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Machine learning-based models to predict product state distributions from a distri-

bution of reactant conditions for atom-diatom collisions are presented and quanti-

tatively tested. The models are based on function-, kernel- and grid-based repre-

sentations of the reactant and product state distributions. While all three methods

predict final state distributions from explicit quasi-classical trajectory simulations

with R2 > 0.998, the grid-based approach performs best. Although a function-based

approach is found to be more than two times better in computational performance,

the kernel- and grid-based approaches are preferred in terms of prediction accuracy,

practicability and generality. The function-based approach also suffers from lacking

a general set of model functions. Applications of the grid-based approach to non-

equilibrium, multi-temperature initial state distributions are presented, a situation

common to energy distributions in hypersonic flows. The role of such models in Di-

rect Simulation Monte Carlo and computational fluid dynamics simulations is also

discussed.

a)Electronic mail: m.meuwly@unibas.ch

1

ar
X

iv
:2

00
5.

14
46

3v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  2

9 
M

ay
 2

02
0



I. INTRODUCTION

The realistic description of chemical and reactive systems with a large number of avail-

able states, such as explosions, hypersonic gas flow around space vehicles upon re-entry

into the atmosphere, or meteorites penetrating deep into the lower parts of Earth’s or a

planet’s atmosphere, requires an understanding of the relevant processes at a molecular

level.1–3 Correctly describing the population of the available state space under such non-

equilibrium conditions (e.g. high temperatures in atmospheric re-entry with T > 10000 K)

from ground-based experiments is extremely challenging. Such high gas temperatures make

the gathering of experimental data exceedingly difficult but is essential for simulations of

hypersonic flight.4 On the other hand, a comprehensive modeling of gas phase chemical

reactions through explicit molecular-level simulations remains computationally challenging

due to the large number of accessible states and transitions between them.5,6 There are also

other, similar situations in physical chemistry such as the spectroscopy in hot environments

(e.g. on the sun) for which small polyatomic molecules can populate a large number of

rovibrational states7 between which transitions can take place. Exhaustively probing and

enumerating all allowed transitions or creating high-dimensional analytical representations

for them is usually not possible. Nevertheless, it is essential to have complete line lists

available because, if specific states that are involved in important transitions are omitted,

modeling of the spectroscopic bands becomes difficult or even impossible.8 This points to-

wards an important requirement for such models, namely that they contain the majority of

the important information while remaining sufficiently fast to evaluate.

In such situations, machine learning approaches can provide an alternative to address the

problem of characterizing product distributions from given reactant state distributions. In

previous work6, a model for state-to-state (STS) cross sections of an atom-diatom collision

system using a neural network (NN) has been proposed. Motivated by the success of such

an approach, the present work attempts to develop a NN-based distribution-to-distribution

(DTD) model for the relative translational energy Etrans, the vibrational v and rotational j

states of a reactive atom-diatom collision system. In other words, given the reactant state

distributions (P (Etrans), P (v), P (j)) such a model predicts the three corresponding product

state distributions (P (E ′

trans), P (v′), P (j′)). Here, P (v) and P (j) are marginal distributions,
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i.e. P (v) =
∑

j P (v, j) and P (j) =
∑

v P (v, j), where (v, j) labels the rovibrational state of

the diatom.9 Hence, instead of considering all possible combinations of (Etrans, v, j) on the

reactant (input) and product (output) side explicitly, one is rather interested in a description

of these microscopic quantities by means of their underlying probability distributions.

While the state-to-state specificity is lost, such a probabilistic approach considerably re-

duces the computational complexity of the problem at hand. While a STS-approach is still

feasible for an atom-diatom collision system with ∼ 107 STS cross sections6, it becomes

intractable10 even for a diatom-diatom type collision system due to the dramatic increase

in the number of STS cross sections to ∼ 1015. Moreover, such DTD models still allow for

the prediction of quantities relevant to hypersonic flow, such as the reaction rates or the

average vibrational and rotational energies.11

Here, the N + O2 → NO + O reaction is considered, which is relevant in the hypersonic

flight regime and for which accurate, fully dimensional potential energy surfaces (PESs) are

available.12 The necessary reference data to train the NN-based models was obtained by

running explicit quasi-classical trajectories (QCT) for reactive N + O2 collisions. In par-

ticular, from a diverse set of equilibrium reactant state distributions (P (Etrans), P (v), P (j))

for N + O2, the corresponding product distributions for NO + O are obtained by means of

QCT simulations. In this work, three different approaches for learning and characterizing

these distributions are pursued, including function-, kernel-, and grid-based models (F-,

K-, and G-based models in the following). The microscopic description provided by such

DTD models can, e.g., be used as an input or to develop models for more coarse-grained

approaches, including Direct Simulation Monte Carlo13 (DSMC) or computational fluid

dynamics (CFD) simulations. Furthermore, the core findings of this work also carry over to

applications in other areas where a DTD model is of interest, such as in demographics14 or

economics15.

