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A machine learned (ML) model for predicting product state distributions from spe-

cific initial states (state-to-distribution or STD) for reactive atom-diatom collisions is

presented and quantitatively tested for the N(4S)+O2(X
3Σ−

g ) → NO(X2Π) +O(3P)

reaction. The reference data set for training the neural network (NN) consists of

final state distributions determined from explicit quasi-classical trajectory (QCT)

simulations for ∼ 2000 initial conditions. Overall, the prediction accuracy as quan-

tified by the root-mean-squared difference (∼ 0.003) and the R2 (∼ 0.99) between

the reference QCT and predictions of the STD model is high for the test set and

off-grid state specific initial conditions and for initial conditions drawn from reactant

state distributions characterized by translational, rotational and vibrational temper-

atures. Compared with a more coarse grained distribution-to-distribution (DTD)

model evaluated on the same initial state distributions, the STD model shows com-

parable performance with the additional benefit of the state resolution in the reactant

preparation. Starting from specific initial states also leads to a more diverse range of

final state distributions which requires a more expressive neural network to be used

compared with DTD. Direct comparison between explicit QCT simulations, the STD

model, and the widely used Larsen-Borgnakke (LB) model shows that the STD model

is quantitative whereas the LB model is qualitative at best for rotational distribu-

tions P (j′) and fails for vibrational distributions P (v′). As such the STD model can

be well-suited for simulating nonequilibrium high-speed flows, e.g., using the direct

simulation Monte Carlo method.

a)Electronic mail: m.meuwly@unibas.ch
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I. INTRODUCTION

Predicting the outcomes of chemical reactions is one of the essential tasks for efficient

material design, engineering, or reaction planning.1 Understanding chemical reactions at a

molecular level can also shed light on the mechanisms underlying chemical transformations.

However, the exhaustive characterization of reactions at the microscopic (i.e. state-to-state

or STS) level quickly becomes computationally intractable using conventional approaches

due to the rapid growth of the underlying state space.2,3 As an example, even for a reactive

atom+diatom system (A+BC→AB+C) the number of internal states for diatoms AB and

BC is ∼ 104 which leads to ∼ 108 state-to-state cross sections σv,j→v′,j′(Etrans) between initial

(v, j) and final (v′, j′) rovibrational states at a given relative translational energy Etrans.
3

The estimated number of classical trajectories required for converged STS cross sections

is ∼ O(1013) assuming that 105 classical trajectories are sufficient for one converged cross

section. For reactive diatom+diatom systems this number increases to ∼ O(1020) which is

currently unfeasible.4

Machine learning (ML) methods are well suited for such tasks as they are designed for large

data sets and generalize well towards unseen input data.1,5 In particular, neural network

(NN)-based models have successfully been used to predict the STS cross sections of reactive

atom-diatom collision systems.3 These models were trained on data obtained from explicit

quasi-classical trajectory (QCT) simulations. Similarly, NN-based models were constructed

at the distribution-to-distribution (DTD) level.6 For a given set of distributions of initial

states of reactants (P (Etrans), P (v), P (j)), a DTD model aims at predicting the relative

translational energy distribution P (E ′
trans), together with the vibrational P (v′) and rota-

tional P (j′) state distributions of the product. Compared with a STS model, state specificity

is lost in a DTD model as it follows how a distribution of initial reactant states is processed

through interactions on a potential energy surface (PES), but does not keep track of the

interrelations between individual initial and final states. This information loss makes DTD

models computationally cheaper compared with STS models.

Motivated by these findings, the present work explores the possibility to conceive an inter-

mediate model between the STS and DTD models which retains state specific information

3



for the reactants. In the following it is demonstrated how a NN-based state-to-distribution

(STD) model for a reactive atom+diatom system can be developed. The STD model is

shown to predict product state distributions P (E
′

trans), P (v′), and P (j′) given a specific

initial reactant state (Etrans, v, j). The necessary reference data to train such a NN-based

STD model was obtained from explicit quasi-classical trajectory (QCT) simulations for the

N(4S)+O2(X
3Σ−

g ) → NO(X2Π) +O(3P) collision system as a proxy. As such, an STD model

may be constructed from a STS model through coarse graining, i.e. by integration of the

final states. Similarly, a DTD model can be obtained from an STD model by further coarse

graining of the state-specific initial conditions. Note that such a coarse graining by means

of integration does, however, incur a computational overhead. Moreover, the increase in

information content going from a DTD model to a STD model, and finally to a STS model,

also comes at an increased number of trainable parameters and, hence, increased computa-

tional cost both in training and evaluation of the model. Therefore, it is crucial to choose

the appropriate model resolution for a given task. Finally, it is shown that the STD model

realizes a favourable trade-off between computational cost and accuracy, i.e., information

content. In particular, the STD model provides information at an appropriate resolution

to be utilized as input for methods such as Direct Simulation Monte Carlo (DSMC)7 or

computational fluid dynamics (CFD) simulations.8

This work is structured as follows. First, the methods including the data generation based

on quasi-classical trajectory simulations, as well as the neural network architecture and its

training are described. Next, the ability of the STD model to predict product state distri-

butions from unseen, specific initial states of the reactant is assessed. Then, the differences

between DTD and STD models at predicting product state distributions from initial state

distributions is discussed. Finally, the performance of the STD model is compared with

the widely used Larsen-Borgnakke9 for simulations of nonequilibrium, high-speed flows, and

then conclusions are drawn.
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II. METHODS

A. Quasi-Classical Trajectory Simulations

Explicit QCT calculations for the N + O2 → NO + O reaction were carried out following

previous work.10–14 Specifically, the reactive channel for NO formation (N(4S)+O2(X
3Σ−

g ) →
NO(X2Π) +O(3P)) was considered here. For this, the 4A′ PES was chosen as NO formation

is dominated by contributions from the 4A′ electronic state.14 Hamilton’s equations of mo-

tion were solved in reactant Jacobi coordinates using a fourth-order Runge-Kutta method

with a time step of ∆t = 0.05 fs, which guarantees conservation of the total energy and

angular momentum.13,15

For generating the training, test, and validation data set for the NN the following state-

specific initial conditions were used: (0.5 ≤ Etrans ≤ 8.0) eV with ∆Etrans = 0.5 eV;

v = [0, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 34, 38]; and 0 ≤ j ≤ 225 with ∆j = 15, resulting

in 2184 different states. The impact parameter b was sampled from 0 to bmax = 12 a0 using

stratified sampling.10,16 Ro-vibrational states of the reactant (O2) and product diatom (NO)

are determined from the semiclassical theory of bound states.15 First, final vibrational and

rotational states were determined as real numbers from the diatomic internal energy and

angular momentum, respectively, whereas the translational energy is obtained from the

relative velocity of the atom+diatom system. Ro-vibrational quantum numbers are then

assigned as the nearest integers (v′, j′) using the histogram binning method. To conserve to-

tal energy, the ro-vibrational energy Ev′j′ is recomputed from semiclassical quantization10,15

using the quantum numbers (v′, j′) and the final translational energy for the atom+diatom

system is adjusted using E
′

trans = Etot−Ev′j′ . Product states were assigned using histogram

binning (0.1 ≤ E ′
trans ≤ 19.8) eV; 0 ≤ v′ ≤ 47 with ∆v′ = 1; 0 ≤ j′ ≤ 240 with ∆j′ = 1.

