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Understanding body malodour in a measurable manner is essential for

developing personal care products. Body malodour is the result of bodily

secretion of a highly complexmixture of volatile organic compounds. Current

body malodour measurement methods are manual, time consuming and

costly, requiring an expert panel of assessors to assign a malodour score to

each human test subject. This article proposes a technology-based solution to

automate this task by developing a custom-designed malodour score classifi-

cation system comprising an electronic nose sensor array, a sensor readout

interface and a machine learning hardware fabricated on low-cost flexible

substrates. The proposed flexible integrated smart system is to augment the

expert panel by acting like a panel assessor but could ultimately replace the

panel to reduce the test and measurement costs. We demonstrate that it can

classifymalodour scores as good as or even better than half of the assessors on

the expert panel.

Skin, the largest organ in human body, is covered with glands that
secrete body odour. Body odour is complex and composed of a variety
of volatile organic compounds (VOCs). Odour produced by sweat
secreted from underarms has more VOCs than the odour in urine or
saliva, some of which are distinct for individuals which can be used for
biometric fingerprinting and disease diagnosis1. Also, underarmodour
has cues of diet, sex, age, hygiene, health and reproductive status2.

Prior studies in the literature3–8 focus on identifying key VOCs
in sweat and detecting them with the help of electronic nose
(e-nose) sensors and electronics. Typically, gas sensors are used to
collect data and then digitised by a data acquisition electronic
system. The digital data is, then, analysed by a computer running
one of the known classification algorithms. The common char-
acteristic of these studies is that they rely on expensive and bulky

gas sensors for detecting VOCs, and conventional electronics for
data analysis and classification. Lorwongtragool et al.9 proposed
printed carbon nanotubes and other polymer composite-based e-
nose sensor array to classify armpit odour, and relied on conven-
tional electronic equipment to couple with the printed e-nose
sensor array.

The global deodorant businesswill reach amarket size of $30Bnby
202610, and the key tomaintaining a business of this size is the ability to
design and test capability at speed, be cost effective and be globally
relevant. Understanding malodour is a key driver for personal care
companies as the link between consumer perception and malodour
content is essential tomeasure thebenefit of newproduct technologies.

New methods to measure, sample and analyse malodour that are
comparable to current physical measurements in use are highly
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desirable. Analysis of samples without direct human contact has
become increasingly important with the desire to build understanding
in new areas and between different groups of people and conditions.
Character profiling combined with data from odour sensing analysis
can drive learnings and speed in innovation and understanding in
combatting body malodour. Previous work with sensors and e-nose
type assessments11–15 have limitations which are difficult to overcome
in terms of sampling and measurement from the armpit. The envir-
onment is warm, humid and the compounds of interest are highly
volatile and easily lost to the atmosphere during sampling.

The current samplingmethod in use is to use a panel of individuals
that are undergoing assessment and a physical sniff assessment of the
underarms by a panel of expert assessors. The assessors rate the armpit
for odour and assign a score rating which is on a nonlinear numeric
scale. This score is then used to determine the given test result whether
that be testing of product efficacy or otherwise. Typically, this score is
the mean of the expert assessors individual scores and is assigned to
each underarm. This is termed a mean malodour score or MMS. In this
article, the MMS scale ranges from 0 to 4–0 being no malodour (or
blank) and 4 being strongest malodour. These test methods are physi-
cal, time consuming and costly, and ‘in the field’ assessment is a chal-
lenge due to the complex sample matrix and sampling methods
required to capture and retain highly volatile molecules.

There is a need to develop a smart sensor system that can com-
pete with the current manual test methods in capacity, sensitivity, and
accuracy in a cost-effective manner. The comparable perception test
of the underarms and scale rating is the desired outcome of the smart
sensor system. Themeasurement comparison between sensor reading
and underarm malodour is the key requirement and unlocking this
would increase the opportunity for in-field testing to be undertaken or
testing at speed to further increase our understanding of body odour.