This work is structured as follows. First, the methods including three different approaches

to construct NN-based DTD models are described. Then, the performance of the models is

assessed for various data sets and improvements in particular related to the input features

are explored. Finally, implications for modeling hypersonic gas flow, based on DSMC and
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CFD simulations, are discussed and conclusions are drawn.

II. METHODS

A. Quasi-Classical Trajectory Calculations

Explicit QCT simulations for the N + O2 collision system were carried out on the 4A′ PES

of NO2 following previous work.12,16–19 Specifically, the reactive channel for the N + O2

→ NO + O collision was considered. The 4A′ PES is chosen here, because this state con-

tributes most to the equilibrium rate.12 Briefly, Hamilton’s equations of motion are solved

in reactant Jacobi coordinates using a fourth-order Runge-Kutta method with a time step

of ∆t = 0.05 fs, which guarantees conservation of the total energy and angular momentum.

The initial conditions for each trajectory were randomly chosen using standard Monte Carlo

sampling methods.16,17 The initial relative translational energies Etrans were sampled from

Maxwell-Boltzmann distributions (Etrans,min = 0.0 eV; Etrans,max = 19.8 eV;∆Etrans = 0.1

eV) and reactant vibrational v and rotational j states were sampled from Boltzmann distri-

butions (vmin = 0, vmax = 38,∆v = 1; jmin = 0, jmax = 242,∆j = 1), characterized by Ttrans,

Tvib and Trot, respectively.
16,20 The impact parameter b was sampled from 0 to bmax = 10

Å using stratified sampling16,20 with 6 equidistant strata. The rovibrational reactant (O2;

(v, j)) and product diatom (NO; (v′, j′)) states are calculated following semiclassical the-

ory of bound states.21 The states of the product diatom are assigned using histogram binning.

First, models were constructed for the case Trovib = Trot = Tvib, for which QCT simulations

were performed at Ttrans and Trovib ranging from 5000 K to 20000 K in increments of 250

K. This yielded 3698 sets of reactant state distributions and corresponding product state

distributions which will be referred to as “Set1”. Next, for the more general case Trot 6= Tvib,

further QCT simulations were performed for Ttrans = 5000, 10000, 15000, 20000 K with Tvib

and Trot each ranging from 5000 K to 20000 K in increments of 1000 K. This gives an

additional 960 data sets and a total of 4658 data sets that include both cases, Trot = Tvib

and Trot 6= Tvib, collectively referred to as “Set2”.
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The reactant and product state distributions of Set1 and Set2 constitute representative

reference data to train and validate NN-based models. For both sets the temperatures

T = (Ttrans, Tvib, Trot) completely specify the reactant and product state distributions as

they are related through the explicit QCT simulations. Hence, for brevity a specific set of

reactant and product state distributions is referred to as T .

B. Generating Nonequilibrium Data Sets

In hypersonic applications it is known that quantities such as P (Etrans), P (v), or P (j) are

typically nonequilibrium probability distributions.4 This has also been confirmed in explicit

simulation studies, starting from equilibrium energy and state distributions as is commonly

done in QCT simulations.19,22 Therefore, a general DTD model should be able to correctly

predict (nonequilibrium) product state distributions starting from nonequilibrium reactant

state distributions. With this in mind, and with Set2 at hand, new reactant and product

state distributions were generated by means of a weighted sum of the existing distributions

according to

P (i) =
1

wtot

N∑

n=1

wn · Pn(i). (1)

Here, i ∈ [Etrans, v, j, E
′

trans, v
′, j′] labels the degree of freedom, n labels the data set,

N ∈ [2, 3] is the total number of distributions drawn from Set2, the corresponding dis-

tributions Pn(i) used for and obtained from QCT simulations and the random weights

wn ∈ [1, 2] determine how much these contribute to the total sum. The resulting distri-

butions are scaled by wtot =
∑N

n=1 wn to conserve probability. Such distributions then

constitute Set3. It is assumed that any nonequilibrium state distribution can be represented

as a decomposition in terms of a linear combination of equilibrium distributions given by

Eq. 1. For instance, general nonequilibrium distributions for nitrogen and oxygen relax-

ation at high temperature (> 8000 K) conditions, obtained via direct molecular simulations

(DMS), which is equivalent to solving the full master equation, have been successfully mod-

elled as a weighted sum of two Boltzmann distributions.23 Consequently, DTD models that

are successfully trained and validated on Set3 are also expected to generalize well to most

nonequilibrium situations encountered in practice.
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In the following, a single data set for Set3 is generated by randomly specifying the number of

distributions N ∈ [2, 3] to be combined although larger values for N are possible and will be

explored later. The final set of reactant and product state distributions is characterized by

N sets of temperatures T and corresponding normalized weights w = (w1/wtot, ..., wN/wtot).

