�

þ J4

�o €/x

ox
þ
o €/y

oy

�i

ð18cÞ

o �Mxx

ox
þ
o �Mxy

oy
� �Qx ¼ J1 €u0 þ K2

€/x � c1J4
o €w0

ox

ð18dÞ

o �Mxy

ox
þ
o �Myy

oy
� �Qy ¼ J1 €v0 þ K2

€/y � c1J4
o €w0

oy

ð18eÞ

and

hGc

l

�

/� l2r � r/
	

¼ 2ð1� gÞð1� /ÞHþ ð19Þ

where the in-plane force resultants (Nab), moment

resultants (Mab), higher order stress resultants (Pab)

and the transverse force resultants (Qa;Ra) are given

by

( Nab

Mab

Pab

)

¼

Z h
2

�h
2

gð/Þrab

( 1

z

z3

)

dz;

(

Qa

Ra

)

¼

Z h
2

�h
2

gð/Þraz

(

1

z2

)

dz

ð20Þ

with c1 ¼
4
3h2

; c2 ¼ 3c1, �Mab ¼ Mab �
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c1Pab; and �Qa ¼ Qa � c2Ra and the mass

moments of inertia are given by

Ii ¼

Z h
2

�h
2

qðzÞidz ði ¼ 0; 1; 2; 3; 4; 6Þ;

K2 ¼ I2 � 2c1I4 þ c21I6 and Ji ¼ Ii � c1Iiþ2; ði ¼ 1; 4Þ

ð21Þ

a; b take the symbols x and y and

Hþ

t 2 ½0; s�
¼ max wþ

s ðe; tÞ. It ensures the crack irre-

versibility and facilitates the decoupling of two sets of

governing equations.

The positive energy calculation is done as follows

wþ
es ¼

1

2
k
�

htrðeÞiþ
	2

þ ltr
�

e
þ
�2

�
k2

2ðkþ 2lÞ

�

htrðeÞiþ
	2

þ
1

2
lðc2xz þ c2yzÞ

ð22Þ

The above formula draws the motivation from the

work of Kiendl et al. [57] where the authors derived it

for the Kirchhoff–Love plate theory. The above split is

based on the spectral decomposition of the strain

tensor; e ¼
P3

i¼1heii nibni; e� ¼
P3

i¼1heii� nibni

where ei and ni are the principal strains and their

directions respectively, k; l are Lamé parameters and

hai� ¼ 1
2
ða� jajÞ.

3.1.4 Finite element model

Finite element model of Eq. (19) is developed in this

section. We refer to the works of Raghu et al. [66, 67]

for the discretized weak form of the Eq. (18). The

weak forms for the evolution Eq. (19) can be obtained

as follows:
Z

A

dw
�hGc

l
ð/� l2M/Þ � 2ð1� gÞð1� /ÞHþ

	

dA ¼ 0

ð23Þ

where dw is the weighting function. The use of

divergence theorem further leads to the following

Z

A




dw
hGc

l
/þ hGclr/ � rdw� 2ð1� gÞð1� /ÞHþdw

�

dA�

I

oA
hGcl dwr/ �^dS ¼ 0

ð24Þ

where r̂epresents the unit outward normal vector.

3.1.5 Finite element approximation

The primary variable / can be approximated using

Lagrangian interpolation functions in a given finite

element as:

/ ¼
X

n

j¼1

/jNj ð25Þ

where Nj are the Lagrange interpolation functions and

n is the total number of degree of freedom in a given

element. Substitution of this approximation in the

weak form i.e Eq. (24), leads to the following

discretized form of the weak form

½K�f/g ¼ f ð26Þ

The stiffness matrix and force vector are given as

K
//
ij ¼

Z

A

nhGc

l
NiNj þ hGcl

�oNi

ox
oNj

ox
þ
oNi

oy
oNj

oy

�

þ 2ð1� gÞHþ NiNj

o

dxdy

ð27Þ

f
/
i ¼

Z

A

2ð1� gÞHþNi dx dy ð28Þ

The discretized weak form of the elastic equilibrium

equation (see [66] and [68] for more details) using

TSDT suggests that the finite element should possess 8

no. of degree of freedom at each node. These dof’s are

approximated in the following manner:

uðx; y; tÞ �
X

m

j¼1

UjðtÞN
ð1Þ
j ðx; yÞ ð29Þ

vðx; y; tÞ �
X

m

j¼1

VjðtÞN
ð1Þ
j ðx; yÞ ð30Þ

wðx; y; tÞ �
X

n

j¼1

�DjðtÞujðx; yÞ ð31Þ

/xðx; y; tÞ �
X

n

j¼1

X jðtÞN
ð2Þ
j ðx; yÞ ð32Þ

/yðx; y; tÞ �
X

n

j¼1

YjðtÞN
ð2Þ
j ðx; yÞ ð33Þ
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4 Numerical implementation