Flexible electronics allow electronic components developed on
substrates suchas plastic or paper, andoffers thinness, conformability,
and low manufacturing costs over conventional silicon-based elec-
tronics. Flexible components suchas sensors, organic displays, printed
batteries, analogue interface, and processors can be assembled to
build flexible integrated smart systems16.

This article describes themethodology of analysing human armpit
malodour to drive the development of a low-cost flexible integrated
smart system consisting of organic FET (OFET)-based e-nose sensors,
metal-oxide thin film transistor (TFT)-based sensor readout interface
(SRI) and machine learning engine (MLE) for malodour classification.
E-nose sensor arrays are custom designed and fabricated on a poly-
ethylenenaphthalate (PEN) substratewhilst the SRI andMLEare custom
designed, integrated and fabricated as a flexible integrated circuit or
FlexIC on a polyimide substrate. Armpit malodour detected by the
flexibleOFET sensor array anddigitised by the flexiblemetal-oxide TFT-
based SRI is then classified by the flexible metal-oxide TFT-based MLE.

Themalodour classification performance of the proposed flexible
integrated smart system is quantified usingmalodour fabric swatches,
validated, and demonstrated against a conventional Si-based micro-
controller. The experimental results show that it can classify the armpit
malodour score as good as or even better than half of the human
armpit sniffing panel.

We envisage that the flexible integrated systemwill be a single-use
‘smart swatch’ that can substitute ordinary fabric swatches used today
to sample armpit malodour of a subject. A subject can rub the sensor
part of the smart swatch underarm and the FlexIC will predict the
malodour score and display it on the smart swatch, and the entire
smart swatch is then disposed for hygiene reasons. The focus of the
article is to integrate all three components (i.e., gas sensors, SRI, and
MLE) into one system and to demonstrate that inexpensive and small
form-factor plastic sensor and electronic components can be put
together to solve an important problem in the deodorant industry. The
malodour classifying flexible integrated smart system architecture

developed in this article can be adapted to other odour prediction
applications such as food freshness, air quality, odour nuisance man-
agement, and odour-based biometrics.

Results
An experimental framework is set up to collect sensor data using
fabric swatches from custom-developed e-nose sensor devices. Test
subjects, fromwhom fabric swatches are collected,must bemale and
female participants of varying ages. The reason for this is as there are
known differences in the odour of males and females at a perception
level. To differentiate between males and females allows a more
personalised approach for the physiological difference between
males and females within a deodorant product. The details about the
fabric swatch analysis and data collection methodology are descri-
bed in “Methods”.

The high-level architecture of the flexible integrated smart system
developed in the article is shown in Fig. 1a. The e-nose sensor array
consisting of different OFETs is exposed to the sensor array. The cur-
rent output of the individual OFET devices is pre-processed by the
analogue frontend of the SRI, converting it into a voltage, and then
digital values by an analogue-to-digital converter (ADC). In the final
step, the digitised values are fed into the MLE to classify the malodour
into one of the pre-determined malodour scores.

The OFET devices of the sensor array act as cross-reactive VOC
sensors. The array contains devices made using four different types of
semiconductors (A, B, C, and D) that respond to different components
of the VOCs in themalodour fabric swatches. Figure 2 shows the cross-
section of an OFET device, four sensor material types and their
notations.