The product state distributions obtained by this procedure are akin to explicit QCT simu-

lations using Monte Carlo sampling of the reactant state distributions by sampling each of

the equilibrium distributions in the corresponding weighted sum. In the following, three dif-

ferent possibilities for characterizing reactant and product state distributions are described.

C. Function (F)-Based Approach

In the F-based approach, each set of relative translational energy, vibrational and rota-

tional state distributions of reactant and product are fitted to parametrized model functions,

see Figure 1 for an example. The corresponding fitting parameters in Eqs. 2 to 7 constitute

the input and output of a NN, respectively (see Section II F for details on the NN). Together

with the parametrized model functions (Eqs. 2 to 7) this serves as a map between reactant

and product state distributions, i.e., a DTD model. In this work the F-based approach was

only applied to Set1.

The set of model functions used here was

P̃ (Etrans) = a1Etrans · exp(−Etrans/a2), (2)

P̃ (v) = b1 exp(−v/b2), (3)

P̃ (j) = c1 exp(−j/c2) + c3 exp(−(ln(2c4(j − c5)/c6 + 1)/c4)
2), (4)

P̃ (E ′

trans) = d1 exp(−(ln(2d2(E
′

trans − d3)/d4 + 1)/d2)
2), (5)

P̃ (v′) = e1v
′4 + e2v

′3 + e3v
′2 + e4v

′ + e5, (6)

P̃ (j′) = f1 exp(−j′/f2) + f3 exp(−(ln(2f4(j
′ − f5)/f6 + 1)/f4)

2), (7)

where a = (a1, a2) through f = (f1, ..., f6) are the fitting parameters of the model functions.

In total, this results in 10 and 15 fitting parameters for one set of reactant or product
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state distribution, respectively. For the reactant and product rotational state distribu-

tions, P (j) and P (j′), the same model function was used. Such a parametric approach has

its foundation in surprisal analysis24 which was recently used in models for hypersonics.9,11,25

The reactant state distributions in Set1 are equilibrium distributions and the model func-

tions (Eqs. 2 to 4) were chosen accordingly. For the product state distributions, which are

typically nonequilibrium distributions, modified parametrizations were used after inspection

of the results from the QCT simulations. Here, it is worth mentioning that using alternative

parametrizations for model functions are possible, too, which will be briefly explored later.

FIG. 1. Reactant state distributions for the F-based approach: P (Etrans) (Ttrans = 12500 K,

panel (a), P (v) (panel (b)) and P (j) (panel (c)) distributions (Trovib = 5750 K) for explicit QCT

simulations (black) and corresponding fits (red) obtained using Eqs. 2 to 4.

D. Kernel (K)-Based Approach

The representer theorem26 states that, given N grid points xi, the function f(x) can

always be approximated as a linear combination of suitable functions

f(x) ≈ f̃(x) =
N∑

i=1

ciK(x, xi) (8)

where ci are coefficients and K(x, xi) is a kernel function. The reproducing property asserts

that f(x′) = 〈f(x), K(x, x′)〉 where 〈·〉 is the scalar product, K(x, x′) is the kernel27 and

the coefficients ci are determined through matrix inversion. This leads to a reproducing

kernel Hilbert space (RKHS) representation that exactly reproduces the function at the
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grid points xi.
27–29 In the present work the amplitudes of the distributions at the chosen

grid points are used for inter- and extrapolation based on a RKHS-based representation

and the the coefficients ci serve as input and output of the NN. Hence, given the kernel

coefficients for the reactant state distributions, the NN is trained to predict the coefficients

of the corresponding product state distributions. Together with the associated grids, one

obtains a continuous (K+NN-based) prediction of the product state distributions, i.e., a

DTD model. The K-based approach was also only applied to Set1.

In this work, a Gaussian kernel

K(x, x′) = exp(−|x− x′|2/2σ2), (9)

with hyperparameter σ was found to perform well as a reproducing kernel. Furthermore, a

variable amount of regularization as specified by the regularization rate λ in the Tikhonov-

scheme is used. The hyperparameters σ and λ remain to be optimized systematically.