Out of the 2184 initial reactant states, 7 (with Etrans = 0.5 eV) resulted in product state

distributions with zero or negligible probability (max(P ) < 10−5) which were not consid-

ered for the subsequent analysis. Consequently, 2177 initial reactant states together with

the corresponding product state distributions obtained by QCT simulations constitute the

reference data to train and test NN-based STD models in this work.
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To evaluate the trained models, a second set of initial conditions was generated from re-

actant state distributions. For each trajectory they were randomly chosen using standard

Monte Carlo methods.10,11 The initial relative translational energies Etrans were sampled

from Maxwell-Boltzmann distributions (0.0 ≤ Etrans ≤ 19.8) eV with ∆Etrans = 0.1 eV.

Vibrational (v) and rotational (j) states were sampled from Boltzmann distributions, where

0 ≤ v ≤ 38 with ∆v = 1; and 0 ≤ j ≤ 242 with ∆j = 1. These distributions are charac-

terized by Ttrans, Tvib, and Trot, respectively.10,16 For each set of temperatures T = (Ttrans,

Tvib, Trot), 80000 trajectories were run to obtain the product state distributions. First,

models were constructed with Trovib = Trot = Tvib, for which QCT simulations were per-

formed at Ttrans and Trovib ranging from 5000 K to 20000 K in increments of 250 K. This

yielded 3698 sets of reactant states and corresponding product state distributions. Next,

for the more general case Trot 6= Tvib, additional QCT simulations were performed for

Ttrans = 5000, 10000, 15000, 20000 K with Tvib and Trot each ranging from 5000 K to 20000

K in increments of 1000 K. Combining these additional 960 data sets with the 3698 sets

from above leads to a total of 4658 data sets.

B. Data Preparation

An important step in conceiving a ML model is the preparation, representation and

featurization of the data. For featurization the following properties were chosen as input

to the NN: 1.) Etrans, 2.) vibrational quantum number v of the diatomic, 3.) rotational

quantum number j of the diatomic, 4.) relative velocity of diatom and atom, 5.) internal

energy Ev,j, of the diatom, 6.) vibrational energy Ev,j=0, of the diatom, 7.) rotational

energy Ev=0,j, of the diatom, 8.) angular momentum of the diatom, 9-10.) the two turning

points at each of the vibrational states of the reactant diatom, and 11.) the vibrational

time period of the diatom. These features were already used successfully for the STS model.3

To represent the product state distributions, a grid-based (G-based) approach was used.6 In

a G-based approach, each product state distribution is characterized by its values at discrete

grid points, referred to as “amplitudes” in the following. Figure 1 shows the product state

distributions from QCT simulations (solid line) and their G-based representation (open
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symbols) for two exemplar reactant states. The G-based representation closely follows the

true, underlying data from the QCT simulations. Thus, G-based product state distributions

(i.e. amplitudes) are suitable to train the NN and the amplitudes also constitute the output

of the trained NN. Calculating the product state amplitudes for all available data sets then

allowed to train and test the NN. Subsequently, inter- and extrapolation can be performed

to obtain a continuous prediction. This is referred to as the “STD model” in the following.

For the product state distributions it was found to be advantageous to consider the set

(P (E
′

int), P (v′), P (j′)) instead of (P (E ′
trans), P (v′), P (j′)). Here, E

′

int = Etot − E ′
trans is the

internal energy after removing the translational energy. Note that P (E
′

int) and P (E
′

trans)

contain the same information and can be interconverted because the total energy Etot of

the system is conserved. However, for representing P (E
′

int) fewer grid points are required

than for representing P (E ′
trans). This is illustrated in Figure 2, where P (E ′

trans) and P (E
′

int)

FIG. 1. Product state distributions P (E
′

int), P (v′), and P (j′) obtained from QCT simulations

(QCT), as well as the corresponding amplitudes that serve as a reference for training and testing

the NN-based STD models (Grid). The product state distributions correspond to initial reactant

states characterized by: (A to C) (Etrans = 3.0 eV, v = 34, j = 0; Eint = 4.8 eV), (D to F)

(Etrans = 5.0 eV, v = 6, j = 45; Eint = 1.5 eV).
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FIG. 2. Distributions P (E′
trans) (panel A) and P (E

′

int) (panel B) obtained from QCT simulations

for each of the 2184 initial reactant states considered in this work displayed on top of each other.

Panels C and D: a few selected distributions P (E′
trans) and P (E

′

int) to highlight their different

shapes that motivate the choice of P (E
′

int) over P (E′
trans).

obtained from explicit QCT simulations for all 2184 initial reactant states used to train and

validate in this work are shown. While there are distributions P (E ′
trans) which are non-zero

at E ′
trans > 10 eV, all P (E

′

int) are zero for E
′

int > 10 eV and grid points are only used up to

this value.

The location and number of grid points to represent the product state distributions was

motivated after inspection of the overall shape of these distributions. In particular, it was

observed that a large number of P (E
′

int) distributions exhibit a sharp peak for E
′

int ∼ 6.2

eV which is the dissociation energy of the product diatom NO (see Figures 1A, 2B and
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D).17 Non-zero contributions to P (E
′

int) at E
′

int larger than the dissociation energy of the

product diatom NO can be attributed to the presence of quasi-bound states. Additionally,

P (E
′

int) can also increase rapidly for E
′

int < 1.0 eV. Consequently, the grid for P (E
′

int)

was chosen more densely for E
′

int < 1.0 eV and E
′

int ∼ 6.2 eV to capture these features

(E
′

int = [0.0, 0.1, · · · , 1.0], [1.2, 1.4, · · · , 6.0], [6.1, 6.2, 6.3], [6.5, 6.7, · · · , 9.7, 10.0] eV).

