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Metabolic oscillations on the circadian time scale

in Drosophila cells lacking clock genes
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Abstract

Circadian rhythms are cell-autonomous biological oscillations with

a period of about 24 h. Current models propose that transcrip-

tional feedback loops are the primary mechanism for the genera-

tion of circadian oscillations. Within this framework, Drosophila S2

cells are regarded as “non-rhythmic” cells, as they do not express

several canonical circadian components. Using an unbiased multi-

omics approach, we made the surprising discovery that Drosophila

S2 cells do in fact display widespread daily rhythms. Transcrip-

tomics and proteomics analyses revealed that hundreds of genes

and their products, and in particular metabolic enzymes, are

rhythmically expressed in a 24-h cycle. Metabolomics analyses

extended these findings and demonstrate that central carbon

metabolism and amino acid metabolism are core metabolic path-

ways driven by protein rhythms. We thus demonstrate that 24-h

metabolic oscillations, coupled to gene and protein cycles, take

place in nucleated cells without the contribution of any known

circadian regulators. These results therefore suggest a reconsidera-

tion of existing models of the clockwork in Drosophila and other

eukaryotic systems.
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Introduction

In the fruit fly Drosophila melanogaster, the recognised models of

the circadian clock centre on the transcription factors CYCLE (CYC)

and CLOCK (CLK), the homologs of BMAL1 and CLOCK in

mammals (Young & Kay, 2001). These control the transcription of

several clock genes including period (per) and timeless (tim) (Panda

et al, 2002). Only a subset of cells in Drosophila expresses these

clock components and it is regarded as the principal pacemaker that

drives daily activity rhythms and physiology. All other cells are not

thought to have the capacity to generate 24-h rhythms autono-

mously. This extends to Drosophila Schneider 2 (S2) cells, which

are one of the most commonly used fly cell lines, originally derived

from a primary culture of late-stage embryos (Schneider, 1972).

These cells are regarded as non-rhythmic because they do not

express key circadian clock components, including PER, TIM or

CLK, and therefore do not have the necessary apparatus to form a

transcription–translation feedback loop to drive 24-h oscillations

(Saez & Young, 1996; Darlington et al, 1998). Given that several

lines of evidence indicate that circadian oscillatory behaviour is not

fully dependent on clock genes (Lakin-Thomas, 2006), we set out to

investigate whether such a “clock-less” system could exhibit 24-h

oscillations. To this end, we adopted an unbiased multi-omics

approach to comprehensively determine the daily dynamics of gene

expression and metabolic state in this cellular model.

Results

Defining the daily transcriptome in Drosophila S2 cells

We first characterised gene expression patterns in S2 cells using

RNA Sequencing (RNA-Seq). After synchronising cells with daily

temperature cycles (Glaser & Stanewsky, 2007) for a week, we

sampled cells at 3-h intervals in constant conditions (at 25°C in

darkness) and measured their transcriptome by RNA-Seq

(Appendix Fig S1A). We used a mixture model to define the set

of expressed transcripts (Appendix Fig S1B), which established

that several clock genes including clk, per and tim were not

expressed in S2 cells (Fig 1A), consistent with previous studies
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(Saez & Young, 1996; Darlington et al, 1998). Moreover, four

canonical clock genes that are expressed in S2 cells—clockwork

orange (cwo), cyc, par domain protein 1 (pdp1) and vrille (vri)—

did not exhibit 24-h rhythmicity (Appendix Fig S1C). This verified

that any known circadian components were either absent or not

rhythmic in this cell line.

In contrast, we detected 482 rhythmic transcripts with a period

of approximately 24 h in the same cells using the JTK-Cycle

algorithm (Hughes et al, 2010; Fig 1B and C; adjusted P-

value < 0.05), with peak phases at CT0 and CT12. Most transcripts

had a relatively low amplitude of oscillation (Appendix Fig S1D),

similarly to previous RNA-Seq studies in Drosophila, which showed

that the majority of transcripts have an amplitude of two-fold or less

(Hughes et al, 2012). We used a permutation-based method (Xie

et al, 2005) to estimate the false discovery rate (FDR) and found

that at least two-thirds of the rhythmic transcripts that we detected
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Figure 1. Transcriptional oscillations in Drosophila S2 cells.

A Histogram showing the distribution of mean gene expression levels. The dashed vertical line represents the cut-off chosen to define the set of expressed transcripts.

FPKM, fragments per kilobase of transcript per million mapped reads.

B Heatmap showing the expression profiles (ordered by phase) of 482 rhythmic transcripts (JTK-Cycle, P < 0.05, FDR = 0.31).

C Phase distribution of circadian transcripts shown in (B).

D Scatterplot representation of Gene Ontology (GO) analysis of the rhythmic transcripts.

E Cell cycle analysis using flow cytometry showing the fraction of cells in G1, S and G2 phases over a time course experiment (n = 3 per time point, mean � SEM).

