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Abstract

Wind energy is running well ahead of its peers to deal with the demand–supply and

environmental crisis due to fossil fuels. However, continuous exploitation of land led

wind farms built in close proximity of dwellings of human beings, restricted zones,

causing adverse effect on health and the environment. In this work, using a widely

used model for wake and acoustic model (ISO-9613-2), the optimal number and loca-

tions of turbines in a farm has been determined while meeting several conflicting

objectives such as noise propagation, energy, and cost. An index-based decomposi-

tion and repair strategy (iDRS) using different indices for grid locations and per-

forming repair on chromosomes to enhance the performance of convergence has

been proposed as solution methodology. Comparing with a well-established case

study, the methodology is applied next to another realistic case, where the effects of

the presence of practical constraints on the optimal layout are demonstrated. A

designer can select a layout from several choices from the obtained Pareto set of

solutions based on the permissible noise limits, cost obligations, and the extent of

harnessed energy.
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1 | INTRODUCTION

The renewable sources of energy are slowly taking the center stage as the conventional sources are depleting as well as showing environmental

concerns. Amidst several renewable energy options, the wind energy turns out to be the leader because of the associated attractive features such

as lower operational cost, cleaner production, and easy availability.1 The popularity is reflected through the remarkable attention wind energy has

gained among researchers, industries, and federal policies.2,3 Following the uprising trend, the Global Wind Energy Council (GWEC) has recorded

�539 GW of overall installed capacity of wind farms at the end of 2017 and predicted the same to rise by �55% by 2022.4 Generally, energy

from wind is trapped using group of turbines placed inside a wind farm, which convert the kinetic energy of wind into electrical form of energy.

However, the layout optimization (LO) of wind farm (i.e., determination of both optimum number and position of wind turbines inside a wind

farm), also known as micrositing, is a challenging task. Following the myth of more energy can be generated with more number of turbines, wind

farm developers often install more turbines inside wind farms causing effectively a major reduction in wind speed due to the inter turbine wake

effects leading to overall reduction in power production.5 Also, the presence of different type of constraints such as noise control, investment

cost, inter-turbine distance, longevity of the turbine, and visual impacts adds further complexity to the problem.6 Apart from these, development

of wind farms in the close proximity of human dwellings, natural habitats (rivers, lakes forests, etc.), or forbidden zones (where for different rea-

sons turbines cannot be placed) also restricts its wide acceptance.7
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Two primary ways of approaching the LO problem are (i) discretizing the given wind farm area into uniform grids and thereafter consid-

ering the grid mid or junction points as the potential turbine locations (viz. grid approach)8–10 and (ii) using any coordinate in the given

wind farm area without grid restrictions (viz. no-grid approach).11–13 Guessing a value for the maximum number of turbines that can be

accommodated inside a wind farm, an equivalent number of coordinate locations (continuous variables) are selected, and a set of binary

variables (1 and 0 to signify presence and absence of turbine, respectively) is associated with each of these locations. One can finally deter-

mine the actual number (summing the binaries) and location of turbines in the layout while optimizing over these continuous and binary

forms of variables, in the presence of many other constraints. One such constraint could be a prespecified inter-turbine distance, which

helps to avoid wake interactions between the turbines; however, this might restrict the turbine numbers that can be placed optimally in a

farm.14 These formulations are known as mixed integer nonlinear programming problems (MINLPs) that might suffer from the combinatorial

explosion with an increase in problem size (known as NP hardness). Though it might appear that the number of alternative locations avail-

able to the grid approach is significantly less than that of the no-grid approach, the number itself could be staggering for a reasonable grid

size, where further increase in grid size has to face the trade-off between accuracy and execution time. On the other hand, dropping the

binary variables from the formulation, that is, determination of optimum positions of a fixed number of turbines (nonlinear programming

problems, NLP), makes the problem relatively easier to solve.

Following the grid approach, Mosetti et al.8 used the binary coded single objective Genetic Algorithm (GA) to find the locations of tur-

bines while minimizing the weighted form of cost–power as a single objective problem. These results were further improved by Grady

et al.9 with modification in the objective function and optimization parameters. Mimicking an exponential velocity decay in the wake model,

Parada et al.10 proposed the Gaussian wake model to maximize the annual energy output of a wind farm. On the other hand, using no-grid

approach, where turbines can be freely placed in a farm, Wan et al. reported an improvement of �5–7% in power production as compared

with the grid results utilizing the real coded GA11 and Gaussian particle swarm optimization (GPSO)12 approaches, respectively. Gu and

Wang13 utilized a systematic no-grid approach to deal with irregular shape of a wind farm, where a combination of single, multiple bound-

ary constraint models, and the ray intersection method was proposed to accomplish the wind farm micrositing in the presence of boundary

constraints. Parallely, efforts have also been spent to increase the power production out of a wind farm by adopting different mathematical

techniques and by controlling the characteristics of wind generators (such as generator torque, blade pitch and tip ratio, hub height, and

yaw alignment).2,15

However, most of these above formulations considered the LO problem with known number of turbines (NLP problem). Mittal et al.16

reported better quality solutions adopting an iterative approach utilizing both grid and no-grid based methods. In this approach, at every iteration,

evolutionary methods at first find both number and locations of turbines utilizing a grid framework, and the classical methods are used next to

improve only the locations keeping the number of turbines fixed. Pookpunt and Ongsakul17 utilized the modified binary particle swarm optimiza-

tion algorithm to optimally locate the wind turbines as well as their types in a layout while aiming for maximum operating income. Furthermore,

major challenges like control of noise,8,9,18–20 presence of forbidden zones (lakes, roads, etc.),21,22 wind state forecasting,23 and uncertainty in the

wind distribution24etc. were also considered to perform the LO.