However, the present choices yielded sufficiently accurate representations. Assigning σ to

the average spacing between neighbouring grid points was found to be advantageous. Al-

ternatively, it is also possible to choose σ at each grid point to be equal to the larger of

the two neighbouring grid spacings. In this work, the first approach is used for P (v) and

P (v′), whereas the second approach is applied for all other distributions. Moreover, such

choices for σ significantly reduced the number of grid points required for accurate RKHS

approximations and the resulting kernel coefficients lead to accurate NN predictions. While

the same level of accuracy for the RKHS approximations can be achieved with larger values

for σ, the accuracy of the resulting NN predictions was found to deteriorate. Consequently,

only the regularization rate λ needed to be tuned and accurate RKHS approximations were

obtained after a few iterations.

The location and number of grid points for the reactant and product state distributions

is largely arbitrary but should be governed by the overall shape of the distributions, see

Figure 2 for an example. The grids used here are reported in Table S1. The number of grid

points for reactant and product state distributions differs because they are equilibrium and

nonequilibrium distributions, respectively. Also, depending on the shape of the distributions

to be represented, additional points may be required to avoid unphysical undulations in the
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RKHS approximations. For the system considered here, this is mainly observed for P (v′)

which requires a denser grid than the corresponding reactant state distributions P (v).

Instead of directly evaluating the distributions at the grid points, local averaging over neigh-

boring data points according to

P̄ (xi) =
1

2n+ 1

i+n∑

j=i−n

P (xj), (10)

was performed to obtain P̄ (xi). Here n = min(nmax, nnb), with nnb the maximum number of

neighbouring data points to the left or the right. If the first and last data points are chosen

as grid points they were assigned the unaveraged distribution values. The value of nmax

can differ for each of the (Etrans, v, j, E
′

trans, v
′, j′) distributions. For the K-based approach

these values were nmax,Etrans
= 2, nmax,v = 1, nmax,j = 12 for the reactant and nmax,E′

trans
= 3,

nmax,v′ = 2, and nmax,j′ = 13 for the product state distributions. Local averaging can be

seen as an implicit regularization as it reduces the noise partially arising due to finite sample

statistics in the QCT simulations.

FIG. 2. Reactant state distributions for K- and G-based approaches: P (Etrans) (Ttrans = 9500 K,

panel (a), P (v) (panel (b)) and P (j) (panel (c)) distributions (Trovib = 16000 K) for explicit QCT

simulations (black), their RKHS representations (red lines) and the locally averaged values at the

corresponding grid points (red circles) used for the G-based approach.
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E. Grid (G)-Based Approach

For the G-based approach, the same grids as in the K-based approach are considered

(see Table S1). Furthermore, similar to the K-based approach local averaging is performed

with nmax,Etrans
= 2, nmax,v = 1, nmax,j = 9 for the reactant and nmax,E′

trans
= 3, nmax,v′ = 2,

and nmax,j′ = 10 for the product state distributions. These values were adjusted such as

to obtain accurate discrete representations of the corresponding distributions. In the G-

based approach the locally averaged values of reactant state distributions at the grid points

(referred to as “amplitudes”) directly serve as the input of a NN, see the red circles in

Figure 2. The NN then predicts the product state distributions on the corresponding grids,

where the amplitudes serve as the reference. The resulting discrete product distributions

are finally represented as a continuous RKHS, establishing a DTD model. Similarly to

the K-based approach, a Gaussian kernel (Eq. 9) was used for the RKHS of the product

state distributions, as this choice still yielded accurate approximations. Furthermore, the

corresponding hyperparameters σ and λ are were chosen as in the K-based approach.

F. Neural Network

The NN architecture for training the three models is a multilayer perceptron with two

hidden layers, see Figure 3. The input and output layers consist of 10/43/43 input and

15/44/44 output nodes in the F-, K-, and G-based approaches. The input/output are the fit-

ting parameters (F-based approach), kernel coefficients (K-based approach), and amplitudes

(G-based approach) characterizing reactant and product state distributions, respectively.

When training a NN using Set1 to Set3 the two hidden layers contain 6, 12, and 9 nodes

each, respectively.