F Example of six transcripts detected as rhythmic under constant conditions at 25 or 28°C (JTK-Cycle, P < 0.05).
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are likely to be truly rhythmically expressed (FDR = 0.31,

n = 10,000; Appendix Fig S1E and Materials and Methods). Impor-

tantly, we excluded the presence of low amplitude temperature

fluctuations in the incubators used for culturing cells, which could

have led to the appearance of artefactual daily oscillations

(Appendix Fig S1F). Furthermore, we validated rhythmicity using

two alternative detection methods [RAIN (Thaben & Westermark,

2014) and ARSER (Yang & Su, 2010)], which showed a highly signif-

icant overlap between the groups (Appendix Fig S1G; two-sided

Fisher’s exact test, P < 10�16 for every pairwise comparison). In

addition, we compared the set of 482 rhythmic transcripts with a

meta-analysis of five circadian transcriptome studies in Drosophila

(Keegan et al, 2007) and found 18 genes in common (Appendix Fig

S1H). Thus, without any known clock genes being rhythmic, 24-h

gene expression cycles were readily apparent in S2 cells.

Next, we performed Gene Ontology (GO) analyses to identify the

functions of rhythmically expressed transcripts. Strikingly, rhythmic

genes were enriched for protein biosynthesis and metabolic

processes including glycolysis, a principal pathway in glucose meta-

bolism (Fig 1D). To validate the rhythmic expression of metabolic

transcripts, we measured the mRNA accumulation of three glycolytic

genes—lactate dehydrogenase (ImpL3), enolase (eno) and glyceralde-

hyde 3-phosphate dehydrogenase 2 (Gapdh2)—using quantitative

PCR (qPCR). We found similar temporal profiles to our RNA-Seq

data (Appendix Fig S1I). Of note, ImpL3 was recently found to be

expressed in a circadian pattern in Drosophila heads using identical

statistical criteria to those used in our study, which substantiates our

approach and could imply daily regulation of glycolysis in whole

animals (Kuintzle et al, 2017).

Unlike most mammalian cell lines, S2 cells do not exhibit

contact inhibition in culture and were actively dividing during our

time courses. We therefore next determined whether the cell cycle

contributed to the rhythmic transcription that we observed. We

performed flow cytometry using DAPI staining to define the cell

cycle status of temperature-synchronised cells in a 2-day time

course. There was no 24-h variation in the proportion of cells in

G1, S and G2 phases (Fig 1E and Appendix Fig S2A), indicating

that the phasing of the circadian and cell cycles is not correlated.

Moreover, we also measured the density of cells during the time

course experiment and found a doubling time of 37 h, indicating

that the cell cycle is not likely to contribute to daily transcriptional

oscillations (Appendix Fig S2B). In order to validate these findings

using an independent method, we used stably transfected S2 cells

with the Fly-FUCCI system (Zielke et al, 2014). We measured the

fraction of fixed cells in each phase of the cell cycle using flow

cytometry and reached similar conclusions (Appendix Fig S2C and

D). In addition, we also assembled the mRNA profiles of tran-

scripts related to the cell division using GO annotations for mitotic

cell cycle. Daily patterns of gene expression were not apparent in

this set of transcripts, and only 10 cell cycle transcripts were statis-

tically detected as rhythmic (JTK-Cycle, adjusted P-value < 0.05;

Appendix Fig S2E and F). Together, this implied that the cell cycle

does not contribute in any significant way to 24-h gene expression

profiles.

An important property of circadian clocks is their “temperature

compensation”, whereby the period of the clock does not speed up

or slow down significantly when maintained at constant high or

low temperatures, respectively (Konopka et al, 1989). To

determine whether S2 cell rhythms exhibited this phenomenon, we

performed a low-coverage RNA-Seq time course experiment at

28°C (that is, at 3°C higher than the original time course). S2 cells

did not tolerate higher temperatures than this, restricting the

temperature range that we could use experimentally. We found

144 (7%) of the 2,035 transcripts measured displayed 24-h rhyth-

micity (JTK-Cycle, period 21–27 h, adjusted P-value < 0.05;

FDR = 0.31; Appendix Fig S3A–C). If there was no temperature

compensation, increased temperature should lead to shorter period

of oscillations. To test this, we determined the number of rhythmic

transcripts with periods between 12 and 18 h. In contrast to the

24-h analysis, we found only 71 transcripts in this shorter period

range (JTK-Cycle, adjusted P-value < 0.05), and more importantly,

the FDR was 0.99, implying that all were likely to be false posi-

tives (Appendix Fig S3D). This indicates that 24-h oscillations are

dominant at 28°C. We performed the same analysis of rhythmicity

for the 25°C time course and observed very similar results (periods

between 12 and 18 h, 194 transcripts, adjusted P-value < 0.05,

FDR = 1; Appendix Fig S3E). In addition, we determined the over-

lap between the sets of rhythmic transcripts detected at 25 and

28°C (Fig 1F and Appendix Fig S3F). Notably, overlap became

significant as soon as the threshold of the JTK algorithm was

increased above 0.1 (one-sided Fisher’s exact test, Appendix Fig

S3G) and the fraction of shared transcripts increased in proportion

with the threshold of the JTK algorithm (Appendix Fig S3H). In a

similar fashion to the 25°C experiments, we did not observe overt

periodicity in cell cycle-related transcripts and found only six cell

cycle transcripts rhythmically expressed (Appendix Fig S3I and J).

Collectively, these results suggest that an uncharacterised mecha-

nism, independent of canonical circadian genes or the cell cycle, is

involved in the generation of temperature-compensated 24-h tran-

scriptional oscillations in S2 cells.

The daily proteome is enriched for abundant proteins with low

amplitude oscillations

Gene Ontology (GO) had revealed that, in addition to metabolic

processes, there was an overrepresentation of transcripts involved

in protein translation and protein metabolic processes (Fig 1D).