In this work, the target is to solve the LO problem in an efficient manner. As opposed to previous approaches, a multiobjective optimization is

studied here considering three important but conflicting objectives simultaneously (i.e., maximization of energy generation, minimization of noise

propagation, and the minimization of investment cost). Instead of handling an enormously large number of candidate sets in case of the continu-

ous formulation, a grid-based approach has been adopted here with an aim of reducing the computational cost and improving the solution quality.

Representing the grid points with indices, an index-based decomposition and repair strategy (iDRS) has been proposed in this work to solve the

LO problem along with a performance enhancement repair policy. Apart from this, the performance of the proposed algorithm, which is

implemented within the platform of NSGA II,25 is further improved by refreshing the matured population with certain fresh candidate solutions to

avoid the premature convergence of the algorithm. After implementing the novel concepts of repair strategy and rejuvenation of solution pool

with fresh candidate solutions, the proposed algorithm is applied on the realistic case with real-time wind speed and directional distribution,17 and

the effects of the presence of practical constraints such as human dwelling and irregular forbidden zone are analyzed on the optimal layouts of

wind turbines inside a wind farm. The remaining part of the paper goes as follows. The calculation of wake modeling, power production, invest-

ment cost, and noise propagation is shown in Section 2 whereas multiobjective formulation of cost–power is described in the following section.

The index-based approach is presented in Section 4. The application of proposed approach on representative case studies and their outcomes are

shown in Section 5, and finally, Section 6 concludes the study.

2 | WAKE, POWER, AND NOISE MODELING

Because of wake interference caused among turbines in a cluster, a downwind turbine observes a different wind speed compared with the incom-

ing free stream wind speed (u
∞
) inside a wind farm. The model2 for linear wake propagation behind a wind turbine is considered to compute the
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reduced velocity faced by the downwind turbine (Figure 1). In this wake model, the effect of upwind turbine “p” at a distance of (Dpq) on the

downwind turbine “q” can be represented as follows8:

Δupq =u∞ × 1−
2× α

1+Kw × Dpq=Rpð Þð Þ2

 !" #

ð1Þ

Here, (Δupq) represents reduction in speed of wind experienced by a downwind turbine “q”; entrainment coefficient and downstream rotor radius

are represented by Kw and Rp, respectively. According to the Betz relation, downstream rotor radius (Rp), the coefficient of thrust (CT), rotor radius

(Rt), and axial induction factor (α) can be related as follows9:

Rp =Rt ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−α

1−2× α

r

, α= 0:5× 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−CT

p

� �

ð2Þ

And, the wake decay constant can be expressed as follows:

Kw =
0:5

ln Zturb=Zroð Þ
ð3Þ

where Zturb and Zro are the turbine hub height and surface roughness of a wind farm, respectively. In reality, the actual velocity deficit (udef) at the

downwind turbine is equal to the sum of the velocity deficits (Δupq, Equation 1) induced by the number of upwind wind turbines (Nupwind), which

can be calculated using the following expression 8:

1−
udef
u∞

� �2

=
XNupwind

i = 1, i 6¼q
1−

Δuiq

u∞

� �2

ð4Þ

Moreover, the variation in wind speed (uvar) at different altitudes (Zalt) with respect to reference values of speed (uref) and height (Zref) can be cal-

culated using power law17 as follows:

F IGURE 1 Schematic view of linear wake

propagation between turbines [Colour figure can

be viewed at wileyonlinelibrary.com]
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uvar =uref ×
Zalt

Zref

� � 1=ln Zalt=Zoð Þð Þ

ð5Þ

Generally, the variants of wind speed such as cut-in (ucin), cut-out (ucout), rated (urt), actual deficit wind speed (udef), and rated power of a turbine

(Prt), are used to calculate the power output (in kW) of a turbine (Pwr) using turbine power curve.16 Moreover, the product of individual turbine

power (Pwr) and the frequency distribution of occurrence of wind (Freqno) summed over wind coming from all directions at different wind speeds

for all turbines provides the total power production (Ptotal) in a wind farm (6):

Ptotal =
XNT

m=1

X360o

n=1

Xumax

o=1
Freqno θn,uoð Þ×Pwrno θn ,udef,oð Þ

h i

ð6Þ

Here, “o,” “n,” and “m” are the subscripts to perform discrete summation over wind speed (u), direction (θ), and number of turbines (k), respectively.