The OFETs are based on a bottom-gate top-contact transistor
configuration with an all-polymer bilayer gate dielectric (see Fig. 2a)17.
Two important design considerations for fabrication of a low-voltage
OFET chemical sensor are that: (i) the organic semiconductor (OSC)
layer has to be placed in a position that permits exposure to the ana-
lyte, i.e., in a bottom-gate device geometry, and (ii) the gate dielectric
material requires a large areal capacitance and good electrical insula-
tion, but it needs to be chemically robust to withstand the solvents
used to solution process the OSC layer in this geometry. The bilayer
dielectric is composed of a high dielectric constant relaxor ferro-
electric fluoropolymer, P(VDF-TrFE-CFE), to enable low-voltage
operation, that is coated with a thin layer of a low dielectric con-
stant, photo-crosslinked, methacrylate-based copolymer, P(BMA-co-
MMA) that interfaces with the organic semiconductor leading to
minimal hysteresis, representative transfer characteristics for the four
types of OFETs and collated extracted performance parameters are
available in “Methods”. The active OSC is based on a copolymer of a
substituted diketopyrrolopyrrolethiophene and thienothiophene
(DPPTTT). This polymeric semiconductor was blended with a range of
additives (trioctylamine, stearic acid or a random copolymer of an
amino substituted acrylate and methylmethacrylate, P(DMAEMA-r-
MMA), to help differentiate the headspace of the malodour fabric
swatches. The structures and compositions of the materials used are
shown in Fig. 2b, c.

The fabricatedOFET sensors show very low response towet-blank
fabric swatches (see Fig. 3a) but show larger responses when exposed
to malodour fabric swatches of different MMS values (see Fig. 3b–f).
The magnitude of the responses is generally higher for higher MMS-
value fabric swatches for sensors C and D, which reflects the obser-
vation that the concentration of VOCs in the headspace of these fabrics
is, in general, proportional toMMSbut the response of sensors A andB
is larger at low values of MMS and decreases at higher MMS values.

To minimise the effects of sensor drift during the measurements,
the sensor current outputs are read at two different voltages at
VGS = −3V andVGS = −3.5 V. Thedifference inmeasured current (ΔIDS) at
these two voltages are recorded for both wet blank (i.e., no malodour)
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and malodour swatches as shown in Fig. 4a. ΔIDS measurements are
taken between the two VGS voltages at the same mode as well as
between the different modes at the same VGS. IDS readings from the
sensor array when the sensor is exposed to swatches are denoted by B
for wet blank and M for malodour swatches. Figure 4b describes the
basicmeasurement protocol used to collect the sensor output data for
wet blank and malodour swatches at two VGS voltages.

The sensor array was fabricated and used to collect malodour
datasets in order to drive the software-based design space exploration
(DSE) framework for exploring machine learning (ML) models as well
as the evaluation of the system demonstrator platforms. The best ML
model fitting the datasets is identified in the DSE framework, and then
implemented as an MLE. The DSE explores a pool of the known ML
model space, various ΔIDS-based features, sensor types, and different

Sensor Type Material

A DPPTTT (95%), Trioctylamine (5%)

B DPPTTT

C DPPTTT (95%), Stearic Acid (5%)

D DPPTTT (95%), P(DMEAMA-r-MMA) (5%)
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Fig. 2 | OFET devices as VOC sensors. a Schematic of bottom gate, top contact

OFET used in this work (S, D, and G are source, drain, and gate electrodes,

respectively).bCompositions of the organic semiconductor layers used in the four

different types of OFET (A–D). c Structures of all of the materials used in the OFET

devices—low-kpolymer is cross-linked P(BMA-r-MMA) andhigh-kpolymer is P(VDF-

TrFE-CFE).
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Fig. 1 | Flexible integrated smart system. a The high-level system architecture for armpit malodour classification problem. bHardware blocks of the SRI andMLE used in

the integrated FlexIC are interfaced to the sensor array.
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sensor data quantisation levels. The details about the DSE framework
can be found in “Methods”.

A new metric called “Goodness of Prediction” is proposed to
quantify howgood is the predicted scorewith respect to the individual
scores given by the panellists given the true MMS. Although the pre-
dictor is designed to predict an MMS value, what is important is to
quantify how good is the predicted scorewith respect to the panellists
who assign their malodour scores leading to the true MMS. The
“Goodness of Prediction” is calculated as follows:
a. Measure the distance between the predicted MMS and

true MMS
b. Measure the distance between the individual panellist score and

true MMS

c. If the distance in (a) is equal to or less than the distance in (b), the
prediction is as good as or better than the panellist.