This led us to hypothesise that global changes in protein levels

might be occurring on a 24-h timescale. To test this, we first

quantified total protein content over a time course and found that

it displayed a rhythmic pattern (Appendix Fig S4A). Given this,

we proceeded to determine whether specific proteins were regu-

lated rhythmically using multiplexed quantitative proteomics

(Fig 2A). We quantified 4,759 proteins over 18 time points and

determined that 342 (7%) of these were rhythmically expressed

(Fig 2B and Appendix Fig S4B; JTK-Cycle, adjusted P-

value < 0.05, FDR = 0.28). As before, we employed two further

rhythm detection methods to the data and found a similar

number of rhythmic proteins (Appendix Fig S4C; two-sided

Fisher’s exact test, P < 10�16 for every pairwise comparison). As

was the case for RNA transcripts, there was a biphasic distribu-

tion of phases (Fig 2C). However, most proteins peaked at CT0

(Fig 2C), while the peak phase for transcripts was CT12 (Fig 1B

and C). Together these results indicate that S2 cells generate 24-h

gene expression cycles in tandem with rhythmic regulation of the

translation of specific proteins.
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Next, we validated protein quantification using an alternative

strategy for multiplex labelling (Appendix Fig S4D). We then corre-

lated temporal profiles generated by our initial and alternative

labellings, which demonstrated that both protocols yield repro-

ducible results (Appendix Fig S4E and F), and the overlap between

proteins in the quantification and validation sets was highly signif-

icant (Appendix Fig S4G; two-sided Fisher’s exact test,

P < 5 × 10�4). For example, ImpL3, pyruvate carboxylase (PCB)

and fat-spondin, all displayed almost identical profiles using either

quantification method (Fig 2D). Similarly to previous studies in

mammals (Mauvoisin et al, 2014; Robles et al, 2014), the ampli-

tude of protein oscillations was relatively low (Fig 2E). Interest-

ingly, however, rhythmic proteins are more likely to be the more

abundant ones quantified (Fig 2F). Notably, we again found that

metabolic processes were functionally overrepresented among

rhythmic proteins (Fig 2G), in a similar way to rhythmic tran-

scripts (Fig 1D). Together, these results suggest that the rhythmic

proteome in S2 cells is enriched for abundant metabolic enzymes

and thus identify cellular metabolism as a key process regulated in

a cyclical manner.
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Figure 2. Proteome oscillations in Drosophila S2 cells.

A Sample collection procedure and labelling scheme using tandem mass tag (TMT) proteomics.

B Heatmap representation of 342 rhythmic proteins (JTK-Cycle, P < 0.05).

C Phase distribution of the circadian proteins shown in (B).

D Validation of TMT quantitation using an alternative method to label samples.

E Distribution of amplitudes of the 342 circadian proteins. Amplitudes were calculated by taking the ratio between the maximum and the minimum of each protein

profile.

F Cumulative density of protein abundances of circadian proteins vs. all proteins (n = 4,759 proteins quantified; Wilcoxon rank-sum test, P < 10
�4).

G Scatterplot representation of the GO analysis of the rhythmic proteins.
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Different contributions of transcriptional and post-

transcriptional mechanisms to the daily proteome

Given that transcripts must be translated into proteins, the

temporal profiles of mRNA and protein at a global scale might

be expected to be highly coupled. To test this, we first correlated

the abundance of transcripts and proteins, which revealed a tight

correlation (Fig 3A). Despite this, there was little overlap of the

sets of rhythmic transcripts and proteins (Fig 3B). To understand

why this might be, we correlated the four categories of RNA-

protein pairs (e.g. rhythmic RNA vs. rhythmic protein and so

on). This showed that the correlation between transcript and

protein is significantly higher when either the transcript or the

protein is rhythmic, or if they both are (Fig 3C), which we vali-

dated independently by temporal cross-correlation (Appendix Fig

S5A). Detrending of the RNA and protein profiles increased the

correlation between RNA-protein pairs, in particular for pairs for

which both profiles are rhythmic, further highlighting that 24-h

patterns contribute significantly to the correlation structure

(Appendix Fig S5B).

We next examined the relationship of the key circadian proper-

ties, amplitude and phase, between RNA-protein pairs. Amplitudes

were related in a similar way as before, with high correlation when

both RNA and protein were rhythmic (Appendix Fig S5C). However,

the phase of transcripts was a poor predictor of protein phase. If

highly related, there should be a narrow distribution of phase dif-

ferences (lags), which was not the case (Fig 3D and E). By contrast,

rhythmic proteins were expressed in phase with their transcripts or

with a phase delay of about 12 h (Fig 3F and G). This phase delay is

likely related to the fact that most transcripts are expressed around

CT12 (Fig 1C), while most proteins peak around CT0 (Fig 2C). To

determine whether there were more complex underlying temporal

relationships, we performed principal component analysis (PCA) on

each data set. Interestingly, ordered temporal transitions between

four different transcriptional states were mostly captured by the first

two PCA components (Appendix Fig S5D). When considering
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Figure 3. Integration of transcriptomics and proteomics data.

A Scatter plot of RNA and protein expression.

B Venn diagram showing the overlap of rhythmic RNA and proteins.