NT and umax are the total number of turbines present in a wind farm and maximum value of wind speed bins, respectively. The frequency of occur-

rence of wind (Freqno) at different directions and speeds is presented as a probability mass function as shown in Figure 2. The entire range of wind

speed (3–25 m/s) and direction (e.g., 0–360�) is divided into different numbers of adjacent discrete bins, that is, there are “n” bins for direction

(0–30�, 30–60�, etc.) and “o” bins for speed (3–4, 4–5, etc.). The frequency of occurrence of wind due to a particular combination of speed and

direction bin is expressed as the ratio of wind occurrences in those bins and the total number of wind occurrences due to all bin combinations. In

order to compute the individual power output of a particular turbine (say m), at first, the actual input wind speed deficit (Equation 4) is calculated

at the selected turbine, which can either be influenced by no upwind turbines or Nupwind numbers of upwind turbines depending on the location

of a turbine. Next, using the turbine power curve, provided by a turbine manufacturer, the corresponding power generated by a wind turbine is

calculated. Thus, the total power generated by a selected turbine (say m) is given as the product of individual power and the frequency of occur-

rence of wind flow at a particular direction (n) and at a particular wind speed bins (o) in a wind farm. In a similar fashion, this exercise is performed

for all the wind speeds and directions of the wind flow and summed over the total number of turbines to measure the total power production

(Ptotal) in a wind farm for a specific turbine layout.

Also, the annual energy production (AEP) (in kWh) of a wind farm is given as follows:

AEP=8760×Ptotal ð7Þ

For investment cost calculation, the contributions of fixed cost and variable cost are assumed to be in the ratio of 2:1 on yearly basis and can be

expressed as follows8:

cost =NT ×
2

3
+
1

3
× expð−0:00174 ×N2

T

� �

ð8Þ

Here, noise propagation is calculated using ISO-9613-2 acoustic model.2 As per this model, the sound pressure level (SPL), LP, at every location

of receptor is given as follows:

F IGURE 2 The frequency of

occurrence distribution at

different wind states (speed and

direction) for a realistic case

[Colour figure can be viewed at

wileyonlinelibrary.com]
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LP = Lw +DC−Af ð9Þ

where f represents frequency value of each band (octave), Lw represents octave-band sound power from source (100 dBA),2 DC is the directivity

correction for non-omni directional sound sources, and Af is for different attenuation effects of octave band. In general, hearing risk at any speci-

fied location can be represented as (A-weighted level (LP,avg))

LP,avg =10× log
XNs

i = 1

X8

j = 1
100:1× LP i,jð Þ+Af jð Þð Þ

� �� �

ð10Þ

where index “j” is for eight octave band frequencies and NS is the number of sound sources. Considering the Euclidean distance between the

sound source(s) and receptor(s), the estimated SPL can be given as follows:

LP dirð Þ= Lw−10× log10 2πd2ir

� �

−β× dir ð11Þ

where the indices “i” and “r” are for individual sound source and receptor locations, respectively; dir is the Euclidean distance between the wind

turbine (sound source) and receptors (eg., a human habitat); β represents the coefficient of sound absorption (0.005 dB/m).2 For multiple recep-

tors, LP,avg is calculated separately for each sound source using (10) and (11). Here, SPL is referred as “Noise”, the human habitats inside or in the

neighborhood of wind farms are assumed to be considered as noise receptors and wind turbines as sound sources, respectively.

3 | PROBLEM FORMULATION

The problem of determination of optimal layouts while considering the impacts of presence of practical constraints inside a wind farm has been

targeted here. Since it is established that there exist trade-offs between the power–cost8 and power–noise,18 according to the principles of multi-

objective optimization (MOO),25 power, cost, and noise are conflicting to one another, when considering all of them, simultaneously. Hence,

MOO formulation simultaneously maximizing power and minimizing noise level and cost of investment can be mathematically expressed as

follows:

Objective : min
�x,�y,�bð Þ −Ptotal Lxyð Þ, cost Lxyð Þ, Noise Lxyð Þð Þ ð12Þ

subject to

G1 xp,yp
� �

=Dsp ×Dro –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xp−xqð Þ2− yp−yq
� �2

q

≤08p,q = 1,…,NT s:t:p 6¼q ð13Þ

Decision variable set : xp,yp,b ð14Þ

Here, Ptotal, cost, and Noise are presented in Equations 6, 8, and 10, respectively; �x,�y,&�b are the continuous (location coordinates) and binary

decision variables; Lxy is the layout with NT number of turbines (8b = 1) and (xp, yp) are turbine locations for this layout; G1(xp, yp) is the constraint

for interturbine distance (ITD) to avoid wake loss; Dsp is multiplier in ITD; Dro is for rotor diameter. After discretizing the wind farm using certain

grid resolution, the location coordinates of turbines are represented by indices Idx(xp, yp) (p = 1 …NT). They replace the location coordinates and

act as modified decision variables. Assuming NGRIDS number of grids in the discretized farm, a decision variable set of cardinality NL is assumed.