The DSE is performed separately for male and female datasets to
find the best configurations per sex, and the results are presented in
Table 1. The highest-performing (in terms of prediction performance)
configurations for both sexes are shown in the first and fourth rows of
the table. The highest-performing configuration for female datasets
achieves 73% average goodness of prediction, which uses 7-bit quan-
tised sensor data, three sensors, a feature of “MB Delta@VGS = −3.5 V”
and the Decision Tree as the ML algorithm. Data quantisation level is
the key parameter for assessing the MLE hardware design complexity.
Although a lower data quantisation level has a negative impact on the

Fig. 4 | Operation modes and measurement protocol. a Delta measurements to

mitigate the sensor drift issue across different VGS voltage and swatch modes. MB

Delta refers to the IDS difference between the malodour (M) swatch and blank (B)

swatchmodes at the same VGS. BB Delta andMMDelta refer to the IDS difference at

the twoVGS voltages in the samemode.bThebasicmeasurementprotocol is shown

for collecting the sensor outputs in the experiments where the wet blank swatch is

used as a reference. First, the sensors are exposed to wet blank swatch and two

readings of IDS at two VGS voltages (i.e., −3 and −3.5 V) are recorded. Then the

sensors are exposed to the malodour swatch and two readings of IDS at the same

two VGS voltages are recorded.

Fig. 3 | Sensor responses to various fabric swatches. a Wet blank swatch fabrics. b–f Malodour swatch fabrics from different MMS values. A–D refer to four different

types of OFET devices, and multiple sensors of the same type are used in the experiments.
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prediction performance, it improves the hardware area and power
consumption in the ADC where the selected data quantisation level
determines the ADC resolution. The complexity of a flash ADC
depends on the number of bits as an n-bit flash ADC needs 2n -1 ana-
logue comparators. For example, the number of analogue compara-
tors can go up to 127 in a 7-bit ADC from 31 in a 5-bit ADC. For this
reason, we also show the best 6-bit and 5-bit data quantisation con-
figurations for both sexes. The best 6-bit and 5-bit data quantisation
configurations also use the Decision Tree. The best 6-bit data quanti-
sation configuration sacrifices 1 percentage point in performance save
64 analogue comparators in the ADC whilst the best 5-bit data quan-
tisation configuration can reduce the number of analogue compara-
tors by96 at the cost of 7 percentage points loss in performance. Thus,
we select the best 5-bit configuration as the configuration of the MLE
hardware design for female swatches because it allows a simpler ADC
in the SRI, which uses less chip area and consumes less power. This
configuration uses sensors A & B, the features extracted from each
sensor called “MMDelta&BBDelta”, each feature having 5bits, and the
Decision Tree as the ML model. The details of the feature extraction
and nomenclature can be found in “Methods”.

The highest-performing configuration for male datasets as shown
in the fourth row of Table 1 also achieves 73% average goodness of
prediction, which also uses 7-bit quantised sensor data but a Support
VectorMachine as theMLalgorithm. Similar to the femaledatasets, the
best 6-bit and 5-bit data quantisation configurations for male datasets
are also shown in the table. The best 6-bit and 5-bit data quantisation
configurations have 1 and 3 percentage points less prediction perfor-
mance with respect to the highest-performing configuration that has a
7-bit data quantisation level. By the same argument made for female
subjects, the best 5-bit data quantisation configuration saves more
chip area and power consumption in the SRI due to a simpler ADC
design. In summary, the best 5-bit configuration is selected to design
theMLEhardware formale swatches. This configuration uses sensors A
& C, the feature set “MM Delta & BB Delta”, 5 bits per feature and the
Decision Tree.

The integrated FlexIC, as shown in Fig. 1b, consists of the SRI and
MLE blocks. The SRI is made up of two sub-blocks: digital and analo-
gue. The digital block, called theOrder Code Processor (OCP), is based
on a custom-designed simple instruction set, and controls all theOFET
sensors, the analogueblock, and interfaceswith theMLE. The analogue
block is responsible for controlling the sensor measurement protocol
as well as for digitising the sensor outputs using a 5-bit ADC.