C Cumulative distributions of Pearson’s correlation coefficients for the indicated groups of RNA-protein pairs. RNA�Prot�, neither circadian; RNA+Prot+, both circadian;

RNA�Prot+, RNA not circadian and protein circadian; RNA+Prot�, RNA circadian and protein not circadian (Wilcoxon rank-sum test).

D Heatmap representations of transcripts and protein accumulations for the RNA-protein pairs with rhythmic transcripts.

E Distribution of phase difference between RNA-protein pairs for those with rhythmic transcripts.

F Heatmap representations of transcripts and protein accumulations for the RNA-protein pairs with rhythmic proteins.

G Distribution of phase difference between RNA-protein pairs for those with rhythmic proteins.
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matching protein profiles, we saw similar clustering of time points,

but this time with three states showing a cyclic relationship

(Appendix Fig S5E). Taken together, these results underline a

complex combination of transcriptional and post-transcriptional

mechanisms must regulate mRNA processing and degradation to

shape the 24-h proteome, consistent with previous studies in

mammalian systems (Reddy et al, 2006; Mauvoisin et al, 2014;

Robles et al, 2014).

Central carbon metabolism and amino acid metabolism exhibit

daily oscillations

Given that rhythmic proteins were functionally enriched for meta-

bolic processes (Fig 2G), we hypothesised that metabolic oscilla-

tions might be driven by 24-h rhythms in proteins. To test this, we

did a similar time course to before and then performed untargeted

liquid chromatography–mass spectrometry (LC-MS) to determine

the ensemble of oscillating metabolites in S2 cells. We detected

1,339 features, among which 466 (35%) were rhythmic (Fig 4A

and Appendix Fig S6A–C; JTK-Cycle, adjusted P-value < 0.05;

FDR = 0.18). In keeping with our gene expression data, rhythmic

features were clustered into two phases (Fig 4B and C), indicating

a high degree of temporal organisation. To definitively identify a

subset of metabolites, we next performed tandem MS (MS2),

which yielded 54 metabolites (4% of those detected) with which

we could perform pathway enrichment analysis (Fig 4D, and

Appendix Fig S6D and Appendix Table S1; metabolite set enrichment

analysis, raw P-value < 0.05; Xia & Wishart, 2010). Significantly,

central carbon metabolism and pathways associated with amino

acid metabolism were enriched among rhythmic metabolites. We

validated regulation of central carbon metabolism by performing

targeted LC-MS analysis of glycolysis, pentose phosphate path-

way and citric acid cycle metabolites. Of note, key metabolites

including ATP, glutathione and citric acid cycle intermediates

exhibited rhythmic accumulation over time (Fig 4E and F, and

Appendix Table S2).

To determine mechanistic relationships between rhythmic

protein expression and metabolic oscillations, we correlated the

two. We first considered all possible protein–metabolite associa-

tions, which resulted in a non-uniform distribution with an overrep-

resentation of highly correlated and anti-correlated profiles

(Appendix Fig S6E). When only the best match between each

metabolite and associated proteins was kept, the effect was much

more pronounced, since most protein–metabolite pairs had an abso-

lute correlation coefficient greater than 0.5 (Appendix Fig S6F). For

example, lactate dehydrogenase (ImpL3) and NAD, its substrate,

displayed strongly correlated profiles (Fig 4G; Pearson’s correla-

tion = 0.97). In contrast, phosphoribosylamidotransferase (Prat), an

essential enzyme in the pathway for de novo purine synthesis, was

anti-correlated to the levels of its product glutamate (Pearson’s

correlation = �0.82). Using a similar strategy, we analysed the

correlation between proteins and targeted metabolites in central

carbon metabolism (Fig 4H). This demonstrated that most protein–

metabolite pairs were correlated, especially those found in the same

subpathway. For example, proteins and metabolites of the pentose

phosphate pathway formed a small cluster of correlated profiles, as

exemplified by sedoheptulose 7-phosphate (SH7P) and its cognate

enzyme, transaldolase (Taldo; Appendix Fig S6G). Collectively,

these results suggest a robust link between protein rhythmicity and

downstream 24-h metabolite oscillations in fundamental biochemi-

cal pathways.

Discussion

We have shown that even though Drosophila S2 cells do not

express the core components of transcriptional feedback loops

thought to be required for rhythm generation in the fly, they

nevertheless exhibit temperature-compensated 24-h metabolic

oscillations coupled to gene and protein cycles. Our results thus

indicate that the canonical circadian network may not be required

to generate genome-wide oscillations on the circadian time scale

in a eukaryotic system (Appendix Fig S7A). The fact that CLK

and CYC are transcription factors with a PAS domain, which

allows molecular sensing of the intracellular environment, is

consistent with a role as an important connecting cog between

metabolic and gene expression programmes. In this interpretation,

Drosophila S2 cells are thus a novel model of cellular time keep-

ing that encompasses metabolic and gene expression components,

but not the canonical circadian clock gene network. We speculate

that cells and tissue in the fly that do not express clocks genes,

such as per and tim, may nonetheless exhibit similar daily

rhythms. This is highly relevant since Drosophila have been

thought to be somewhat unique among model organisms, from

single-celled cyanobacteria to mammals, in not having a clock in

every cell. Our results suggest that Drosophila may in fact have a

clock in every cell, but not necessarily based on the presence of,

or oscillation of, clock genes such as per or tim. Understanding

the relative role of gene, protein and metabolite expression in this

model will enhance our understanding of fundamental properties

of circadian oscillations in Drosophila and in other eukaryotic

systems.