This NL is the number of turbines that can be accommodated in the farm. Each of NL index variable is distinct and can assume any index in

between 1 and NGRIDS. The binary variable ("b") element in the set of cardinality NL designates the absence or presence of turbines at these index

locations (assuming either 0 or 1, respectively). Each index variable, which is integer in nature, is connected with a continuous coordinate in the

wind farm. Since both integer (binary) and continuous form of variables are present, this formulation belongs to the category of MINLP.

Furthermore, in the realistic case studies considered, the effects of presence of practical entities such as human habitats and forbidden zone

inside a wind farm are scrutinized on the optimal results. Human habitats, as explained in Section 2, can be represented by sound receptors inside

a wind farm, whereas a new regulatory constraint (G2) can be used to represent the forbidden zone. Using a single boundary ray

intersection method,13 the presence or absence of wind turbines inside a restricted zone is evaluated. In this method, wind turbine(s) are assumed

MITTAL AND MITRA 5



as point(s) and restricted zone as a polygon (convex or concave). At first, the intersection point(s) (Zq) between the vertical half line drawn from

the selected ith wind turbine locations (xi, yi) (i = 1, …, NT) and the edge(s) (exq,exq+1) (q = 1, …,total number of edges) of the restricted zone are

evaluated using two-point slope formula as shown in (15):

zq xið Þ=
eyq+1−eyq
exq+1−exq

xi−exqð Þ+ eyq ð15Þ

Here, exq and eyq (q = 1, …,total number of edges) represent the x and y-coordinates of an edge of a restricted zone. By keeping the check on

whether the selected turbine position point lies inside (value = 1) or outside (value = 0) the edge, the number of intersections (Δq) is calculated for

each edge and then summed up as total number of intersections (λ(xi)), which is given by

Δq =
1,yi < zqðxiÞ

0,otherwise

	

, λðxiÞ=
X

q=1
Δq ð16Þ

Furthermore, depending on the total number of intersections, a modulo operator is applied to determine the value of intersection criteria

as shown in (17). This criterion is calculated based on the even or odd nature of value for the total number of intersections; that is, if the

total number of intersections is an even number, the modulo operator returns zero value as an outcome. Thus, the value of inter-

section criteria equals to zero means the point is lying outside the polygon. This is because the vertical half line drawn from the point out-

side the polygon would make an even number of intersection with all polygon edges considered together. On the other hand, the value of

the intersection criteria will be 1 in case a point is lying inside the polygon (due to an odd number of intersections by vertical half line with

all polygon edges considered together).13

ϕ xið Þ=
0, mod λ xið Þ,2ð Þ=0

1, otherwise

	

ð17Þ

This whole process is repeated for all turbines, and the constraint G2 is calculated as shown in (18). It is to be noted that the constraint G2 is sup-

posed to be satisfied, when no turbine is present inside a restricted zone.

G2 =
PNT

i = 1
ϕ xið Þ=NT

≤ 0 ð18Þ

As an unconstrained problem is relatively easier to solve, the above constrained problem is modified as unconstrained problem using modifying

parameters (M1 and M2) as shown in (19)–(25)18:

σ1 xr,yrð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xr−xsð Þ2− yr−ysð Þ2
q

Dspace ×Dro
8r,s = 1,…,NT s:t: r 6¼ s ð19Þ

ψrs xr,yrð Þ=
σ1 xr,yrð Þð Þ2 , σ1 xr,yrð Þ<1

1, otherwise

( )

ð20Þ

M1 =
Y

ψrs xr,yrð Þð Þ ð21Þ

M2 =
1, G2 ≤0

G2 , otherwise

	

ð22Þ

P1total Lxyð Þ= Ptotal Lxyð Þ×M1 ×M2 ð23Þ
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cost1 Lxyð Þ= cost Lxyð Þ= M1 ×M2ð Þ ð24Þ

Noise1 Lxyð Þ= SPL Lxyð Þ= M1 ×M2ð Þ ð25Þ

ModObjective : min
�x,�y,�bð Þ −P1total Lxyð Þ,cost1 Lxyð Þ,Noise1 Lxyð Þð Þ ð26Þ

where σ1(xr, yr), ψrs(xr, yr) are the normalized parameters used to convert the value of constraint G1 (13) in the scale of 0 to 1. M1 and M2 are the

modified parameters that are multiplied or divided to further increase, decrease, or to penalize (in case of constraint violation, i.e., (σ1(xr, yr) < 1

and G2 > 0) the objective function. This modification enables lower values of power, higher values of cost, and noise in case of constraint viola-

tion, which makes infeasible solutions inferior compared to the feasible solutions in terms of objective function. This helps the optimizer to make

correct (preferring feasible over infeasible solutions) choice while comparing these solutions. The reverse logic is followed when constraints are

satisfied. Using these modified operators, the modified value of generated power (P1total), the investment cost (cost1), and noise propagation