For training, the input and output of the NN are standardized according to x′

i = (xi−x̄i)/σi,

where xi, x̄i and σi are the i-th input/output, and the mean and standard deviation of their

distribution over the entire set of training data. Scaling of the input, here by means of

standardization, is common practice in the data pre-processing step for machine learning

tasks relying on gradient descent for optimization, as it generally yields a faster convergence

10



FIG. 3. Schematic diagram of the NN architecture. The activation vector of each hidden layer is

ai. The input and output vectors are x and y and the weight matrix and bias vector for each layer

are Wi and bi, respectively. The activation function of the hidden layers is σ(·) and corresponds to

a shifted softplus30 function σ(·) = ln(1+ e(·))− ln(2). Here, activation functions act element-wise

on input vectors (·). The constant ln(2) centers the mean activation of the hidden nodes at zero,

thereby decreasing the bias shift effect which speeds up the learning.31,32 The activation function

of the output layer is C · tanh(·)33, where C is an overall scaling with C = 8/12/8 in the F-, K-

and G-based approaches.

rate.32 The additional standardization of the output allows one to use a root-mean-square

deviation (RMSD) loss function, as the non-standardized values can differ drastically in

magnitude and spread. Thus, in particular low and high product state probabilities can be

predicted with similar accuracy. It would also be possible to simply normalize the output

but the additional offset gives the flexibility to use a scaled hyperbolic tangent as an acti-

vation function for the output layer which increases the NN prediction accuracy compared

to other/no activation functions. The RMSD loss function L used here is

L =

√√√√ 1

N

N∑

i=1

(yi − y′i)
2, (11)

with yi and y′i the predicted and reference output values.
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The weights and biases of the NN are initialized according to the Glorot scheme34 and opti-

mized using Adam35 with an exponentially decaying learning rate. The NN is trained using

TensorFlow36 and the set of weights and biases resulting in the lowest loss as evaluated on

the validation set are used for predictions. When training a NN using Set1 with Ntot = 3698

data sets, Ntrain = 3000 were randomly selected for training, Nvalid = 600 for validation and

Ntest = 98 as a test set, whereas for Set2 Ntot = 4658, Ntrain = 3600, Nvalid = 900, and

Ntest = 158.

To train models on reactant state distributions that can not be characterized as a single set

of temperatures T , Set3 was constructed by means of a weighted sum of the distributions

in Set2 (see Section II B). For this, 158 data sets are randomly selected from Ntot = 4658

data sets of Set2. They constitute the subset from which the final test set of Set3 is gen-

erated. Here, Ntest = 125, see Section II B. The remaining 4500 data sets make up the

subset from which the data sets for training and validation are constructed. In partic-

ular, Ntrain + Nvalid = 5000, 10000, 15000, 20000, 25000, 30000 data sets are generated by

means of the same procedure, making up the final training and validation sets of Set3 with

Ntrain = 0.8× (Ntrain +Nvalid) and Nvalid = 0.2× (Ntrain +Nvalid). All NNs in this work were

trained on a 1.8 GHz Intel Core i7-10510U CPU with training times shorter than 10 minutes.

III. RESULTS

The results section first presents DTD models for the F-, K-, and G-based approaches

for Tvib = Trot. This is followed by discussing the influence of featurization, computa-

tional cost and generalizability of the approaches considered. As the G-based approach is

found to perform best from a number of different perspectives, models are then trained

for Tvib 6= Trot and for nonequilibrium reactant state distributions. Also, variations of the

G-based approach requiring fewer input data are explored. Then, the findings are discussed

in a broader context and conclusions are drawn.
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A. Distribution-to-Distribution Models for Tvib = Trot

First, an overall assessment of the three different approaches for describing the reactant

state distributions for Set1 (i.e. Tvib = Trot) is provided. As they are generated accord-

ing to the typical sampling procedures followed by QCT simulations and not from direct

function evaluations of equilibrium distributions they contain noise. This is done because

the entire work is concerned with a situation typically encountered in QCT simulations of

reactive processes.21 Also, it is noted that for the reactant state distributions one should

find - as demonstrated here - that they are characterized by one parameter only, namely

temperature. This, however, is an open point and not guaranteed for the product state

distributions, which are nonequilibrium distributions in general.

For the F- and K-based approaches the reactant state distributions are first represented

either as a parametrized model function or as a RKHS, respectively, and the agreement

is found to be excellent (see Figures 1 and 2). For the G-based approach this step is not

required, as the input are the amplitudes of the reactant state distributions themselves (see

Figure 2).

Having established that all three (F-, K-, and G-based) approaches are suitable to describe

reactant state distributions, a NN for each of the three models was trained on Set1 with

Ntrain = 3000 and Nvalid = 600. The quality of the final model for predicting product state

distributions depends on two aspects: 1. The ability of the NN to learn and predict the

product state distributions obtained from the QCT simulations 2. The ability of the (F-,

K- or G-based) approaches to describe these distributions.