A considerable number of the final state vibrational distributions, P (v′), show a maximum

for v′ ∼ 0 (see Figures 1B and 1E). For higher v′, P (v′) typically decays rapidly but in

general, the distributions display a variety of shapes. Hence, the corresponding grid was

dense (0 ≤ v′ ≤ 47 with ∆v′ = 1). Final state rotational distributions, P (j′), are closer in

overall shape to one another compared with P (E
′

int) or P (v′). In particular, P (j′) typically

does not exhibit sharp features (see Figures 1C and D). Taking this into consideration, the

grid for P (j′) was equidistant (0 ≤ j′ ≤ 240 with ∆j′ = 6) and less dense than for the other

two final state distributions.

The number of grid points for (E
′

int, v
′, j′) was (58, 47, 40), respectively. This is significantly

more dense than the DTD model,6 for which (16, 16, 12) grid points were used and is at-

tributed to the fact that the distributions considered here are more diverse and exhibit more

detail, including sharp features. The shapes of the distributions P (E ′
int), P (v′) or P (j′) are

generally smooth across the ranges of E ′
int and quantum numbers v′ and j′. They also tend

to vary smoothly as the initial state changes. However, when reaction channels open there

can be sharp features in the probability distribution, see Figure S1. Because the grids used

here are dense, linear interpolation can be used to obtain a continuous NN-based prediction

of product state distributions at off-grid points.

Instead of directly sampling the product state distributions P (x) at the grid points xi to

obtain the amplitudes in the G-based representation, local averaging according to

P̄ (xi) =
1

2n+ 1

i+n
∑

j=i−n

P (xj), (1)

was performed. Here, the number of neighbouring data points xj (not necessarily grid

points) considered for averaging is n ∈ [0, nmax]. If there are fewer neighbouring data points

to the right and/or to the left of grid point xi when compared with nmax, n was chosen as the
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maximum number of neighbouring data points available to both sides, otherwise n = nmax.

Consequently, the first and last data points were assigned unaveraged values. Note, that

the value of nmax can differ for each of the 3 degrees of freedom (E ′
int, v

′, j′). Additionally,

no local averaging was performed for “sharp” peaks and only a reduced amount was applied

at nearby points. A maximum was classified as “sharp” if the slopes of the two lines fit to

neighbouring data points to the left and right of it exceeded a given threshold, see Section S1

in the SI for details.

C. Neural Network

The NN architecture for the STD model is shown in Figure 3 and is inspired by

ResNet.18 The input and output layers consist of 11 inputs (the 11 features, see above)

and 58 + 47 + 40 = 145 output nodes for the amplitudes characterizing the product state

distributions. The main part of the NN consists of 7 residual layers, each of which is again

composed of two hidden layers, and two separate hidden layers. The shortcut connec-

tions, characteristic for residual layers, help to address the vanishing gradient problem.18

Hidden layers 1 to 14 are each composed of 11 nodes, whereas hidden layers 14 to 16 are

each composed of 44 nodes which leads to a “funnel-like” NN architecture that helps to

bridge the gap between the small number of inputs (11) and the large number of outputs

(58 × 47 × 40 = 109040). The NN for the STD model has 3746 trainable parameters

compared with ≈ 140 parameters that are used in the DTD model.6 The larger number

of trainable parameters for STD can be attributed to the larger diversity of product state

distributions requiring a denser grid, i.e., a wider output layer. Moreover, the decrease

in the number of free model parameters in going from STD to DTD reflects the reduced

information content which is the state-specificity on the reactant side.

Before training the NN inputs were standardized via the transformation

x′
i = (xi − x̄i)/σi, (2)

and the NN outputs are normalized

x′
i = xi/σi, (3)
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FIG. 3. Schematic for the NN architecture underlying the STD model. The activation vector of

each layer is denoted as ai, and the input and output vectors are x and y. The weight matrix and

bias vector for each layer are denoted by Wi and bi, respectively. The activation function of the

hidden layers is σ(z) and corresponds to a shifted softplus19 function σ(z) = ln(1 + ez) − ln(2),

where softplus(z)= ln(1 + ez).20,21 Activation functions act element-wise on vectors.

where xi denotes the i-th input/output (as specified above), and x̄i and σi are the mean and

standard deviation of the distribution of the i-th input/output over the entire training data.

Standardization results in distributions of the transformed inputs x′
i over the training data

that are characterized by (x̄′
i = 0, σ′

i = 1) and allows prediction of high- and low-amplitude

data with similar accuracy. Also, standardization generally yields faster convergence of

the gradient-based optimization.21 The distributions of the transformed outputs x′
i over the

training data have (x̄′
i = x̄i, σ′

i = 1) through normalization. This enables the use of a
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root-mean-squared deviation (RMSD) loss function

L =

√

√

√

√

1

N

N
∑

i=1

(yi − y′i)
2. (4)

where yi and y′i denote the value of the i-th predicted and reference amplitude, respectively.

Unnormalized output may drastically differ in amplitude and spread which can lead to poor

performance of the RMSD loss. However, this ignores inherent sampling noise arising from

potentially unconverged QCT simulations, a point considered explicitly in the following.

Using a softplus activation function for the output layer was found to significantly increase

the NN prediction accuracy compared in contrast to a scaled hyperbolic tangent. Specifi-

cally, using softplus removes unphysical undulations and unphysical negative probabilities

which would arise in the predicted product distributions in regions where the corresponding

reference distributions are small or zero.

The weights and biases of the NN were initialized according to the Glorot scheme22 and

optimized using Adam23 with an exponentially decaying learning rate. The NN was trained

using TensorFlow24 and the set of weights and biases resulting in the smallest loss as eval-

uated on the validation set were subsequently used for predictions. From the total number

of Ntot = 2177 data sets, Ntrain = 1700 were randomly selected for training, Nvalid = 400

were used for validation and Ntest = 77 were used as the test set.3 All NNs underlying the

STD models in this work were trained on a 3.6 GHz Intel Core i7-9700k CPU resulting in

training times shorter than 4 minutes.

III. RESULTS

First, the performance of the STD model in predicting product state distributions given

specific initial reactant states is discussed. This is done for the test set (Ntest = 77) and a

considerably broader set of initial conditions not covered in training or validation (off-grid).

In a next step, the capability of the STD model to predict product state distributions

given distributions over initial reactant states is assessed. These include distributions with

Ttrans = Tvib = Trot, Ttrans 6= Tvib = Trot, Ttrans = Trot 6= Tvib as the most relevant case for

hypersonics, and Ttrans 6= Tvib 6= Trot as the most general case. The results for Tvib 6= Trot
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are also compared with those from the DTD model6.