▸
Figure 4. The circadian metabolome of S2 cells.

A Heatmap representation of the 466 LC-MS features detected as rhythmic (JTK-Cycle; P < 0.05, FDR = 18%).

B Individual traces of rhythmic features from cluster 1 and cluster 2 from (A).

C Distribution of phases from (A).

D Metabolite set enrichment analysis of the 54 identified rhythmic metabolites.

E Targeted LC-MS analysis of metabolites from glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle. The colour of each node represents the

P-value for daily rhythmicity (JTK-Cycle). See Appendix Table S2 for list of abbreviations.

F Selected temporal profiles of metabolites are shown together with their associated P-value.

G Two examples of protein–metabolite pairs are shown with their respective Pearson’s correlation coefficients.

H Heatmap showing the Pearson’s correlation between each profile from targeted metabolomics (carbon metabolism) and proteomics data.
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Materials and Methods

Cell culture

Drosophila S2 cells were purchased from Thermo Fisher Scientific

and were grown at 25°C in Schneider’s Drosophila Media (Thermo

Fisher Scientific), supplemented with 10% heat-inactivated FBS, 1%

Pen-Strep and 1/500 MycoZap Plus-CL. For circadian entrainment

protocol, S2 cells were subjected to temperature cycles (12 h at 23°C,

12 h at 28°C) for at least 1 week, with media changes occurring every

3–4 days at the transition between 23 and 28°C. The last medium

change was performed at t = 0 h, and cells were plated into six-well

plates. Cells were kept at 25°C for the remaining of the experiment,

with sample collection occurring at 3-h intervals between 24 and

81 h. For the RNA-Seq experiment at 28°C, S2 cells were grown at

28°C in Schneider’s DrosophilaMedia, supplemented with 10% heat-

inactivated FBS and 1% Pen-Strep. Cells were plated into six-well

plates and were synchronised with 2 days of temperature cycles

(12 h at 28°C, 12 h at 23°C) followed by 24 h at 28°C, before the start

of sample collection at t = 24 h. To measure the change in cell

density over the time course, we used the Countess Automated Cell

Counter (Invitrogen) system following manufacturer’s instructions.

RNA isolation and RNA sequencing

At the time points indicated in the main text, cells were lysed in trip-

licate in TRI-Reagent, flash-frozen and stored at �80°C until extrac-

tion. Extraction and purification were performed with the Direct-zol

RNA MiniPrep kit (Zymo Research). RNA-Seq libraries for the 25

and 28°C time courses were respectively prepared using polyA selec-

tion method (KAPA Stranded mRNA-Seq Kit for Illumina Platforms,

Roche) or previously published rRNA-depletion method (Rey et al,

2016). Sequencing using a HiSeq platform with single-end 50-bp

reads and subsequent quality filtering of reads was performed

according to manufacturer’s instructions (Illumina).

RNA-seq data analysis

Sequencing reads were aligned to the UCSC Drosophila reference

genome (dm3) using TopHat v2.1.0 (Kim et al, 2013). For the

RNA-Seq experiment at 25°C, we obtained on average 30.0 million

mapped reads per sample, with a minimum of 16.2 millions.

Reads were assembled into transcripts using RefSeq genes as refer-

ence and their abundance estimated using Cufflinks/Cuffmerge/

Cuffquant/Cuffnorm v2.2.1 (Trapnell et al, 2010). To estimate the

threshold to define the set of expressed transcripts, we modelled

the distribution of transcript mRNA expression using a Gaussian

mixture model using the R package “mixtools”. We chose a

threshold of 0.9 FPKM, which corresponds to the 0.95 percentile

of the distribution of lowly expressed transcripts, to define a set of

6,944 expressed transcripts. For the RNA-Seq experiment at 28°C,

aligned reads were subsampled to have a maximum of 1 million

alignments per sample (with a minimum of 0.5 million), in order

to compensate for differences in sequencing depth between

barcodes. To define the set of expressed transcripts in the 28°C

RNA-Seq data, we used the same threshold of 0.9 FPKM, as the

28°C time course had a lower coverage that did not allow to

estimate accurately the distribution of lowly expressed transcripts.

Temporal profiles were linearly detrended by fitting of a straight

line to each profile and subtracting the resulting function. The JTK-

Cycle algorithm was used to detect rhythmic transcripts using the

following parameters: minimal period = 21, maximal period = 27

and adjusted P-value = 0.05. As validation, two alternative algo-

rithms, RAIN (period = 24, period.delta = 3, method = longitudinal,

and P-value = 0.01) and ARSER (minimal period = 21, maximal

period = 27, default period = 24 and P-value = 0.01), were used to

detect rhythmic transcripts. To determine the FDR of identification

of rhythmic transcripts, we used a permutation-based method that

removes positives to reduce bias in the estimation of the FDR (Xie

et al, 2005). These permutation tests were run 10,000 times, and

FDR was estimated by taking the ratio between the mean number of

rhythmic profiles in the permutated samples and the number of

rhythmic profiles in the original ordering. An empirical P-value was

also computed based on the distribution of rhythmic profiles in the

permutated samples. GO analyses were performed using the Gene

List Analysis Tool from the PANTHER database using all

D. melanogaster genes as reference set (Mi et al, 2016). GO annota-

tion of transcripts for mitotic cell cycle (GO:0000278) was retrieved

from FlyBase.org and was used to visualise transcript profiles of cell

cycle-related genes.

