Header menu link for other important links
X
Metallic and insulating oxide interfaces controlled by electronic correlations
H.W. Jang, D.A. Felker, C.W. Bark, Y. Wang, , C.T. Nelson, Y. Zhang, D. Su, C.M. Folkman, S.H. BaekShow More
Published in
2011
Volume: 331
   
Issue: 6019
Pages: 886 - 889
Abstract
The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [(R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO3) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO3 matrix. Such correlation effects can lead to new functionalities in designed heterostructures.
About the journal
JournalScience
ISSN00368075