A. Performance for Given Initial States

The performance measures to assess the quality of the STD model considered are

RMSD =
√

∑N
i=1

(Pi−Oi)2

N
and R2 = 1 −

∑N
i=1

(Pi−Oi)
2

(Oi−〈O〉)2
where Pi is the predicted value

i from STD, Oi is the observed (reference) value i from QCT, and 〈O〉 is the average for

a given initial condition and a given degree of freedom. The performance measures are

determined for all three degrees of freedom individually and for their entirety. The subscript

“LG” refers to evaluating the STD and QCT models only on the locally averaged grid points,

whereas the subscript “FG” refers to using all grid points at which QCT data is available (full

grid). For this comparison the reference and predicted amplitudes are first normalized with

the normalization calculated by numerical integration of the reference QCT distributions.

Predictions for STD at off-grid points are obtained through linear interpolation.

STD model RMSDLG R2
LG RMSDFG R2

FG

overall 0.0039 0.9886 0.0033 0.9890

E
′

int 0.0095 0.9915 0.0077 0.9906

v′ 0.0020 0.9885 0.0018 0.9895

j′ 0.0003 0.9860 0.0003 0.9867

TABLE I. Performance measures RMSD and R2 for the test set (Ntest = 77). The mean error

is calculated separately using the distributions of E
′

int, v′, or j′ and then averaged to obtain an

overall performance measure. Subscripts “LG” and “FG” refer to the “local grid” (on which STD is

evaluated) and “full grid” (on which the reference QCT results are available).

The performance measures of the STD model on the test set are summarized in Table I.

Overall, RMSDLG = 0.0039 and R2
LG = 0.9886 values confirm that the NN gives highly accu-

rate predictions of the amplitudes on a grid characterizing the product state distributions.

The performance is preserved even for the “full grid” (FG). The decreasing performance

for predicting P (E
′

int) compared to P (v′) or P (j′) (see RMSD and R2 in Table I) can be
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attributed to the fact that P (E
′

int) varies strongly in shape but is typically peaked which

is challenging to capture using a G-based approach. In contrast, P (j′) varies least and can

thus be predicted with the highest accuracy as can be seen from the lowest RMSD and R2

values. The small difference in accuracy when comparing RMSDLG and R2
LG to RMSDFG

and R2
FG arises because linear interpolation is used to obtain predicted amplitudes between

the designated grid points.

Predictions of the STD model for three different sets of initial reactant states from the test

set are shown in Figure 4. These data sets are characterized by 1) a R2
LG value closest to

the average R2
LG value over the entire test set (77 sets) (panels A to C), and R2

LG values

corresponding to 2) the largest (panels D to F; “best performing”) and 3) the smallest

(panels G to I; “worst performing”) R2
LG values in the test set, respectively. The amplitudes

of the product state distributions in panels D to F (lowest overall R2
LG) are roughly one

order of magnitude smaller compared to the other two data sets (panels A to F). This can

be explained by the fact that the corresponding initial reactant state is characterized by

Etrans = 0.5 eV, which results in a low reaction probability and renders a reactive collision

a “rare” event. Consequently, the uncertainty arising from finite sample statistics in the

QCT simulations is largest for such data sets. Moreover, 7 data sets with Etrans = 0.5 eV

had already been excluded from the data set prior to training the NN because the reaction

probability obtained from QCT was negligible. This naturally biases the NN training and

predictions towards data sets with a larger reaction probability.

The product state distributions shown in Figure 4 demonstrate the variety of shapes and

features that are present. This is a major difference compared to the product state dis-

tributions that were considered for the DTD models. There, only P (v′) was subject to

significant variations, whereas P (E ′
trans) and P (j′) showed less variability. Even for P (v′),

three major classes of distributions could be distinguished which is not the case for STD. This

variability explains the need for a denser grid and a more expressive NN in the present work.

Next, the performance of the STD model on a larger grid including parts of the training,

test, validation set and additional initial (v, j) combinations is considered. For this, QCT

simulations were carried out for v ∈ [0, 15] with ∆v = 1 and for j = [0, 7, 15, 22, ..., 157, 165].
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FIG. 4. Product state distributions obtained from explicit QCT simulations (QCT), and the corre-

sponding reference amplitudes (Grid) and STD model predictions (NN) for three initial conditions

from the test set (77 sets) not used in the training. The predictions for these three data sets are

characterized by (A to C) a R2
LG value closest to the mean R2

LG value as evaluated over the entire

test set, (D to F) the largest and (G to I) smallest R2
LG value in the test set, respectively. (A to

C) (Etrans = 3.5 eV, v = 0, j = 45, Ev,j = 0.85 eV), (D to F) (Etrans = 6.0 eV, v = 21, j = 0,

Ev,j = 1.11 eV), (G to I) (Etrans = 0.5 eV, v = 0, j = 135, Ev,j = 0.32 eV). For each distribution

(R2
LG,RMSDLG) values are provided.

The entire grid considered included 368 points and 50000 QCT simulations for every (v, j)

combination were run at Etrans = 4.0 eV. Figure 5 reports the RMSDLG between the product

state distributions obtained from QCT and those predicted by the STD model. The two-

dimensional surface RMSDLG(v, j) (for R2
LG see Figure S2) exhibits a visible checkerboard

pattern that reflects states (v, j) used for training (on-grid) and off-grid points which were

not included in the training. Across the entire (v, j) state space the performance of STD is
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FIG. 5. 2D map for RMSDLG(v, j) between QCT and STD predictions for the product state

distributions P (E
′

int), P (v′), and P (j′) for given initial (v, j). The STD model was evaluated at

fixed Etrans = 4.0 eV for the grid points v = [0, 2, · · · , 14] and j = [0, 15, · · · , 165] used for training,

validation, and test. For the off-grid points, the (v, j)−combinations included v = [1, 3, · · · , 15]

and j = [7, 22, · · · , 157]. The solid blue lines indicate constant rovibrational energies of 0.2850 eV,

0.6552 eV, 1.0142 eV, and 1.3622 eV. For the initial condition (v = 13, j = 157) a comparatively

high RMSD (∼ 0.005) is obtained (blue). For the corresponding R2
LG map, see Figure S2.

good. Despite the low overall RMSDLG, there are regions (blue) that are associated with

larger differences between the reference QCT amplitudes and those from the STD model.