The architecture for the OCP is shown in Fig. 5. The OCP is
designed to be generic and easily reconfigurable with a set of core
functions already provided. There are two types of instructions: 1-word
instruction with 4-bit code and 2-word instructionwith 8-bit code. The
set of instructions themselves is stored in theprogrammememory that
can be easily changed to modify the SRI behaviour. The programme

memory is used to include all the required instructions, while the
microcode memory generates the control signals to execute each
instruction in the programme memory.

The analogue block consists of the analoguemultiplexer (MUX), a
5-bit flash ADC and two digital-to-analogue (DAC) converters. The
analogueMUX is a 4:1 data selector devicewhichconnects the gate and
drain terminals of one of the four sensors to the ADC/DAC for control
and measurement of the sensors.

The analogue multiplexer connects the gate and drain terminals
of each sensor selected by the sensor address sent from the OCP to
the necessary VG and VD voltages generated by the DAC that uses a
resistor ladder. VS is always at 4.5 V. Then, the sensor’s drain current
is converted to a voltage by a resistor. There are two measurements
from each sensor—one at VGS = −3V and another at −3.5 V. An internal
capacitor is charged from the first measurement at VGS = −3V, which
is applied to the ADC as a reference voltage, and this charge is sub-
tracted from the second measurement at VGS = −3.5 V, which is
applied as the input to the ADC. The resulting value (i.e., a delta
voltage between the input and reference voltages) representing the
“MM Delta” or “BB Delta” feature is sent to the ADC. A voltage drop
across the resistor causes an error in the voltage applied to the ADC
for conversion. An input range of 300 nA across a 1 MΩ resistor
results in an expected 300mV voltage range at the input to the 5-bit
ADC (see Fig. 6).

The OCP is programmed to condition the sensors for 5min and
then take measurements from the sensors after the end of this period.
Measurement cycles are performed for both wet blank and malodour
swatches, data is assigned an address value and sent to the MLE for
processing.

The MLE hardware is designed using the parameters finalised
during theDSE framework. Figure 7 shows the flow from theDSE to the
MLE hardware design. The MLE contains two decision tree hardware
blocks—one for each sex, and one of the decision tree hardware blocks
for a given sex input is selected to classify the malodour. The DSE tool
generates the learned boundary conditions and structure of each
decision tree after the training stage. The decision trees are then
translated into hardware description by RTL design. A decision tree
consists of a series of if-then-else statements. An if-then-else statement
is implemented as a comparator and amultiplexor logic in hardware. A
comparator compares sensor value to a boundary condition value that
is learned during the ML training. Each branch of if-then-else state-
ments terminate at a predicted MMS value.

The inputs to the MLE hardware are the 5-bit Delta data, 3-bit
sensor buffer address, a 1-bit end measurement, a 1-bit sex select,
and a reset from SRI. The output from the hardware is a one-hot
encoded 5-bit predicted MMS data directly connected to the LEDs.
SRI sends each 5-bit delta data in a serial mode along with the 3-bit
sensor address. SRI triggers the end measurement signal after

Table 1 | Average goodness of prediction results

Gender Configuration Sensor combination Feature Quantisation level ML algorithm Average goodness of

prediction (%)

Female Highest-performing A, C & D MB Delta@

VGS = −3.5V

7 bits Decision Tree 73

Female Best 6-bit A & B Delta of Delta 6 bits Decision Tree 72

Female Best 5-bit A & B MM Delta & BB Delta 5 bits Decision Tree 66

Male Highest-performing A & C MM Delta & BB Delta 7 bits Support Vector

Machine

73

Male Best 6-bit A & C MM Delta & BB Delta 6 bits Decision Tree 72

Male Best 5-bit A & C MM Delta & BB Delta 5 bits Decision Tree 70

Each malodour swatch has sex and malodour scores given by the individual panellists, and the average of the scores determining the true MMS value for the experiment. At the end of each

experiment, the current outputs of the four sensors for both blank and malodour swatches are stored along with the true MMS value. The total number of female and male datasets (or fabric

swatches) is64and115, respectively. A5-runcross-validation is used to avoidoverfittingwhenwe runeachconfiguration, and thereforean averageof the 5 runs ispresentedas “AverageGoodnessof