The two sets of governing equations (Eqs. 18 and 19)

are solved in a staggered manner in which both the

displacement and phase field are solved for alterna-

tively. Newmark’s method has been used to solve the

finite element equations of the elastic equilibrium

equation (18). In general, the equilibrium equation

should be satisfied at any time t, i.e.

�

KD


t
þ
�

M €D


t
¼ Ft ð34Þ

where K, M and F denote the stiffness matrix, mass

matrix and force vector respectively.

According to Newmark’s method the time deriva-

tives are approximated in the following manner

_Dtþ1 ¼ _Dt þ a1 €Dt þ a2 €Dtþ1 ð35Þ

Dtþ1 ¼ Dt þ _DtDt þ
1

2

�

ð1� cÞ €Dt þ c €Dtþ1



ðDtÞ2

ð36Þ

where a1 ¼ ð1� aÞDt and a2 ¼ aDt, and a; c are the
Newmark’s constants which control the accuracy and

stability of the scheme. From Eq. (36) one can write

€Dtþ1 ¼ a3ðDtþ1 � DtÞ � a4 _Dt � a5 €Dt ð37Þ

where a3 ¼
2

cðDtÞ2
; a4 ¼ a3Dt; a5 ¼

1

c
� 1. In this

work, the values of Newmark’s constants a and c are

taken as 0.5, which correspond to the constant average

acceleration scheme. These constants are known to

give the unconditionally stable results for the linear

problems. Premultiplying Eq. (37) with Mtþ1 and

making use of Eq. (34), one can get the effective

stiffness and force vectors as follows:

K̂tþ1Dtþ1 ¼ F̂tþ1 ð38Þ

where

K̂tþ1 ¼ Ktþ1 þ a3Mtþ1 ð39aÞ

F̂tþ1 ¼ Ftþ1 þMtþ1

�

a3Dt þ a4 _Dt þ a5 €Dt

	

ð39bÞ

The staggered algorithm can be described as

follows

For j ¼ 1 to number of time steps

(a) Freeze / and solve for u (initialize displace-

ments and velocities) using the elastic equilib-

rium equation.

(b) CalculateHþ , then solve for / using the Eq. 26

end

5 Numerical examples

In this section, numerical examples are presented to

study the damage evolution in thick plates subjected to

transient dynamic (uniformly distributed ) load. For

some of the examples presented in this section, SS-2

boundary conditions (see, Fig. 3) are considered [69].

In SS-2 boundary conditions, the following quantities

are constrained. On the edges parallel to x axis, the

inplane displacement along the y axis, transverse

deflection and the shear deformation (rotation along y

axis), Nyy and �Myy and on the edges parallel to y axis,

the inplane displacement along the x axis, transverse

deflection and the shear deformation (rotation along x

axis), Nxx and �Mxx are constrained.

Quarter plate is modeled in cases where symmetry

is present and the results are assembled to see the full

plate visualization. Four noded conforming rectangu-

lar finite elements are used to model the geometry of

the plate. Each node of the element has 8 nodal

unknowns (along with the phase field variable) as

shown in Fig. 4. Selective integration scheme is used

x

y

a

b

SS-2

y = 0 and y = b

v0 = w0 = φx = 0

Nxy = M̄yy = 0

x = 0 and x = a

u0 = w0 = φy = 0

Nxy = M̄xx = 0

Fig. 3 SS-2 Boundary conditions
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to evaluate the stiffness matrix. The selective integra-

tion scheme includes 2� 2 Gauss rule for the bending

terms and 1 � 1 Gauss rule for the shear and

membrane terms. As it is shown in the Miehe et al.

[64], the length scale parameter should be at least

twice the element size to resolve the localized zone

properly. This is ensured in all the examples presented.