For low (v, j) one reason for the somewhat larger RMSDLG is the low reaction probability

whereas for high (v, j) neglecting ro-vibrational coupling may lead to increased errors. A

comparison of the final state distributions from QCT and the STD model for (Etrans = 4.0

eV, v = 13, j = 157) and (Etrans = 4.0 eV, v = 1, j = 22) is reported in Figures S3 and S4,

respectively. A similar deterioration of performance in the high temperature regime was,

for example, found from the surprisal model applied to the N2+N reaction25.
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B. Performance for Initial Conditions from Reactant State Distributions

Next, the ability of the STD model to predict product state distributions given initial

reactant state distributions is assessed. For this, the STD model is tested for different types

of initial conditions by comparing reference product state distributions from explicit QCT

simulations with those predicted by the model. For a given set of initial reactant state

distributions initial conditions (Etrans, v, j) are generated through Monte Carlo sampling.

In the limit of a sufficient number of samples, the average of the product state distributions

predicted by the STD model will converge to the product state distributions associated with

the given reactant state distributions. Sampling 10000 initial conditions is sufficient to con-

verge the product state distributions obtained from STD (see Figure S5A). This compares

with ∼ 106 that are required for QCT simulations shown in Figure S5B. The decrease in

the number of samples required for convergence is due to the more coarse-grained nature of

the STD model compared to QCT as the STD model lacks state-to-state specificity for the

products.

Four distinct cases of thermal distributions are considered in the following: Ttrans = Tvib =

Trot, Ttrans 6= Tvib = Trot, Ttrans = Tvib 6= Trot, and Ttrans 6= Tvib 6= Trot. The performance

measures of STD evaluated for the four cases are summarized in Table II. In all cases the

STD model provides an accurate prediction of product state distributions given thermal

reactant state distributions with RMSDFG ≈ 0.003 and R2
FG ≈ 0.996. No significant dif-

ferences in STD model performance for the different cases is observed which demonstrates

that the STD model is generic in nature and applicable to reactant state distributions of

arbitrary shape with significant weight over the range of initial reactant states considered in

training. The decreased level of performance for predicting P (E
′

int) distributions compared

to P (v′) or P (j′) is again attributed to stronger variation in shapes and peaks near the NO

dissociation as was already found for final state distributions from individual initial reactant

states, see Table I. Moreover, the cutoff at Etrans = 8.0 eV in the training data of the STD

model becomes relevant for P (E
′

int) distributions at high temperatures and may lead to a

decrease in performance.

For the most general case Ttrans 6= Trot 6= Tvib, 840 temperature combinations were generated.
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RMSDFG R2

FG

Overall P (E
′

int
) P (v′) P (j′) Overall P (E

′

int
) P (v′) P (j′)

Ttrans = Tvib = Trot 0.0029 0.0079 0.0007 0.0001 0.9965 0.9912 0.9993 0.9990

Ttrans 6= Tvib = Trot 0.0028 0.0078 0.0007 0.0001 0.9961 0.9904 0.9990 0.9990

Ttrans = Tvib 6= Trot 0.0030 0.0083 0.0007 0.0001 0.9961 0.9900 0.9992 0.9990

Ttrans 6= Tvib 6= Trot 0.0030 0.0081 0.0007 0.0001 0.9953 0.9885 0.9985 0.9989

TABLE II. Performance comparison of the STD model in terms of RMSDFG and R2
FG for the

4 different temperature sets: Ttrans = Tvib = Trot (61 sets), Ttrans 6= Tvib = Trot (3637 sets),

Ttrans = Tvib 6= Trot (60 sets), and Ttrans 6= Tvib 6= Trot (840 sets).

As Figure 6 demonstrates the STD model reliably captures overall shapes and features such

as the position of maxima even for the worst performing data set (panels G to I). This is

remarkable as the shapes of P (E
′

int) and P (v′) can vary appreciably. The distribution of

R2 values for all 840 data sets also demonstrates high prediction accuracy, in particular for

P (v′) and P (j′). The specific case Ttrans 6= Tvib = Trot is considered in Figure S6. Panels

S6A to C are for the best performing STD model compared with QCT data whereas panels

D to F are representative for the average R2
FG. Both examples demonstrate that shapes and

location of maxima are reliably captured by predictions based on the STD model. Even for

the worst performing STD model (panels G to I) the important features of the distributions

are still captured reliably. Finally, Figures S6J to L report the distribution P (R2
FG) for all

3637 models evaluated for Ttrans 6= Tvib = Trot. For all distributions R2
FG > 0.95 with P (j′)

performing best.

A direct comparison of the STD and DTD models is reported in Table III. The two models

perform on par for all measures and all degrees of freedom except for E ′
int. This is despite

the fact that the DTD model was explicitly trained on these thermal distributions (4658

data sets in total) and further underlines the predictive power of the STD model. Also,

it should be noted that for the DTD model E ′
trans instead of E ′

int was used for training.

Given the excellent performance of both models, the differences appear to be negligible.

As such, STD represents a highly accurate approach to obtain product state distributions

given initial state specific reaction states. The decreased level of performance for predict-
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FIG. 6. Product state distributions for Ttrans 6= Trot 6= Tvib obtained from STD and compared with

explicit QCT simulations. Panels A-C: best performing prediction (largest R2
FG) for Ttrans = 10000

K, Tvib = 6000 K , Trot = 5000 K; panels D-F: prediction closest to the mean R2
FG for Ttrans = 5000

K, Tvib = 8000 K, Trot = 13000 K; panels G-I: worst performing model (smallest R2
FG) value for

Ttrans = 5000 K, Tvib = 18000 K, Trot = 8000 K. Panels J-L: normalized distributions P (R2
FG) for

the complete set of 840 temperatures (Ttrans 6= Trot 6= Tvib), respectively, (J) P (E
′

int), (K) P (v′)

and (L) P (j′).

ing P (E
′

int) distributions compared to P (v′) or P (j′) (see RMSDFG and R2
FG) has several

origins. First, P (E
′

int) distributions vary strongly in shape and are typically peaked (see
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Figure 2) which is challenging to capture using a G-based approach. Secondly, for highly

excited (v′, j′) states rovibrational coupling in the diatomic product molecule becomes more

important. Explicitly accounting for this coupling during the data preparation may further

improve the predictive power of STD. In contrast to P (E
′

int), rotational distributions P (j′)

vary least and can thus be predicted with the highest accuracy. Moreover, the cutoff at

Etrans = 8.0 eV in the training data of the STD becomes relevant for P (E
′

int) distributions at

high temperatures and may lead to a decrease in performance. The small decrease in accu-

racy when comparing RMSDLG and R2
LG to RMSDFG and R2

FG, see Table III, arises because

of the linear interpolation to obtain predicted amplitudes between the designated grid points.