Prediction”. The first three rows of the table show the results for female swatches whilst the last three rows show the results for male swatches. See “Methods” for the description of the features.
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sending eight 5-bit delta values. Once MLE receives the end mea-
surement signal, all eight values in the sensor buffers are fed into
the decision tree hardware blocks. The sex select input selects the
predictedMMS of the associated sex. The details about the decision
tree structure, learned boundary values, and conditional state-
ments can be found in “Methods”.

Figure 8a shows the die photos of the FlexIC integrating the SRI
and MLE blocks (left), and the e-nose sensor array (right). The FlexIC
is fabricated using a commercial ‘fab-in-a-box’ manufacturing line,
FlexLogIC®18 using an n-type 0.8 µm indium-gallium-zinc-oxide
(IGZO) TFT technology on polyimide. More details about the fabri-
cation process and methodology can be found in our earlier
works19, 20. The FlexIC occupies an area of 9mm by 6mm. The total
NAND2-gate equivalent gate count of the digital blocks (Digital
SRI +MLE) is around 2100. The integrated chip is powered with a
supply voltage of 5 V, consumes 10.2mA, and operates at 8 kHz. The
chip has 44 pins (top and bottom) for interconnecting the sensor
arrays, external display, power and ground, and additional test probe
pins (left and right). The e-nose sensor array has two replicas of 4
OFET devices on PEN with an area of 12mm × 14mm, and dissipates
only 14 µW of power.

Figure 8b shows how the full system where the mechanical
equipment and electronics are integrated to validate the armpit clas-
sification concept. Figure 8c shows the demonstrator box and its
internal hardware. A demonstrator box is designed to accommodate
all the electronics, including the main board, FlexIC, plastic e-nose
sensor array, a microcontroller, an LCD display, a valve, and a pump.
More details of the system integration and validation can be found in
“Methods”.

Themalodour score predictions from both the flexible integrated
smart system and the validation path (i.e., microcontroller + e-nose
sensor array) and their predictions are measured and tabulated in
Table 2. The flexible integrated smart system approach achieves an
average goodness of prediction of 50% for both female and male
swatches by predicting malodour scores as good as or better than the
half of the panellists. On the other hand, the validation path predicts
the malodour scores more accurately (i.e., 83% for female and 71% for
male swatches) than the flexible integrated smart system. This is
mainly because the ADC in FlexIC is inaccurate in converting sensor
values to correct digital outputs, which, at times, may impact the
predictions made by the MLE.

Discussion
In this article, we have shown that a low-cost flexible integrated smart
system consisting of an e-nose sensor array made of OFETs on a flex-
ible substrate coupledwith aflexible integrated circuit canbe a reliable
tool for industries that rely on human panels for odour quality
assessment. This can eliminate the health hazards encountered by
human panels in sniffing such samples and transform the way odour
quality is assessed—not only for malodour but for food quality, cos-
metics, forensic, medical diagnostics, and others.

There are large differences in composition between malodour
emitted from female as opposed to male test subjects, and so panel-
lists normally assess these samples separately. A notable achievement
has been the sensitisation ofOFETs to themalodourous compounds of
interest in sweat samples, and predicting the malodour scores using
low-cost electronics achieving performance as goodor better than half
of the panellists for both female and male test subjects.

We have demonstrated an interdisciplinary achievement of com-
bining materials, sensors, flexible IC fabrication, and software devel-
opments incorporating our understanding of how humans assess
malodour scores to achieve a workable low-cost system.

Methods
The participants of the study wear a t-shirt, and a fabric swatch is worn
in the underarm of the t-shirt, and this becomes the sample that
undergoes analysis using the measurement methodology described
herein.