1. Quality of the NN Prediction: For the first aspect, RMSD and coefficient of determination

(R2) values, referred to as RMSDNN and R2
NN, are considered as performance measures. For

a single data set from the test set these are calculated by comparing the normalized reference

representations of each of the models and the corresponding normalized NN predictions on

the grid for which QCT data is available for each of the three product state distributions

separately and averaging over the resulting values. The normalization factors were calcu-

lated by numerical integration of the distributions obtained from the QCT simulations. The
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final RMSD and R2 values are then obtained by averaging over the entire test set with

Ntest = 98, see Table I.

DTD model RMSDNN R2
NN RMSDQCT R2

QCT

F-NN 0.0007 0.9996 0.0014 0.9982

K-NN 0.0013 0.9984 0.0014 0.9981

G-NN 0.0009 0.9994 0.0010 0.9991

TABLE I. Performance measures of the F-, K- and G-based models (F-NN, K-NN and G-NN)

trained and evaluated on Set1. The number of significant digits being reported is based on the

findings of Table S2.

For three different data sets from the test set, the results from explicit QCT simulations, the

NN predictions, and the reference representation of the corresponding approach are shown

in Figure 4. These results are representative of NN predictions for data from the test set for

each of the three approaches as they are characterized by an R2
NN value closest to the mean

R2
NN value as evaluated over the test set. Figures S1 and S2 show the predictions that are

characterized by the highest (“accurate” prediction) and lowest (“inaccurate” prediction)

R2
NN value in the test set, respectively.

In general, all three approaches are very accurate, as their predictions closely match the

corresponding reference representations. Closer inspection of Figure 4 reveals that for these

particular examples the K-based approach appears to yield slightly less accurate predictions

than the other two approaches (see, for example Figure 4f). The RMSDNN values are 0.0007,

0.0013 and 0.0009 for the F-, K-, and G-based models respectively, and the corresponding

R2
NN values are 0.9996, 0.9984 and 0.9994. These performance measures indicate that the

F-based approach yields the most accurate predictions, followed by the G- and K-based

approaches.

2. Quality of the F-, K-, and G-Based Model Predictions: For the product state distributions

the prediction accuracy depends on the accuracy of the NN and the accuracy with which

the representations approximate them. Figure 5 compares the final model predictions from
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FIG. 4. Product state distributions obtained by explicit QCT simulations (QCT) as well as the

corresponding references (-R) and predictions (-NN) from the (a-c) F-based (F-R, F-NN), (d-f) K-

based (K-R, K-NN) and (g-i) G-based approaches (G-R, G-NN). Also, the amplitudes to construct

the reference RKHS-based representations in the K- and G-based approaches are displayed (circles).

The data sets considered here are from the test set of Set1 and result in predictions that are

characterized by an R2
NN value closest to the mean R2

NN value as evaluated over the test set: (a-

c) T = (9500 K, 16000 K, 16000 K), RMSDNN = 0.0005, R2
NN = 0.9996, (d-f) T = (10250 K,

19250 K, 19250 K), RMSDNN = 0.0013, R2
NN = 0.9984, (g-i) T = (12000 K, 9750 K, 9750 K),

RMSDNN = 0.0009, R2
NN = 0.9994.

the three approaches. The examples illustrate the variety of product state distributions in

Set1. It is found that despite the appreciable variation in shapes (in particular for P (v′)) all

three models correctly describe the product state distributions. Distributions P (v′) are not

well represented as a single equilibrium distribution which is typical for vibrational states

at high temperatures.4,9

A quantitative measure for the performance of the three models are the RMSD and R2 val-
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FIG. 5. Product state distributions obtained by explicit QCT simulations (QCT) as well as the

corresponding model predictions obtained in the (a-c) F-based (F-NN), (d-f) K-based (K-NN) and

(g-i) G-based approaches (G-NN). The data sets considered here are from the test set of Set1:

(a-c) T = (12500 K, 5750 K, 5750 K) , (d-f) T = (9500 K, 16000 K, 16000 K), (g-i) T = (5750 K,

19250 K, 19250 K).

ues calculated by comparing the locally averaged (nmax,E′

trans
= 3, nmax,v′ = 2, nmax,j′ = 10)

QCT data and the model predictions following a similar procedure as for RMSDNN and

R2
NN which will be called RMSDQCT and R2

QCT, respectively. For Set1 these performances

are reported in Table I. Again, all models are of high quality with the G-based approach

performing best. The somewhat lower quality of the F-based approach when compared to

the G-based approach can largely be attributed to the fits of the product state distributions.