RMSDFG R2

FG

STD|QCT DTD|QCT STD|QCT DTD|QCT

overall 0.0030 0.0017 0.9953 0.9988

E
′

α
0.0081 0.0042 0.9885 0.9985

v′ 0.0007 0.0008 0.9985 0.9988

j′ 0.0001 0.0001 0.9989 0.9991

TABLE III. Performance of STD and DTD models for Trot 6= Tvib (960 data sets) compared with

QCT results for initial conditions from initial thermal distributions. For the STD model α = int

and for DTD α = trans. Performance measures (averaged over the all data sets) RMSDFG and

R2
FG are computed by comparing QCT data with the STD or DTD model predictions over the grid

for which explicit QCT data is available. For Ttrans = 5000, 10000, 15000, 20000 K a set of 960

temperatures is evaluated with Trot 6= Tvib ranging from 5000 to 20000 K with ∆T = 1000 K.

It is also of interest to compare the performance of STD in predicting QCT data with

the fidelity of the QCT data itself. As training of the NN is based on final state distri-

butions from 8 × 104 trajectories for each initial condition it is likely that the training

set does not contain fully converged reference information. To this end, a much larger

number (NC = 5 × 106) of QCT simulations was carried out for a few initial conditions to

determine the “ground truth” and were compared with final state distributions from only

NU = 5× 104 samples. The correlation for the bin-occupation between the “ground truth”,

i.e. “converged” distributions from NC samples, and the unconverged distributions using NU
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samples is R2 ∼ 0.99 or better for all four initial conditions considered and all three degrees

of freedom, see Figure S7. Hence, the quality of the QCT reference data used for training

the NN is comparable to the performance of the NN itself. The relative error between

distributions from “ground truth” and the unconverged samples is around 0.2, see Figure S8.

Thus, the χ2 (rescaled mean squared error) between STD and reference QCT simulations

accounting for the fact that the QCT input to train the NN is not fully converged is about

5 times larger than the RMSD, which yields χ2 ∼ 0.005. One possible way of looking

at this is to consider the amount of information (or signal) compared to the amount of

noise. This “signal-to-noise ratio” should increase ∝
√
N where N is the number of sam-

ples, assuming that the noise is stochastic and arising from insufficient sampling. As seen

in Figure S8, when the number of samples in a channel is above ∼ 10, the noise/signal is 0.1.

The relevance of “rare events” is a major difference when considering product state distri-

butions from individual initial reactant states compared to initial conditions from reactant

state distributions. When applied to individual initial conditions it was found that the

STD model performance decreases for Etrans ≤ 1.0 eV, i.e. for initial conditions with low

reaction probability. The corresponding product state distributions are noisy and show large

variations due to finite sample statistics from QCT. This may be improved in future work

through importance sampling of the impact parameter. While rare events are crucial for an

accurate description of certain physical phenomena, such as plasma formation,26 they do not

constitute a significant contribution to product state distributions. As such, for observables

that involve integration of a product state distribution, such as reaction rates, the decrease

of performance of the STD model with regards to rare events is also negligible.

From the STD-predicted product state distributions, T−dependent reaction rates can be

obtained and compared with rates from explicit QCT simulations. In general, such a rate

is determined from

k(T ) = g(T )

√

8kBT

πµ
πb2maxPr, (5)

where Pr is the probability for a reaction to occur. For QCT simulations Pr =
Nr

Ntot
where Nr

is the number of reactive trajectories and Ntot is the total number of trajectories run. For

the STD model, Pr =
∫ Emax

E=0
P (E)dE where E = E ′

int. For the forward N(4S)+O2(X
3Σ−

g )
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→ NO(X2Π) +O(3P) reaction on the 4A′ electronic state the degeneracy factor g(T ) = 1/3

and µ is the reduced mass of the reactants.14 The two approaches are compared in Figure 7

and favourable agreement is found over a wide temperature range. Hence, the STD model

can also be used to determine macroscopic quantities such as realistic reaction rates which

is essential. The decrease in prediction accuracy at the highest temperatures may be at-

tributed to the cutoff at Etrans = 8.0 eV in the training data of the STD. Cross sections

σ = πb2maxPr were also determined for the test set (Ntest = 77). Typical values for σ from the

QCT simulations are σ ∼ 9× 10−15 cm2 which compares with those from the STD model of

σ ∼ 8.5× 10−15 cm2.
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FIG. 7. The thermal forward rate kf calculated from QCT (open red circle) and STD model

(solid black line) for the 4A′ state of the N(4S)+O2(X
3Σ−

g ) → NO(X2Π) +O(3P) reaction between

1500 and 20000 K. The present rates agree quantitatively with those directly obtained from QCT

simulations.14 It is interesting to note that significant differences between the rates from QCT simu-

lations and those from the STD model arise only for the highest temperatures for which pronounced

v − j coupling is expected.

Finally, it is also of interest to compare the computational cost for evaluating the STD

and DTD models. Here, a single evaluation refers to the prediction of the product state

distributions at 201, 48, and 241 evenly spaced points for E ′
int (for STD) or E ′

trans (for DTD)

between 0 and 20 eV, v′ = 0− 47, and j′ = 0− 240, respectively, for a given reactant state

distribution. The evaluation time for processing 50 reactant state distributions randomly
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selected from the total set of 4658 distributions is (98.01 ± 5.95) s using the STD model

and (1.03 ± 0.01) s using the DTD model on a 3.6 GHz Intel Core i7-9700K CPU. The

difference of two orders of magnitude is explained as follows. For the STD model the NN

is considerably larger and STD requires 10000 NN-evaluations for a given reactant state

distribution. Contrary to that, for DTD only one evaluation is required. On the other hand,

for STD linear interpolation is used to obtain an amplitude whereas DTD needs to evaluate

a computationally costly kernel-based interpolation.

IV. DISCUSSION AND CONCLUSION

The present work introduces a machine-learned state-to-distribution model for predicting

final state distributions from specific initial states of the reactants. The STD model achieves

a good performance, see Tables I and III, and accurately predicts product state distribu-

tions as compared with reference QCT simulations. The model also allows to determine

observables such as thermal reaction rates, see Figure 7.

One specific motivation to develop such an STD model is for generating meaningful input for

direct simulation Monte Carlo27 (DSMC) simulations. DSMC is a computational technique

to simulate nonequilibrium high-speed flows and is primarily applied to dilute gas flows.

The method is particle-based, where each particle typically represents a collection of real

gas molecules, and transports mass, momentum, and energy. Models are required to perform

collisions between particles by which they exchange momentum and energy with one another.