Measurement
The measurement setup to sample the headspace above a fabric
swatch is shown in Supplementary Fig. 1. It consisted of charcoal
filters, Duran glass bottles for the fabric swatches (100ml volume), a
3-way valve, 3-way connectors, sensor boards with sensors and a
pump to suck the air at a defined flow rate. The measurement setup
was placed in an incubator at a constant temperature that was set to
32 °C. The glass bottles with Duran caps have inlet and outlet tubes
through which air can be sucked to sample the headspace from
either a wet blank swatch (clean swatch with 0.5 ml added water) or
a malodour fabric swatch. Before commencing any measurement,
the bottles containing the wet blank and the malodour fabric
swatches were kept closed for 60min to create a consistent head-
space of humid air. For the baseline measurement, air was drawn

Fig. 5 | Order Code Processor (OCP). The components in OCP (digital SRI block)

are shown.OCP supports 16 different instructions. There are three registers eachof

which has a 5-bit width. The fixed code sits in the programmememory where each

instruction is microcoded in the microcode memory. The programme and

microcode memory sizes are 256 and 832 bits, respectively.
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through the bottle containing the wet blank fabric swatch, by
opening the 3-way valve, and the headspace was passed over the
sensors in boards 1 and 2. After measuring the baseline of humid air
from the blank swatch for 5minutes the three-way valve was swit-
ched to sample the headspace of the bottle containing the mal-
odour fabric swatch for 5min by drawing the air through the bottle.
To complete the measurement cycle, the 3-way valve was switched
back to the wet blank fabric bottle to recover the sensors to the
baseline.

OFET devices
The OFET devices were fabricated as described previously17. Repre-
sentative transfer characteristics for the four types of devices and
collated extracted performance metrics are collated in Supplemen-
tary Fig. 2.

Design space exploration (DSE) for ML model development
Supplementary Fig. 3 shows the DSE tool that crawls in the design
space to search for the best configuration in terms of the sensor
combination, a feature, an ML model, and the quantisation level of
sensor data.

There are four sensor types leading to 24 different sensor com-
binations. The focus is to create ΔIDS-based features derived from the
sensor output values to eliminate sensor drift issue. Supplementary
Table 1 shows six different ΔIDS-based features and their descriptions.

Data quantisation level determines the hardware complexity. For
example, the complexity of the SRI andMLEwill bemuch smaller if the
data bit-width is 4 bits rather than8bits. The data bit-width determines
the size of the ADC in the SRI as well as the logic in the SRI digital or
OCP and MLE. Thus, multiple data quantisation levels from 3 bits to 7
bits are explored in the DSE framework.

Finally, five standard ML models (Support Vector Machine,
K-Nearest Neighbour, Multi-layer Perceptron, Gaussian Naïve Bayes
and Decision Tree) are used. Typical ML workflow is used in the
experiments, e.g., a dataset (male or female) is split into two training
and test datasets, and MLmodels are trained offline using the training
dataset, and the performance of the trained models are evaluated
using the test dataset. A 5-run cross-validation is used to avoid over-
fitting, and we use “average goodness of prediction” over these
five runs.

Decision tree structures
TheMLE hardware consists of two decision trees one for each sex, and
their structures are shown in Supplementary Figs. 4 and 5. Each
decision tree consists of many if-then-else blocks and has a depth of 9
and 6 for female andmale datasets, respectively. Each condition in the
if-then-else block is learned during the training phase, and is constant
during the inference, in which case it is a hardwired value in the
hardware implementation.