Quantitative PCR

Triplicate RNA samples were reverse-transcribed into cDNA using

the High Capacity cDNA Reverse Transcription Kit (Life Technolo-

gies), following the manufacturer’s instructions, using 0.3–1 lg total

RNA per reaction. The resulting cDNAs were used in duplicate 7 ll

PCR, set up as follows: 3.5 ll TaqMan Gene Expression Master Mix

(Life Technologies), 0.35 ll validated TaqMan Gene Expression

Assay (Life Technologies), 1.15 ll nuclease-free water and 2 ll

cDNA. Real-time PCR was performed with an ABI 7900HT (Applied

Biosystems) system. The following TaqMan gene expression assays

were used: Eno (Dm01844953), Gapdh2 (Dm01843776), ImpL3

(Dm01841229) and Act5C (Dm02361909). The relative levels of

each mRNA were calculated by the 2�DCt method and normalised to

the corresponding Act5C levels.

Flow cytometry

At the time points mentioned in the main text, cells were washed

twice in PBS and resuspended in ice-cold 70% ethanol. Cells were

kept at 4°C until staining. For staining DNA, cells were first washed

twice with PBS, resuspended in DAPI solution (1 lg/ml in PBS +

0.1% Triton) and kept overnight at 4°C. For quantitation of cell cycle

phase transitions using fluorescent reporters, S2 cells were trans-

fected with a Drosophila-specific system (Fly-FUCCI), a commercially

available multicistronic vector for expression of fluorescent ubiqui-

tin-based cell cycle indicators (Addgene 73164; Zielke et al, 2014).

The Fly-FUCCI system allows G1, S and G2 phases of interphase in

cultured Drosophila cells to be distinguished by relying on fluo-

rochrome-tagged degrons from the Cyclin B (RFP-tagged) and E2F1

proteins (GFP-tagged). Freshly split cells were transfected in six-well

plates using 2 lg of DNA and 6 lg of linear 25 kDa Polyethylenimine

(Alfa Aesar). Fluorescent probes expressed in S2 cells were visually

checked under a fluorescent microscope (EVOS FL Cell Imaging

System, Thermo Fisher Scientific). Selection of expressing cells was
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done using Geneticin (Thermo Fisher Scientific) for 2 weeks. At the

time points mentioned in the main text, cells were washed twice in

PBS and resuspended in 4% formaldehyde and stored at 4°C until

analysis. Cell cycle phase distribution was assessed by flow cytometry,

where GFP single-positive cells showed G1, RFP single positives

indicated S phase and double positives represented G2 phase popula-

tions. Flow cytometry was performed on a LSRFortessaTM Cell

Analyzer (BD Biosciences) using standard methods.

Proteomics sample preparation

At the time points indicated in the main text, cells were spun down

and the pellets were flash-frozen and stored at �80°C until protein

extraction. To extract protein, pellets were lysed on ice with 500 ll of

Lysis Buffer [100 mM triethylammonium bicarbonate (TEAB), 1%

SDS, 1% NP-40, 10 mM diethylenetriaminepentaacetic acid (DTPA),

1/100 Halt protease inhibitors (Thermo Fisher Scientific)]. Cells were

vortexed and incubated for 30 min on ice. Samples were sonicated

using a Bioruptor Standard (Diagenode) for 5 min (30 s On, 30 s Off)

on medium power. Samples were spun at max speed at 4°C for

10 min to remove debris and transferred to fresh tubes. BCA assay

(Thermo Fisher Scientific) was used to quantify protein levels for

tandem mass tag (TMT) labelling (Thermo Fisher Scientific).

Tandem mass tag labelling was performed according to manufac-

turer’s instructions. 200 lg per condition was transferred into a new

tube, and the volume was adjusted to 200 ll with 100 mM TEAB.

10 ll of 200 mM TCEP was added to each sample to reduce cysteine

residues, and samples were incubated at 55°C for 1 h. To alkylate

cysteines, 10 ll of 375 mM iodoacetamide was added to each

sample and samples were incubated for 30 min protected from light

at room temperature. Samples were split in two, and acetone precip-

itation was performed by adding six volumes (~600 ll) of pre-

chilled (�20°C) acetone. The precipitation was allowed to proceed

overnight at �20°C. The samples were centrifuged at 8,000 × g for

10 min at 4°C, before decanting the acetone.

Acetone-precipitated (or lyophilised) protein pellets were resus-

pended with 100 ll of 100 mM TEAB. 2.5 lg of trypsin per 100 lg

of protein was added to the proteins for proteolytic digestion.

Samples were incubated overnight at 37°C to complete the diges-

tion. TMT Label Reagents were resuspended in anhydrous acetoni-

trile, and 0.4 mg of each label was added to the corresponding

peptide sample. The reaction was allowed to proceed for 1 h at

room temperature. 8 ll of 5% hydroxylamine was added to each

sample and incubated for 15 min to quench the labelling reaction.

Samples were combined in a new microcentrifuge tube at equal

amounts and stored at �80°C until mass spectrometry analyses.