For instance, given the internal energy states and relative translational energy of reactants

in a colliding pair of particles, the total collision energy (TCE) model proposed by Bird is a

widely used quantity to estimate the reaction probability27. Once a colliding pair is selected

for a collision, a key model output is the post-collision energy distribution from which

product states are subsequently sampled. The state-of-the-art model for such a purpose is

a phenomenological model proposed by Larsen-Borgnakke9 (LB). The explicit form of the
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LB model for sampling the rotational and vibrational energy after a reaction is

fLB =



1−
ε′i

εcoll





ζtr/2−1

∑

i



1−
ε′i

εcoll





ζtr/2−1
, (6)

where ε′i corresponds to ε′v or ε′j for post-reaction vibrational and rotational energy respec-

tively and εcoll = ε′v + ε′j + ε′t. That is, the collision energy is the sum of the internal energy

and translational energy post-collision (or pre-collision, due to conservation of total energy

in the system the two coincide). In Eq. 6, ζtr = 5 − 2ω is related to the translational

degrees of freedom and the collision cross section parameter ω which is obtained by fitting

collision cross sections such that the viscosity µ ∝ T ω. of a gas is recovered. In essence,

the LB model is not based on state-specific probabilities of product states in reactions.

Figure 8 reports the LB model results together with predictions from the STD model and

reference QCT simulations. The significant discrepancies are not surprising as the LB model

samples post-collision states from a local equilibrium distribution. This is the advantage of

the STD model which is based on state-specific reference calculations from QCT simulations.

One additional refinement of the present method concerns preparation of the data set for

training the NN. Including rotation/vibration coupling is likely to improve the overall model

specifically for high (v, j) states. Furthermore, generating initial conditions from stratified

sampling of the impact parameter may more broadly cover low-energy initial translational

energies to further extend the range of applicability of the trained NN.

In conclusion, an initial state-resolved model to predict final state distributions for chemical

reactions of type A+BC→AB+C based on machine learning is formulated and tested. The

prediction quality of the model compared with explicit QCT simulations is characterized by

RMSD ∼ 0.003 and R2 ∼ 0.99. Final state distributions from STD can be sampled again

using Monte Carlo simulations for generating input for more coarse grained simulations,

such as DSMC. Furthermore, the STD model complements the DTD model when predicting

product from reactant state distributions. At the cost of an increased evaluation time the

STD model allows for accurate predictions given arbitrary nonequilibrium reactant state
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FIG. 8. Comparison of the final state distributions from the STD model and those from the

Larsen-Borgnakke model which is often used in DSMC simulations. The initial conditions used are:

(Etrans = 7.0 eV v = 0, j = 0); (Etrans = 2.5 eV,v = 30, j = 0); (Etrans = 2.0 eV, v = 0, j = 180), all

at the same εcoll or Etot.

distributions. This is a regime for which DTD models trained on a given set of (equilibrium)

reactant state distributions may underperform. In conjunction, these two models can enable

the efficient and accurate simulation of molecular systems over time undergoing multiple

reactive collisions.

DATA AND CODE AVAILABILITY

Exemplary data sets and code for evaluating STD models is available at https://github.

com/MMunibas/STD.
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SUPPORTING INFORMATION

The Supporting Information contains a detailed description of the local averaging proce-

dure together with Figures S1-S8.

V. ACKNOWLEDGMENT

This work was supported by AFOSR, the Swiss National Science Foundation through

grants 200021-117810, 200020-188724, the NCCR MUST, and the University of Basel.

REFERENCES

1M. Meuwly, Chem. Res. 121, 10218 (2021).

2M. S. Grover, E. Torres, and T. E. Schwartzentruber, Phys. Fluids 31 (2019).

3D. Koner, O. T. Unke, K. Boe, R. J. Bemish, and M. Meuwly, J. Chem. Phys. 150, 211101

(2019).

4T. E. Schwartzentruber, M. S. Grover, and P. Valentini, Journal of Thermophysics and

Heat Transfer 32, 892 (2018).

5I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

6J. Arnold, D. Koner, S. Käser, N. Singh, R. J. Bemish, and M. Meuwly, J. Phys. Chem. A

124, 7177 (2020).

7I. D. Boyd and T. E. Schwartzntruber, Nonequilibrium Gas Dynamics and Molecular Sim-

ulation (Cambridge University Press, New York, 2017).

8D. Knight, J. Longo, D. Drikakis, D. Gaitonde, A. Lani, I. Nompelis, B. Reimann, and

L. Walpot, Progr. Aerospace Sci. 48-49, 8 (2012).

9C. Borgnakke and P. S. Larsen, J. Comput. Phys. 18, 405 (1975).

10D. G. Truhlar and J. T. Muckerman, in Atom - Molecule Collision Theory, edited by R. B.

Bernstein (Springer US, 1979) pp. 505–566.

11N. E. Henriksen and F. Y. Hansen, Theories of Molecular Reaction Dynamics (Oxford,

2011).

12D. Koner, L. Barrios, T. González-Lezana, and A. N. Panda, J. Phys. Chem. A 120, 4731

(2016).

13D. Koner, R. J. Bemish, and M. Meuwly, J. Chem. Phys. 149, 094305 (2018).

26



14J. C. San Vicente Veliz, D. Koner, M. Schwilk, R. J. Bemish, and M. Meuwly, Phys.

Chem. Chem. Phys. 22, 3927 (2020).

15M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem. Phys. 43, 3259 (1965).

16J. D. Bender, P. Valentini, I. Nompelis, Y. Paukku, Z. Varga, D. G. Truhlar, T. Schwartzen-

truber, and G. V. Candler, J. Chem. Phys. 143, 054304 (2015).

17Y.-R. Luo and J. Kerr, CRC handb. chem. phys. 89, 89 (2012).

18K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE conference on computer

vision and pattern recognition (2016) pp. 770–778.

19C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, in Advances in neural infor-

mation processing systems (2001) pp. 472–478.

20D.-A. Clevert, T. Unterthiner, and S. Hochreiter, arXiv preprint arXiv:1511.07289 (2015).

21Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, in Neural networks: Tricks of the

trade (Springer, 2012) pp. 9–48.

22X. Glorot and Y. Bengio, in Proceedings of the 13th International Conference on Artificial

Intelligence and Statistics (2010) pp. 249–256.

23D. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

24M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, et al., arXiv preprint arXiv:1603.04467 (2016).

25N. Singh and T. Schwartzentruber, Proc. Natl. Acad. Sci. 115, 47 (2018).

26A. Piel, Plasma physics: an introduction to laboratory, space, and fusion plasmas

(Springer, 2017).

27G. A. Bird, NASA STI/Recon Technical Report A 76 (1976).