Details in system integration and validation
Both digital SRI (i.e., OCP) andMLE blocks were validated separately in
the FlexIC using the additional test pins provided on the IC as shown in
Supplementary Fig. 6. For each block, input–output test vectors were
generated from thedatasets. The input test vectorswereapplied to the
testports of a block, and the output were monitored. Then, the test
outputswere compared to the expectedoutput vector data. For digital
SRI, the input test vectors were driven to the SRI testport at the top,
and the analogue block is bypassed through amultiplexer. The output
of the digital SRI is captured through another SRI port at the bottom.
Similarly, the test input vectors were fed through the MLE testport at
the top and the digital SRIwerebypassed through the twomultiplexers
and the output is captured on the output pins of the FlexIC on the right
(shown in red). In this test setup, each block passed all the test vectors
(i.e., the outputs of all test vectors matched the expected outputs—
achieving 100% test accuracy). TheMLE block alone canoperate as fast
as 160 kHz.

A data acquisition system was developed as shown in Sup-
plementary Fig. 7 that allowed routing of four OFET gas sensors to
the inputs of the FlexIC or alternatively to a conventional circuit
that measured OFET currents, digitised these, and presented the
signals to a software MLE based on a decision tree. The FlexIC was
mounted on a printed circuit board (PCB) containing a micro-
controller that allowed handshaking and routing of signals to and
from the main board.

The measurement of OFET currents with the FlexIC involved
placing a resistor between source and ground of the OFET and mea-
suring the voltage across this resistor when the current between the
source and drain of the transistor changed in response to an odour. In
this case, the OFETwas placed in the saturated regimewith a fixed VDS,
and with VGS being switched between −3 and −3.5 V.

For the main data acquisition system, a multiplexed current to
voltage converter together with user programmable VDS and VGS. On
this board were eight OFET gas sensors organised in pairs of different
sensor types for redundancy. One of each pair of sensors is routed to
the FlexIC on receipt of a suitable handshake signal. The FlexIC

DSE Tool

Learned Boundary Condition

Values of the Decision Tree 

for Female Datasets

Learned Boundary Condition

Values of the Decision Tree 

for Male Datasets

RTL Design

MLE Hardware with 
two Decision Tree Blocks

Fig. 7 |MLEhardwaregenerationflow.The stages for creatingMLEhardware from

the design space exploration (DSE) tool are shown.
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processes the signals and routes the output of theMLE encoded as 0–4
back to the main board that displays the output on a screen and
transmits data to an external computer via USB.

The main board also controlled switching between a control
and sample via a three-way solenoid valve, as well as a small pump
that aspirated air from the sample bottles across the sensor array.
The microcontroller board would send a logic line low to take
control from the main board, initialising the routing of sensor
signals to the FlexIC. The main board responds with a signal going
from low to high. The control sample is measured, and a logic
pulse high is sent that triggers the main board to switch to the
sample of interest. After measurement of that is completed and
results are available, the FlexIC handshake signal is sent high and
the main board responds by sending its handshake line high, reads
the results, and displays it.

ZIF connectors were used to interface the FlexIC to its PCB. The
connectors provided a non-permanent connection that was low
resistance and robust. This simplified the assembly process for the

novel FlexIC design, allowing shorter assembly-test cycle times
compared with permanent attach of the FlexIC via conductive paste
or similar. Before assembly, the FlexICs underwent on-wafer testing,
and the wafers were then diced and released following Pragmatic’s
standard wafer processing. The validated FlexIC’s were picked
manually from wafer frame using tweezers and inserted into the
opposing ZIF connectors. The flexible nature of the FlexIC allowed it
to be manipulated into the static connectors. Due to the thinness of
the FlexIC compared with the FPCs (Flexible Printed Circuits) that
the ZIF connectors are designed for, a 9 × 6mm thicknesser made
from 240 μm thick clear acetate sheet was inserted above the FlexIC
to make up the difference and enable clamping of the FlexIC within
the connector. The installed FlexIC was tested post assembly using
the same test scheme as used to validate the FlexIC on wafer, with
the test equipment interfaced to the FlexIC PCB via a VHDCI cable.
This test validated the connections between FlexIC and PCB.

Data availability
The data used in tables and figures are available from the corre-
sponding author upon request.

Code availability
The code of the decision tree algorithms is available from the corre-
sponding author upon request.
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