The representation of the F-based approach leads to differences, in particular for P (v′) (e.g.,

deviations for small and high v′ or extra undulations in Figure 5b). However, the deviations

in the F-based approach observed for high v′ are only partially relevant, as the accessible

vibrational and rotational state space is finite in practice, here v′max = 47, j′max = 240. Since

state space is limited, extrapolation is not always required. Considering the K- and G-based
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approaches, the reference representations describing product distributions are nearly identi-

cal and reproduce the QCT data very closely. Hence, the lower accuracy of the final model

in the K-based approach when compared to the G-based approach can largely be attributed

to its lower NN prediction accuracy.

For the F-based approach, finding an optimal set of model functions (Eqs. 2 to 7) specific to

the system at hand is expected to be a difficult task. Such parametric models for nonequi-

librium conditions are still a current topic of research.9,11,25 To highlight the performance

of different models, a parametric model for transient vibrational and rotational state distri-

butions based on surprisal analysis9 was applied to Set1. P (v′) and P (j′) distributions for

two different sets of temperatures ((Ttrans = 20000 K, Trovib = 5000 K) and (Ttrans = 5500

K, Trovib = 20000 K)) from QCT simulation are modelled following the parametrization

of Ref. 9 (see Figure S3). While for the first set of temperatures (translationally hot and

rovibrationally moderately hot) the QCT results for P (v′) and P (j′) are closely matched

by the model, for the second set (translationally moderately hot and rovibrationally hot)

both distributions are insufficiently described by the model, in particular for P (v′) which is

consistent with Ref. 9. The fact that the shape of the P (v′) appears to vary more widely

for different T compared to P (E ′

trans) and P (j′) could be a partial explanation of why

developing a universally valid parametric model for P (v′) is more challenging. It should

be emphasised that comparison between predictions based on the model and explicit QCT

simulations is mandatory to validate the model function used.

B. Sensitivity of Performance to Feature Selection

As in all machine learning tasks, feature selection for representing the raw data is crucial

for the complexity and prediction accuracy of the resulting NN-based model.37,38 Here, the

main difference between the three approaches are the features that represent reactant and

product state distributions and which serve as input/output of the NNs. Hence, any dif-

ference in the NN prediction accuracy is due to the features used (i.e. the “featurization”).

Here, the features are fitting parameters (F-based), kernel coefficients (K-based), and ampli-

tudes (G-based) and together they constitute a feature vector. Hence, a good featurization
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allowing for an accurate NN to be trained is characterized by the fact that similarly shaped

distributions are described by similar feature vectors.39 Here, “similarity” is measured by

an appropriate metric, such as an Euclidean norm.

For the F-based approach, the choice of model functions (see Eqs. 2 to 7) turned out to

yield a satisfactory featurization. Conversely, for the K-based approach it was necessary to

increase the regularization rate λ and averaging over more neighbouring data points which

in essence smooths out sharp variations in the kernel coefficients between neighboring data

sets in temperature space. In the G-based approach, accurate NN predictions were obtained

through local averaging because the amplitudes are the features.

For the F-based approach the dependence of NN performance on feature selection was ex-

plicitly explored by choosing an alternative parametrization for

P̃ (v′) = g1 exp(−(ln(2g2(v
′−g3)/g4+1)/g2)

2)+g5 exp(−(ln(2g6(v
′−g7)/g8+1)/g6)

2), (12)

where g = (g1, ..., g8) are the corresponding fitting parameters. The resulting fit (see Fig-

ure S4) to the QCT data demonstrates that Eq. 12 yields a better fit than Eq. 6. However,

training the corresponding NN turned out to be difficult and the resulting NN predictions

were highly inaccurate (see below).

Figure 6 illustrates these points for P (v′) for three combinations of simulation tempera-

tures with 1) Ttrans ∼ Trovib (Ttrans = 5000 K, Trovib = 5000, 5250, 5500, 5750 K; black)

2) Ttrans < Trovib (Ttrans = 5000 K, Trovib = 10000, 10250, 10500, 10750 K; red), and 3)

Ttrans > Trovib (Ttrans = 12000 K, Trovib = 5000, 5250, 5500, 5750 K; green). As Figure 6a

demonstrates, the shapes of all P (v′) are comparable and for each color there are four

largely overlapping distributions which can not be separated because the differences in

Trovib are too small. Using the F-based approach with Eq. 6 for P (v′) yields parameter

values that are clustered (Figure 6b) for the black, red, and green P (v′), respectively. For

such input a robust NN can be trained. Conversely, using Eq. 12, even the fitting pa-

rameters for one set of P (v′) spread considerably and mix with those from P (v′) of other

temperature combinations, see Figure 6c. Thus, similarity in the shape of P (v′) does not

translate into similarity of the fitting parameters used for the featurization. This is an
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unfavourable situation for training a NN which compromises the prediction ability of such

an F-based model. The F-based model trained with Eq. 6 yields an accurate prediction

(RMSDNN = 0.0007, R2
NN = 0.9996) whereas the one trained with Eq. 12 fails to predict

P (v′) (RMSDNN = 0.0348, R2
NN = −10.6133; i.e., this model is worse than a baseline model

with R2 = 0). Similarly, a K-based approach can lead to considerable spread of the kernel

coefficients (Figure 6d) which is not observed for the amplitudes in the G-based approach

(Figure 6e). Such differences in the featurization leads to differences in the NN prediction

accuracies.