27



Supporting Information: Machine Learning Product State Distributions from

Initial Reactant States for a Reactive Atom-Diatom Collision System

S1. DETECTION OF “SHARP” PEAKS

When constructing the training, validation, and test data from the raw QCT data no

local averaging was performed around "sharp” peaks and averaging over fewer points was

done at nearby points. This was done to conserve the sharp peaks, as they would otherwise

be washed out. A maximum of a given distribution was classified as “sharp” based on the

following criteria:

For P (E ′
int) if there were 2, 1, or 0 points to either side of the maximum, it was classified

as sharp. Otherwise two linear fits were done to the 3 points (or 4 points, if available) to the

left and right of a maximum, respectively, including the maximum itself. If the magnitude of

both slopes exceeded a critical value |acrit| = 0.001, the maximum was classified as “sharp”.

Subsequently, averaging over neighbouring data points was performed: The maximum was

not averaged, the nearest and next-nearest neighbours of the maxima were averaged with

nmax = 2, and all other points were averaged with nmax = 3.

FIG. S1. Histograms showing the distribution of “sharp” peaks for (A) P (E
′

int), (B) P (v′) and (C)

P (j′) obtained by QCT simulations, considering all 2184 initial reactant states considered in the

present work.

For P (v′) if there were 2, 1, or 0 points to either side of a maximum, it was classified

as sharp. Otherwise two linear fits were performed for the 3 points to the left and right
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of the maximum including the maximum itself. If the magnitude of both slopes exceeded

a critical value |acrit| = 0.000143, the maximum was classified as “sharp”. Subsequently,

averaging over neighbouring data points was performed: The maximum was not averaged,

and all other points were averaged with nmax = 1. The same procedure applied to P (j′)

with nmax = 7 and |acrit| = 0.000005. Figure S1 shows the distribution of “sharp” peaks for

all 2184 explicit initial reactant states considered in this work.

S2. ADDITIONAL FIGURES
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FIG. S2. 2D map of the R2
LG values between QCT and STD predictions for the prod-

uct state distributions P (E
′

int) , P (v′), and P (j′) for given initial (v, j). The STD model

was evaluated at fixed Etrans = 4.0 eV for the grid points v = [0, 2, 4, 6, 8, 10, 12, 14] and

j = [0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165] used for training, validation, and testing.

For the offgrid points, the (v, j)−combinations included v = [1, 3, 5, 7, 9, 11, 13, 15] and j =

[7, 22, 37, 52, 67, 82, 97, 112, 127, 142, 157]. The red lines are for constant rovibrational energies of

0.2850 eV, 0.6552 eV, 1.0142 eV, and 1.3622 eV. For the initial condition (v = 13, j = 160) a low

value of R2 = 0.94 is obtained (red); the direct comparison between the final state distributions

from QCT and those predicted from STD is given in Figure S3.
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FIG. S3. Direct comparison between final state distributions from QCT simulations (black solid

line) and those predicted from the STD model (red solid line) for (Etrans = 4.0 eV, v = 13, j = 157).

The R2
LG and RMSDLG for P (E′

int), P (v′) and P (j′) are shown in parenthesis. The overall R2
LG

and RMSDLG are 0.9897 and 0.0049, respectively.
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FIG. S4. Direct comparison between final state distributions from QCT simulations (black solid

line) and those predicted from the STD model (red solid line) for initial condition (Etrans = 4.0 eV,

v = 1, j = 22). The R2
LG and RMSDLG for P (E′

int), P (v′) and P (j′) are shown in parenthesis. The

overall R2
LG and RMSDLG are 0.9946 and 0.0050, respectively.

FIG. S5. Panel A: Error of the STD model in predicting product state distributions as a function of

the number of samples drawn from the reactant state distributions. The error is reported as 1−R2
FG,

where R2
FG is obtained by averaging over the entire set of temperatures with Ttrans 6= Tvib 6= Trot.

The error saturates at ≈ 10000 samples. Panel B: RMSD of QCT data as a function of different

trajectories sample size with (5 × 106) trajectories as reference. Four different initial conditions

(v = 1, j = 100; v = 1, j = 5; v = 12, j = 100; v = 12, j = 5) at Etrans = 4.0 eV are evaluated for

P (E′
int), P (v′), and P (j′).
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FIG. S6. Product state distributions for Ttrans 6= Trot = Tvib from QCT simulations compared with

predictions from the STD model for a set of temperatures between 5000 and 20000 K in steps of 250

K. For each set of temperatures 10000 reactant initial conditions are generated from Monte Carlo

sampling of (P (Etrans), P (v), P (j)). Then, final state distributions (Pi(E
′

int), Pi(v
′), Pi(j

′)) for each

initial condition i are obtained from evaluating the STD model and averaged to obtain the final

state distribution (P (E
′

int), P (v′), P (j′)) for the particular set of temperatures. These distributions

are then compared with the results from QCT simulations. Panels A-C: best performing (largest

R2
FG) for Ttrans = 6500 K, Trot,vib = 5000 K; panels D-F: closest to the mean of all models for

Ttrans = 5250 K, Trot,vib = 9250 K; panels G-I: worst performing (smallest R2
FG) for Ttrans = 5000

K, Trot,vib = 19000 K. Panels J to L report the distribution of R2
FG values for the complete set

Ttrans 6= Trot = Tvib containing for P (E
′

int), (K) P (v′) and (L) P (j′), from left to right.
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FIG. S7. Correlation between converged (“ground truth”, y−axis) and unconverged (x−axis) QCT

simulations for four different initial conditions with Etrans = 4.0 eV as indicated. The “ground

truth” is from 5 × 106 trajectories and the unconverged data is from 5 × 104 trajectories. The

reported data compares occupation for the same bin for P (E′
int) (left), P (v′) (middle), and P (j′)

(right). All correlation coefficients are close to 0.99 showing quantitative agreement.
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FIG. S8. Product state distributions P (v′), P (j′), and P (E′
int) for initial condition (Etrans = 4.0

eV, v = 12, j = 5), from NU = 5 × 104 (red, number of unconverged samples) and NC = 5 × 106

(black, “ground truth” number of converged samples) trajectories. The green dots are obtained by

performing local averaging over the red data points. The reference curve obtained by local averaging

of the unconverged QCT data matches the converged QCT data closely. This motivates the local

averaging procedure performed as a data preparation step in this work. It allows for STD models

to be trained on unconverged QCT data while the resulting models yield predictions that match

the converged data closely. The right column reports the noise to signal ratio (NC/100−NU)/NC

NC
of

the unconverged set relative to “ground truth” as a function of
√
NU.
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