Proteomics mass spectrometry

Tandem mass tag-labelled tryptic peptides were subjected to HpRP-

HPLC fractionation using a Dionex UltiMate 3000 powered by an

ICS-3000 SP pump with an Agilent ZORBAX Extend-C18 column

(4.6 × 250 mm, 5 lm particle size). Mobile phases (H2O, 0.1%

NH4OH or MeCN, 0.1% NH4OH) were adjusted to pH 10.5 with the

addition of formic acid, and peptides were resolved using a linear

40 min 0.1–40% MeCN gradient over 40 min at a 400 ll/min flow

rate and a column temperature of 15°C. Eluting peptides were

collected in 15 s fractions. One hundred and twenty fractions

covering the peptide-rich region were re-combined to give 12

samples for analysis. To preserve orthogonality, fractions were

combined across the gradient. Re-combined fractions were dried

down using an Eppendorf Concentrator (Eppendorf, UK) and resus-

pended in 15 ll MS solvent (3% MeCN, 0.1% TFA).

Data for TMT-labelled samples were generated using an Orbitrap

Fusion Tribrid Lumos mass spectrometer (Thermo Scientific).

Peptides were fractionated using an RSLCnano 3000 (Thermo Scien-

tific) with solvent A comprising 0.1% formic acid and solvent B

comprising 80% MeCN, 20% H2O and 0.1% formic acid. Peptides

were loaded onto a 75 cm Acclaim PepMap C18 column (Thermo

Scientific) and eluted using a gradient rising from 7 to 37% solvent

B by 180 min at a flow rate of 250 nl/min. MS data were acquired

in the Orbitrap at 120,000 fwhm between 380 and 1,500 m/z. Spec-

tra were acquired in profile with AGC 2 × 105. Ions with a charge

state between 2+ and 7+ were isolated for fragmentation using the

quadrupole with a 0.7 m/z isolation window. CID fragmentation

was performed at 35% collision energy with fragments detected in

the ion trap between 400 and 1,200 m/z. AGC was set to 1 × 104,

and MS2 spectra were acquired in centroid mode. TMT reporter ions

were isolated for quantitation in MS3 using synchronous precursor

selection. Ten fragment ions were selected for MS3 using HCD at

65% collision energy. Fragments were scanned in the Orbitrap at

60,000 fwhm between 120 and 500 m/z with AGC set to 1 × 105.

MS3 spectra were acquired in profile mode.

Proteomics data analysis

MaxQuant v1.5.5.1 (Cox & Mann, 2008) was used to process the

raw TMT proteomics data using the following parameters: fixed

modifications = carbamidomethylation, FDR for protein and peptide

identification = 0.01, sequence database = UniprotKB proteome for

D. melanogaster (downloaded on 13 January 2017), variable modifi-

cations = oxidation of methionine, protein N-terminal acetylation.

TMT 10plex data were normalised using linear regression in loga-

rithmic space to normalise for global abundance variations between

each TMT channel. For the quantification TMT sets, samples were

TMT-labelled as shown in Fig 2A (set1: pooled sample, CT30, CT33,

CT36, CT39, CT42, CT45, CT48, CT51 and CT54; set2: pooled

sample, CT57, CT60, CT63, CT66, CT69, CT72, CT75, CT78 and

CT81). For each protein, the quantification TMT set1 and set2 were

assembled together after taking the log ratio between each channel

and the reference channel (pooled sample of all time points). For

the validation TMT sets, samples were TMT-labelled as shown in

Appendix Fig S2C (set1: CT24, CT30, CT36, CT42, CT48, CT54,

CT60, CT66, CT72 and CT78; set2: CT27, CT33, CT39, CT45, CT51,

CT57, CT63, CT69, CT75 and CT81). For each protein, the validation

TMT set1 and set2 were assembled together after taking the log ratio

between each channel and the mean across all channels for this

protein (mean centring). Protein temporal profiles were linearly

detrended by fitting of a straight line to each profile and subtracting

the resulting function. The JTK-Cycle algorithm (Hughes et al,

2010) together with the RAIN and ARSER methods for validation

was used to detect rhythmic transcripts with same parameters used

for the RNA-Seq analysis. To determine the FDR of identification of

rhythmic proteins, we used the same method as for transcripts. GO

analyses were performed using the Gene List Analysis Tool from the

PANTHER database using all D. melanogaster genes as reference set
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(Mi et al, 2016). In order to integrate transcriptomics and proteo-

mics data, we used the UniProt ID converter tools to generate a

mapping between UniProt accession numbers and RefSeq annota-

tions. We performed a protein-centric integration, where each

protein was associated with at most one transcript. If there were

more than one transcript, the most rhythmic mRNA transcript was

kept. Using this strategy, we were able to assemble 4,658 protein-

RNA pairs from 4,758 proteins and 6,944 transcripts. For each RNA-

protein pair, the Pearson correlation coefficient was computed using

the respective temporal profiles from CT30 to CT81.