For all the examples considered, the following mate-

rial properties are used:

E ¼ 2:1� 106 N/cm2, G ¼ 0:84� 106 N/cm2, -

and q ¼ 8� 10�6Ns2=cm4:

5.1 Example 1: Comparison of hybrid model

and No T–C model

In this example, a square plate of dimensions 25 cm�

25 cm is considered for the analysis. SS-2 boundary

conditions are applied and a/h is taken as 5. Uniformly

distributed (spread over the area of 0.5 cm� 0.5 cm at

the center of the plate ) pulse load (see Fig. 5) with

q0 ¼ 1800 N/cm2 is applied. The value of length scale

parameter is taken as 0:5 cm. Number of finite

elements used are 10,000.

Figure 6 shows the central deflection versus time

graph corresponding to hybrid model and no tension–

compression (T–C) split model. As it can be seen, the

two models clearly show the difference in predicting

the mechanical response with time. The discrepancy is

owing to the difference in the calculation of history

variable. In hybrid model, the history variable is

calculated based on the positive part of the strain

energy where as in No T-C model, it is taken equal to

the total strain energy i.e. without splitting the strain

energy into tensile and compressive parts. It should

also be noted that the calculation ofHþ depends on the

total strain which varies over the thickness, and not on

the typical midsurface strain. Therefore, the degrada-

tion of the stiffness can vary over the thickness

although the degradation function is uniform. In order

to capture the shear deformation effects, TSDT has

been used. This allows for the correct degradation of

the positive part of the strain energy, which is essential

for the prediction of damage.

Figure 7shows the deflection versus time plot with

and without considering the degradation of the stiff-

ness. In the model with no damage, the value of

degradation function is taken equal to one. As

expected, the model with consideration of damage

predicts more deflection than the model without

damage.The variation of damage at central point is

plotted in Fig. 8. The irreversibility of damage is

ensured by the increasing nature of Hþ with time,

therefore damage increases with time and becomes

constant after reaching the value 1. The damage

evolution starts from the first step of the loading itself

(of course, the value of damage will be very small) and

continues to grow as long as there is a driving force,

which in this model is based on the history parameter

Hþ. Once the material is fully damaged at a particular

point (i.e. / becomes 1), it remains constant at that

point. Since the dissipated energy is continuously

growing, and most activity of driving force is

happening at the diffused interface between the

phases, the interface evolves, the damage at points

other than the loading foot print also keeps increasing.

This explains the fact that the damage spreads, even

when the material under the loading footprint is

completely damaged. Figure 9 shows the differences

in the damage profiles of hybrid and the No T-C

model. It is seen that at a given time step, the hybrid

model predicts more damage compared to the No T-C

(u, v, w, ∂w
∂x

, ∂w
∂y

, ∂2w
∂x∂y

, φx, φy), φ

x

y

Fig. 4 Four-noded rectangular element

Fig. 5 Pulse load considered for the analysis
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split model. Here, in the proposed approach, the

calculation of history parameter i.e.Hþ is done based

on the positive part of the spectral decomposition of

the tension–compression split. This in turn, depends

on the total strain which varies over the thickness, and

not on the typical midsurface variables. Therefore, the

degradation of the stiffness can vary over the thickness

although the degradation function is uniform. This

Fig. 6 Central deflection versus time graph predicted by hybrid and No T-C split models

Fig. 7 Central deflection

versus time with and with

out considering damage
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allows for the correct degradation of the positive part

of the strain energy, which is essential for the

prediction of damage. A similar study has been

reported in literature, where in an attempt was made

to consider the through thickness variation. Kiendle

et al. [57] compared the damage variation through the

thickness in a simply supported beam using both the

solid and the KL shell elements . As it can be seen from

the discussion, the solid element also predicts insignif-

icant variation of damage through the thickness. This

justifies the present simpler formulation. As the shear

deformations play a significant role on the mechanical

response of thick plates, third order shear deformation

theory which can accurately predict the response

compared to the classical and first order shear

deformation theory has been used. The accurate

prediction of shear strains in turn leads to correct

prediction of the history parameter Hþ, which is the

driving force for evolution of damage.

It should also be noted that the proposed phase field

model, as is the case with the other existing models,

predicts the damage from the first step of the loading

itself (however, the value of damage will be very

small) and continuous to grow as long as there is a

driving force i.e.Hþ. In the present case the total steps

are chosen by trials, when all the time steps are

completed the load control loop is stopped. However,

in the static analysis, one can obtain the load-

displacement graph as well as the damage profile,

and find the peak load the structure can carry. This will

give an indicator for stopping the time steps. In case of

dynamic analysis, one has to make the decision on

where to stop the simulation by quantitative measure-

ment of the damage variable. It is observed from the

results that, once the material is fully damaged at a

particular point (i.e. / becomes 1), the value of

damage remains constant at that point. Since the

dissipated energy is continuously growing, and most

activity of driving force is happening at the diffused

interface between the phases, the interface evolves, the

damage at points other than the loading foot print, also

keeps increasing.