(Noise1) are calculated, respectively. In this way, the modified objective function values (Mod-Objective as in equation 26) are used for the

unconstrained multiobjective optimization problem. The characteristic features and data for model development and problem formulation used in

this study are presented inTable 1.16,17

4 | METHODOLOGY

Two types of formulations that dominate the LO problem are discrete (i.e., grid-based) and continuous versions of it. In the continuous form, first

a fictitious number of turbines (NL) are assumed to be placed inside the wind farm, and the location coordinates (x and y) for these turbines are

determined within the given boundary of a wind farm. As NL is not known in the beginning and has to be determined optimally, equal number

(NL) of binary variables are associated with the location coordinates to denote presence or absence (binary variable equals 1 or 0) of turbines at

those locations. In this way, the decision variable set assumes a size of 3 × NL, which might be a large number even for a small value of NL. On the

other hand, in discrete grid methods, the farm is decomposed into grid points (NGRIDS) of same size and each grid point considered as turbine loca-

tions in the decision variable set. Here, each location is attached with a binary variable representing their presence or absence, by 1 or 0 values,

respectively. So, depending on grid resolution, length of decision variables (both the x and y location coordinates and binaries) varies. For a coarse

grid resolution case (say 10 × 10 grids, NGRIDS = 100), the length of decision variable might be small (3 × NGRIDS, in this case 300), but inferior

quality solutions might surface as some other potential locations, which are not present on the grid, are not explored. The solution quality can be

improved with finer grid resolution (say, 51 × 51 grids, NGRIDS = 2,601), but the size of the decision variable set (real [x and y], binary string length)

increases, and thereby, the size of the optimization problem becomes larger (3 × NGRIDS, in this case 7,803). This points to an increase in combina-

torial complexity apart from more memory required for storage and operations for the increased decision variable set, leading to inefficient func-

tioning of optimization algorithms. An efficient way to handle this situation is to represent each coordinate location in a grid approach by

different index numbers and then consider only few of them, not all, in the decision variable set at a time. To start with, this index selection can

be done randomly. In this way, a relatively small number of location coordinates (or decision variable size), NIdx (≤ NL or < << NGRIDS) can be con-

sidered, where NIdx number of indices and binary variables each can be regarded as the reduced set of decision variables As the proposed problem

TABLE 1 Wind farm, wind turbine, and wake model, constraints specifications for case studies

Cases Test Realistic

Wind farm

Area (in m2) 2000 × 2000 2000 × 2000

Roughness (Zro) 0.3 0.3

Wind turbine and wake model

Power (Prt, in kW) 629.1 850

Height (Zturb in m) 60 60

Diameter (Dro in m) 40 52

Power curve (in kW) 0.3u3 16

Thrust coefficient (CT) 0.88 16

Constraints

ITD multiplier (Dsp) 5 5

MITTAL AND MITRA 7



formulation (26) is multiobjective in nature, it has been solved using a modified version of NSGA II25 that uses the concept of index-binary forms

of decision variables and repair strategy (henceforth called as iDRS NSGA II). This algorithm has the following components:

4.1 | Initialize the population

The given area of farm is first discretized into square grids of same size, where distinct binary and index variables are connected with each point

on grid. In the chromosomal representation of GA, this can be presented by placing NIdx length of indices and NIdx length of binaries side by side.

In this way, the string length of such a chromosome is 2×NIdx. This NIdx value is generally kept less than NGRIDS signifying it as the maximum

accommodating turbines. The values of indices in the index array are chosen from a set of, for example, 10 × 10 (NGRIDS = 100) indices (within

1 ≤ NIdx ≤ NGRIDS) without repetition to start with (can be anything different from 10 × 10). Binary locations can assume 1 or 0 signifying the pres-

ence or absence of turbines at these indices (locations). Every iteration, named as generation, is composed of population (NPOP) of such candidate

solutions (or chromosomes), and such population of index-binary solutions are generated randomly in the beginning.

4.2 | Fitness computation and GA operators

By considering only the indices with binary value 1 in a chromosome (as turbines only exist for those locations), the modified objective function

of NPOP such chromosomes are calculated using Equation 26. Next, the variation operators such as cross-over and mutation are operated on the

population to generate a set of new NPOP offsprings. On real variables, variation operators, namely, simulated binary crossover and polynomial

mutation, have been used whereas on binary variables, single point crossover and binary mutation have been applied as variation operators,

respectively.25 Combining NPOP parents with NPOP offsprings (elitist strategy), the combined pool of population (2×NPOP) went through the steps

of nondominated sorting and crowding distance-based Elitism approach to provide the best set of NPOP nondominated chromosomes, which can

be used as a starting population for next generation.25 Since different objective function values are compared among different chromosomes

while performing nondominated sorting, they are generally expressed with the same notion of optimization, for example, maximization or minimi-

zation. Following this, all objectives are expressed here with the notion of minimization. Maximization of power production is first converted into

the minimization form by considering the −ve value of Power, that is, Min (− Power) as given in Equations 12 and 26, respectively, thereby rep-

resenting all objective functions by minimization type. In this way, the logic written for nondominated sorting considering all minimization type of

objectives is going to be applicable for this case. In case of negative objective function, more negative the objective function becomes, better it is

considered while performing nondominating sorting. This completes one generation of NSGA II, and it continues till the total number of genera-

tions, Genmax, specified in the beginning, is reached. Inquisitive readers can refer literature25 for more details about NSGA II.