Metabolite sample preparation

At the time points indicated in the main text, triplicate cell samples

were spun down and pellets were washed with room temperature

PBS. Cells were resuspended in 1 ml of methanol:water (80:20) at

�75°C for quenching, and samples were stored at �80°C. To extract

metabolites, samples were thawed on ice and then vortexed for

2 min at room temperature. Samples were sonicated for 5 min in

the cold room (30 s ON, 30 s OFF, medium power). Samples were

centrifuged for 10 min at 9,391 g at 4°C, and the supernatants were

transferred to fresh 1.5-ml Eppendorf tubes. The extraction was

repeated a second time with 500 ll methanol:water (80:20). For the

third extraction, 500 ll methanol:water (80:20) supplemented with
13C5,

15N1-valine was used downstream quality control. The three

extractions were pooled and lyophilised to dryness. Samples were

resuspended in 350 ll of chloroform:methanol:water (1:3:3 v/v),

and the polar (upper) phase was collected for analysis. Quality

control samples were prepared by pooling equal volumes from all

samples included in this study.

Metabolomics mass spectrometry

LC-MS method was adapted from a published protocol (Zhang et al,

2012). Samples were injected onto a Dionex UltiMate LC system

(Thermo Scientific) with a ZIC-pHILIC (150 × 4.6 mm, 5 lm parti-

cle) column (Merck SeQuant). A 15-min elution gradient of 80–20%

Solvent B was used, followed by a 5 min wash of 5% Solvent B and

5-min re-equilibration, where Solvent B was acetonitrile (Optima

HPLC grade, Sigma-Aldrich) and Solvent A was 20 mM ammonium

carbonate in water (Optima HPLC grade, Sigma-Aldrich). Other

parameters were as follows: flow rate 300 ll/min; column tempera-

ture 25°C; injection volume 10 ll; and autosampler temperature 4°C.

MS was performed with positive/negative polarity switching using

an Q Exactive Orbitrap (Thermo Scientific) with a HESI II probe. MS

parameters were as follows: spray voltage 3.5 and 3.2 kV for posi-

tive and negative modes, respectively; probe temperature 320°C;

sheath and auxiliary gases were 30 and 5 arbitrary units, respec-

tively; and full scan range: 70–1,050 m/z with settings of AGC target

and resolution as balanced and high (3 × 106 and 70,000), respec-

tively. Data were recorded using Xcalibur 3.0.63 software (Thermo

Scientific). Mass calibration was performed for both ESI polarities

before analysis using the standard Thermo Scientific Calmix solu-

tion. To enhance calibration stability, lock-mass correction was also

applied to each analytical run using ubiquitous low-mass contami-

nants. Parallel reaction monitoring (PRM) acquisition parameters

were the following: resolution 17,500; collision energies were set

individually in HCD (high-energy collisional dissociation) mode.

Metabolomics data analysis

Qualitative analyses were performed using Xcalibur Qual Browser

(Thermo Fisher Scientific) and mzCloud (HighChem). Untargeted

metabolomics data analyses were performed with Progenesis QI

(Nonlinear Dynamics) using the following parameters: feature

detection = high resolution and peak processing = centroided data

with resolution at 70,000 (FWHM). In positive mode, the following

adducts were used: M+NH4, M+H, M+Na and M+2H. In negative

mode, the following adducts were used: M-H, M+Na-H and M-2H.

Normalisation was performed using the log-ratio method over all

features. Features having a coefficient of variation (CV) lower than

30% among quality control samples were selected for downstream

analyses (n = 722 and 616 for positive and negative mode, respec-

tively). PCA of all samples (including features with CV < 30% from

positive and negative modes) shows very good clustering, indicat-

ing system stability, performance and reproducibility (Appendix Fig

S4A). Similar conclusions were reached using correlation analysis

(Appendix Fig S4B). Features in the retention time window between

19.15 and 19.35 min were excluded from subsequent analyses, due

to artefactual profiles in this time window. Temporal profiles were

linearly detrended by fitting of a straight line to each profile and

subtracting the resulting function. The JTK-Cycle algorithm was

used to detect circadian rhythmicity using the following parameters:

minimal period = 21, maximal period = 27, adjusted P-value = 0.05

and number of replicates = 2–3. To determine the FDR of identifi-

cation of rhythmic proteins, we used the same method as for

transcripts. From the 466 rhythmic features, 145 with at least one

hit in spectral databases were selected for MS2 annotation. Out of

these, we were able to annotate 70 features with MS2 data

(Appendix Table S1), which correspond to 54 metabolites. Meta-

bolic pathway enrichment analysis was performed using metabolite

set enrichment analysis (MSEA; Xia & Wishart, 2010). For targeted

LC-MS data analysis, a set of 20 metabolites (Appendix Table S2)

was chosen from carbon metabolism and redox pathways. Reten-

tion time and MS/MS spectra from samples were compared to

metabolite standards to validate identification. Quantification was

performed manually using TraceFinder v4.1 (Thermo Fisher Scien-

tific). Normalisation across samples was performed using the

normalisation ratio calculated with Progenesis QI. In order to inte-

grate metabolomics and proteomics data sets, we used the Kyoto

Encyclopedia of Genes and Genomes (KEGG) annotation. Briefly,

UniProt accession numbers were annotated with Enzyme Commis-

sion (EC) numbers, which were used to fetch all interacting

metabolites in the KEGG database. Each metabolite was annotated

with all possible proteins based on the described annotation, and

correlation analysis was performed between metabolite–protein

pairs.

Data availability

The RNA-seq data sets produced in this study has been deposited in

the Gene Expression Omnibus (accession number GSE102495). The

mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al, 2016)

partner repository with the dataset identifier PXD007669.

Expanded View for this article is available online.
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