Fig. 8 Evolution of / at the center of the plate

(a) (b)

Fig. 9 Evolution of damage predicted by a hybrid model and b model with no tension–compression split at a given time step
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5.2 Example 2 : Analysis of square plate

A square plate of dimensions 25 cm � 25 cm is

considered for the analysis. The plate is subjected to an

uniformly distributed load that varies with the time as

shown in Fig. 10. The load is considered to be acting at

the center of the plate (spread over the area of 0.5 cm

� 0.5 cm). SS-2 boundary conditions are considered.

An a=h ¼ 5 is considered for the analysis. The value

of length scale parameter is taken as 0:5 cm. The plate

is discretized, a sufficiently refined mesh with a total

number of 10,000 finite elements is considered for

analysis.

Figure 11 shows the evolution of damage with the

time. As it can be seen, the damage evolution starts at

the center of the plate i.e. exactly under the loading

footprint and propagates towards the corners of the

plate as the time progresses. The damage value (/) at

given point remains constant after reaching the value

1. The driving force behind the evolution of damage is

attributed to the available dissipated energy therefore

the damage spreads in the direction in which the

dissipated energy is maximum. Figure 12 shows the

variation of central deflection with the time.

5.3 Example 3: Analysis of simply supported

rectangular plate

A rectangular plate of dimensions 25 cm � 12.5 cm is

considered for the analysis. SS-2 boundary conditions

are considered. An a=h ¼ 5 for the plate is considered

with a being equal to 25cm. Uniformly distributed

load (with time variation as shown in Fig. 10) is

assumed to spread over the area of 0.5 cm� 0.25 cm at

the center of the plate. The value of length scale

parameter is taken as 0:5 cm. Number of finite

elements used are 10,000.

Figure 13 shows the evolution of damage at

different stages of time and Fig. 14 shows the

variation of central deflection with time. As it can be

seen, the evolution starts at the center of the plate i.e

under the loading footprint and propagates towards the

edges of the rectangular plate.

5.4 Example 4: Analysis of rectangular cantilever

plate

In this example, a rectangular cantilever plate of

dimensions 12.5 cm � 6.25 cm is considered. The

value of a/h is taken as 5 (a being the length of the

plate). Uniformly distributed (spread over the area of

0.25 cm � 0.25 cm) time varying load as shown in

Fig. 10 Time variation of

uniformly distributed load
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Fig. 10 is considered to be acting at the center of the

free edge of the cantilever of the plate. A uniform

mesh of 10,000 elements is used.

Figure 15 shows the evolution of the damage. As it

can be seen, the damage starts evolving at the center of

the free end and gradually progresses towards the fixed

end of the plate. It is also observed that the rate of

increase in damage is more at the fixed end due to the

more energy dissipation. Figure 16 shows the corre-

sponding central deflection with time graph.

6 Conclusions

A new hybrid phase field model is developed to study

the damage in thick plates subjected to transient

(a) (b)

(c) (d)

Fig. 11 Evolution of damage in a square thick plate a–d subjected to SS-2 boundary conditions under transient dynamic load acting at

the center
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Fig. 12 Central deflection

versus time graph

Fig. 13 Evolution of damage at different stages of loading in thin rectangular plate subjected to SS-3 boundary conditions
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Fig. 14 Central deflection

versus time graph

(a) (b)

(c) (d)

Fig. 15 Evolution of damage a–d at different stages of loading in thick rectangular cantilever plate
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dynamic loads. To capture the shear deformation

effects on the overall behavior, Reddy’s TSDT is used.

The governing equations i.e. the momentum equation

and the phase field evolution equation are presented

for the proposed hybrid phase field model. The

governing equations are solved using a staggered

solution algorithm in a finite element framework. The

proposed hybrid model restores the linearity of the

equations of motion with in the staggered approach

and is more physically appealing as the evolution of

damage is governed by the positive part of the strain

energy. The proposed hybrid model and No T-Cmodel

are compared and found to be indifferent in predicting

the mechanical response. Comparison between the

hybrid model and the model without degrading the

stiffness of the plate has also been made. The

numerical examples also show the efficiency of the

hybrid phase field model in finding the nucleation and

propagation of damage under transient dynamic loads.
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