4.3 | Novel repair strategy

Using the aforementioned variation operators, the speed of convergence is observed to be slow for the targeted micrositing problem. Moreover,

the specific challenge is to select a suitable length of NIdx indices out of bigger set of NGRIDS (as NIdx << NGRIDS), so that better solution can be

found quickly. To accelerate the convergence rate of an algorithm and to further enhance the potential of variation operators, a novel repair strat-

egy has been proposed in this study. Starting with the coarse resolution of grid, the steps of initialization, function evaluation, variation continue

as usual. Next, based on the predescribed repair probability (Prepair), chromosome(s) are selected (Figure 3A) from the new population for repair

with a target of improving their feasibility (if originally infeasible) and objective function values by repairing both index and binary variables. To

perform repair on indices, first the index that is most crowded (CIIndex) (i.e., the index which is surrounded by many nearby indices) has been iden-

tified (Figure 3B). Here, CIIndex is calculated using the corresponding location coordinates (x and y) values of all the indices in the selected chromo-

some (with binary value 1) as shown in Equations 27 and 28:

Distindex ið Þ=min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi−xj
� �2

− yi−yj
� �2

q
� �

8i, j = 1,…,NT s:t:i 6¼ j ð27Þ

CIindex = argmin Distindex ið Þð Þ, i = 1,…,NT ð28Þ

Here, Distindex(m) represents the minimum distance value among all the combinations of index “m” and all other indices “n.” After identifying the

most crowded index (CIIndex) to be repaired, a new index is searched for replacement inside a circle of radius SRspace surrounding the CIIndex

(Figure 3C). Here, only those indices that satisfy ITD (13) are selected as possible candidates. Among these possible candidates, a new index will
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be chosen, which provide better feasibility and/or objective values while replacing the old index (Figure 3D,E). Here, replacement only happens if

improvement in objective function values and/or feasibility is observed.

On the other hand, in binary repair, the chromosome that is having minimum number of 0's can be selected, and the aim is to convert those

0's into 1's (one at a time) to push more turbines in the farm. Replacement of chromosome happens only if a solution with improvement solution

quality is found.

4.4 | Rejuvenation with fresh seeding

Because of the involvement of huge number of binaries, MINLPs have a chance to converge at local optimum prematurely unless a significant

amount of exploration is provided during the evolution of the algorithm. Initializing the population with randomly generated fresh index-binary

candidate solutions after certain fixed interval of generations (interval 1) can act as remedial measure.

After executing the aforementioned steps, the set of Pareto solutions25 is generated (the set is known as Pareto front or PO front). Here,

every solution on PO front corresponds to the combination of index-binary variables along with the alternative power-cost-noise values. Index

values corresponding to binary variable value 1 are considered as the optimal turbine positions with sum of all binaries giving the optimum num-

ber of turbines in a farm. A machine with Intel® Xeon® 128-GB RAM dual processor is used for all reported simulations.

F IGURE 3 Step-by-step procedure of

novel index repair strategy [Colour figure can

be viewed at wileyonlinelibrary.com]
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5 | RESULTS AND DISCUSSIONS

The effect of simultaneous energy generation, noise propagation, and investment cost is studied over the realistic case study based on a real-time

wind speed distribution data adopted from literature17 to see their effects on micrositing. Figure 2 shows the three-dimensional distribution of

frequency, speed, and direction inside a wind farm. The MOO problem is solved using the proposed iDRS approach and the effects of presence of

practical constraint such as human habitats and irregular-shaped forbidden zone, noise receptors are analyzed on the layouts for case studies.

First, the suggested methodology is corroborated with a rigorously explored case study in literature8,9,11,16 followed by another realistic case. In

the former case, wind is assumed to flow at 12 m/s in a farm having an area of 2000 × 2000 m2. Table 1 shows the specifications and characteris-

tics of wind turbines, wind farm, and wake model used in this case study. The given wind farm is first mapped with 20 × 20 grids thereby creating

400 (NGRIDS) possible locations. Assuming NIdx as 100 (<< NGRIDS), 100 distinct indices are selected randomly from the set of 400 possibilities and

100 bits of binary variables (0 or 1) associated with them. This represents a chromosome in the population as explained in the initializing popula-

tion step (Section 4). With this kind of chromosome setup, an MOO problem is solved (19–26). To maintain the integrity, there are no human hab-

itats and irregular forbidden zones considered inside a wind farm for this case; that is, the constraint G2 (Equation 18) is not considered, and the

value of M2 (Equation 22) is considered as 1. Also, with no receptors and human habitats in place, the SPL (Equations 10 and 25) is not included

while solving the MOO problem (19–26). The optimization problem of maximization of energy and minimization of cost is solved using iDRS

