Header menu link for other important links
X
Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications
S. Jayanthi, N. Krishnarao Eswar, S.A. Singh, K. Chatterjee, , A.K. Sood
Published in Royal Society of Chemistry
2016
Volume: 6
   
Issue: 2
Pages: 1231 - 1242
Abstract
Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g-1 of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity. © 2016 The Royal Society of Chemistry.
About the journal
JournalData powered by TypesetRSC Advances
PublisherData powered by TypesetRoyal Society of Chemistry
ISSN20462069