NSGA-II, details of which are described in Table 2. The negligible amount of change in objective function values in between two immediate fresh

seed cycles is set as a termination criterion, and it is achieved in six such cycles. This leads to evolution of PO front, where every set member is an

optimal layout (numbers and locations) along with the conflicting values of power and cost. As the convention followed by earlier works8,9 to

report the performance of algorithm corresponding to a solution with minimum ratio of cost versus power (MCP) ($kW−1), a solution with MCP is

selected from PO set for comparison. It is evident that the proposed approach provides better solution with 2.5–14.8% increase in cost–power

ratio in contrast with other works reported (Table 3). Furthermore, the proposed approach (iDRS) with different repair probabilities is compared

with the approach of without-repair as shown in Table 4. Decision on the value of repair probability was difficult to arrive at as on both higher

and lower values of repair probability compared with 0.5 gave encouraging results. However, a very high value of repair probability was not found

to be encouraging. Here, also a solution with MCP is selected from the PO set for the comparison. It can be seen that the Prepair of 0.5 value pro-

vides an improvement of �2% in power production as compared with the case of without repair method. The value of repair probability for other

studies is kept fixed at 0.5 in this work though any other values of repair probability could have been used. Therefore, the enhanced performance

of the proposed iDRS approach is recorded here. The proposed approach is next applied to a realistic case to study the impact of practical con-

straints on the optimal layout of turbines.

TABLE 2 Specifications of the proposed iDRS approach for the case studies

iDRS specifications

Algorithm Elitistm

Population (NPOP) 200

Total generations (GENmax) 21,000

X-over probability (Pcross) 0.95

X-over type SBX and uniform X-over

Mutation probability (Pmut) 0.05

Mutation type Polynomial

Array length (NIdx) 100

Fresh-seed (interval 1) 3,000

Repair probability (Prepair) 0.5

TABLE 3 Comparison between the proposed iDRS approach and the previous reported works for test case

S. No. References Total turbines (NT) Power (kW, 104) Cost/Ptotal ($kW
−1, 10−3) % improvement in $kW−1

1 Mosetti et al.8 26 1.2352 1.6197 14.78051

2 Wan et al.12 30 1.5552 1.4158 2.507416

3 Mittal et al.16 44 2.074254 1.4386 4.052551

4 Yin et al.24 30 1.5091 1.4637 5.697889

5 Parada et al.10 30 1.5302 1.4390 4.079222

7 Proposed SDwR 41 2.033358 1.3803 ---
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A real-life Huasai wind farm site with the practical wind speed data collected over a year (multidirectional multispeed wind flow) is considered

here.17 The details on the wind data and algorithmic parameters are described in Tables 1 and 2, respectively. The given farm is divided into

49 × 49 grids thereby creating 2,401 possibilities (NGRIDS) for wind turbines to be placed. However, at every 400 m, sound receptors are placed

along the boundary. The practical constraints such as human habitats and irregular forbidden zone are introduced inside a wind farm to study their

impacts. Assuming NIdx= 100 < < NGRIDS, 100 random indices from a set of 2,401 index members are selected, and 100 bits of binary variables are

associated with them for each chromosome. An MOO problem is solved using (19–26), and optimal layout is found using proposed iDRS

approach. To study the impact of practical constraints, three different instances of the problem are solved. The termination criterion of negligible

amount of change in objective function values for two fresh seeds is shown in Table 5 for each problem. Following are the salient observations

for each problem:

• The first problem is solved with only noise receptors placed on the boundary. The total number of receptors in this case is 20. As there

is no restricted area (human habitats and forbidden zone) inside the wind farm in this case, constraint G2 (18) is not considered, or the

modified operator M2 (22) is considered as 1 while performing the multiobjective optimization. The termination criterion is met in

7 cycles of fresh-seed generations (Table 5). As a result, the three-dimensional PO is obtained (Figure 4A), where each point on the PO

front corresponds to the different number of turbines and their optimum locations along with triobjective trade-off values. As each point

on the Pareto surface has different noise, energy, and cost values, every PO point provides a different turbine layout, and the entire

Pareto set can provide a plethora of alternatives to a decision maker, where each solution can be selected wisely based on the available

higher level information. In this work, we have adopted fixed noise-minimum cost-energy ratio strategy (FN-MCE) to select a layout of

turbines out of several alternatives as shown in Figure 4B. In this method, first a particular noise value is chosen (say ≤50 dBA). Next,

for all PO solutions within this noise limit, one with minimum cost-energy ratio ($kW−1) is selected. In this way, for different noise level

values (60, 50, 45, and 40 dBA), different layouts of best points (FN-MCE method) can be obtained (Figure 4B). Table 6 shows the gen-

erated power, cost, noise, and number of turbines of each such best point at different noise levels. It has been noted, turbines are

located towards the center of firm sacrificing the cost and energy objectives, where less noise level is observed due to the presence of

noise receptors at boundary. Also the maximum energy generated in this case (5777.83 kW) is compared with the case where receptors

are not present at all (i.e., only energy maximization and cost minimization). Using iDRS with same parameters, a percentage reduction

of 4.8% in generated power can be observed because of the presence of receptors. The above observations reflect the importance of noise

and its effects on wind farm power production while performing the layout optimization.

• In the second problem, the human habitat has been introduced inside a wind farm additionally (with noise receptors at boundary), which can be

handled by placing additional receptors at the location (say two numbers). In this case also, M2 (22) assumes a value of 1 while performing the

multiobjective optimization (19–26) in the absence of the constraint G2 (18) for irregular boundaries. The total number of receptors is 22. The

final Pareto front surface after executing iDRS approach for seven fresh seeds (Table 5) is depicted in Figure 4C. The different turbine layouts

obtained for different noise levels (60, 50, 45, and 40 dBA) using FN-MCE method are shown in Figure 4D. More the restrictions, lesser the

energy production. A reduction of 32.5% in energy value and 0.5% increment in the noise propagation (as turbines are located close to recep-

tors at boundary and away from human habitats) can be observed in the presence of human habitats as compared to the first problem.

TABLE 4 Comparison between the proposed iDRS approach and the without repair method for different repair probabilities (Prepair)

S. No. Repair probability (Prepair) Total turbines (NT) Power (kW) Cost/Ptotal ($kW
−1) % improvement in power value

1 0.2 44 21581.38 0.0013826 8.36

2 0.4 53 25088.46 0.0014137 25.97

3 0.5 41 20333.58 0.0013803 2.099

4 0.6 49 23526.91 0.0013991 18.13

5 0.8 13 6739.19 0.0017652 −66.16

TABLE 5 Convergence criterion for realistic case using iDRS approach

Individual problems Fresh-seed generations

Realistic case

Without receptors 5

With receptors @ boundary 7

With receptors @ boundary + human habitats 7

With receptors @ boundary + human habitats + forbidden zone 7

Note: Better results are obtained at early fresh seeds; in order to satisfy the termination criterion, the more fresh seed cycles are executed.
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Moreover, a trend of reduced energy generation and increased noise propagation and investment cost values for all the best points

corresponding to each noise level as compared with the first problem can be observed (see Table 6). This shows the change in the wind farm

power production, investment cost, noise propagation, and the optimum numbers and positions of wind turbines with respect to the placement of

noise receptors (or human habitats) inside or at the boundary of a wind farm.

• In the third problem, more complexity is introduced by adding an irregular shaped restricted zone in the wind farm. The number of receptors

remains the same as the second problem, that is, 22. Finally, a PO front is obtained after 7 fresh seeds as shown in Figure 4E. Figure 4F shows

the optimal layout of turbines obtained using FN-MCE method at different noise levels. In the presence of irregular restricted zone, human

habitats, and the receptors at the boundary, the overall reduction of �33% in energy generation as compared with the first problem, and �9%

as compared with the second problem has been observed. Also, the increment of �5% and �7% in noise propagation can be seen as compared

with the first and the second problem, respectively. Table 6 depicts the reduced energy generation, noise propagation, the investment cost,

and number of turbines values for the best points at each different noise level for this case as compared with the first and second problem. It

can also be seen as the number of restrictions in a wind farm increases, the optimal layout (numbers and locations) of turbines gets affected as

shown in Figure 4B,D,F. For noise level < 45, number of turbines changes from 24 (in first problem) to 20 (in the second problem) and 18 (in the

third problem) along with their positions. It is, therefore, essential for a wind farm designer to consider every practical constraint with high priority

while developing a wind farm.

F IGURE 4 For realistic case,

(A) 3D Pareto surface plot

between energy-noise-cost

objective functions and

(B) different turbine layouts with

limits on noise levels for the first

problem; (C) energy-noise-cost 3D

Pareto surface plot and

(D) different turbine layouts with

limits on noise levels (black square

represents the human habitats

[green hut shaped markers]

considered as two receptors) for

the second problem; (E) 3D Pareto

surface among the objective

functions and (F) different turbine

layouts with limits on noise levels

(green hut-shaped markers and

irregular shape [blue-filled

marker] represent the human

habitats and forbidden zone,

respectively) for the third problem

[Colour figure can be viewed at

wileyonlinelibrary.com]
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6 | CONCLUSION

A multiobjective optimization study with an aim of maximization of energy, minimization of cost, and noise propagation has been performed

to determine the optimum layout in a wind farm in presence of practical constraints such as human dwellings, restricted zones, etc.

An index-based decomposition and repair strategy (iDRS) using the concept of index representation of grids implemented on the binary-real

coded NSGA II platform has been proposed to solve the problem. Index variables are used to represent locations of turbines, and binary

variables are used to identify their presence/absence. The performance of the proposed algorithm is further enhanced by bringing

diversity in the converged population with fresh seeding. A significant improvement of 2.5–14.8% by the proposed approach in ratio of cost

and power ($kW−1) has been identified in contrast with works reported. Overall reduction of 32.5% and 33% in energy generation

and increment of 0.5% and 5.4% in noise propagation can be observed owing to the presence of human dwellings and forbidden zone

(with human dwellings) respectively, as compared with the case where they were not present. The set of PO solutions allows

decision maker to choose among various competing layouts based on permissible noise levels, cost obligations, and the extent of harnessed

energy.
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