FIG. 6. Comparison of the featurization for three different groups of similarly shaped P (v′) (black,

red and green). Panel a: the distributions as obtained from QCT simulations (fluctuating lines).

Panels b and c: Fitting Parameters for the F-based approach with model functions from Eqs.

6 and 12; panel d: kernel coefficients for the K-based approach and panel e: amplitudes for

G-based approach. The temperatures are (Ttrans = 5000 K, Trovib = 5000, 5250, 5500, 5750 K;

black), (Ttrans = 5000 K, Trovib = 10000, 10250, 10500, 10750 K; red), and (Ttrans = 12000 K,

Trovib = 5000, 5250, 5500, 5750 K; green). The quality of all fits in panel a is as good as in Figure

5 and all features are standardized.

Another difference between the NNs in the three approaches is the fact that prediction

errors in the features translate into errors in the corresponding predicted product state

distributions in different ways. For the G-based approach, an error in the predicted fea-

tures directly translates into an error in the predicted product state distributions. This is
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not the case for the F- or K-based approaches. As an example, the model functions for

the product state distributions in an F-based approach depend nonlinearly on the fitting

parameters (features). Hence, small errors in the NN predictions can lead to large errors in

the predicted distributions. This is problematic, as the NNs are trained on a loss function

that measures the errors in feature space, whereas one is rather interested in the quality of

the predicted product state distributions. By using a loss function that depends on errors in

the predicted product distributions this problem can be avoided. In the K-based approach

this is partially resolved by the choice of a Gaussian kernel where the hyperparameter σ is

assigned according to the procedure described in Section IID. This results in a local ker-

nel with kernel coefficients largely determined by the amplitude at the corresponding grid

points and its nearest neighbours.40 Consequently, errors in the predicted kernel coefficients

are also restricted to impact the predicted model function locally, similar to the G-based

approach.

C. Computational Cost and Generalizability

To compare the computational cost of the final models in the F-, K- and G-based ap-

proaches, the evaluation times of the final models for 1000 randomly selected data sets (from

Set1) are considered. Here, a single evaluation is defined as a prediction of the product

(E ′

trans, v
′, j′) distributions at 201, 48 and 241 evenly spaced points in the interval between

E ′

trans = 0 − 20 eV, v′ = 0 − 47 and j′ = 0 − 240, respectively, given the reactant state

distributions. The evaluation times on a 1.8 GHz Intel Core i7-10510U CPU are (9.0± 0.1)

s, (29.0± 0.3) s, and (28.9± 0.3) s for the F-, K- and G-based models, respectively. For the

F-based approach the evaluation time is 3 times faster compared to the two other methods

and is dominated by fitting the reactant state distributions to Eqs. 2 to 4 whereas for the K-

and G-based approaches the evaluation time is dominated by the evaluation of the RKHS-

based representations of the product distributions given the predicted kernel coefficients or

amplitudes, respectively. This may be further improved for the K- and G-based approaches

by using a computationally efficient kernel toolkit.29

In terms of generality and transferability, an F-based model can not be easily generalized
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to distributions with widely different shapes emanating from the QCT simulations. New

optimal model functions, also suitable for training a NN would need to be found for ev-

ery single system. Conversely, with the K- and G-based approaches all desired features

of the distributions can be captured by an appropriate choice of reproducing kernel and

grid, requiring fine-tuning of the corresponding hyperparameters. Compared to the K-based

approach, a G-based model only requires tuning of the corresponding hyperparameters for

the product state distributions. In addition, for a G-based model it is also possible to use

a linear interpolation instead of a RKHS if one is not concerned with extrapolation. Then,

the grid for the product state distributions needs to be chosen sufficiently dense suitable for

linear interpolation at the cost of an increased number of NN parameters.

D. Grid-Based Models for Tvib 6= Trot

As vibrational relaxation is often slow in hypersonic flow, assuming Tvib = Trot is often

not a good approximation.4,20 Therefore, the G-based approach is extended to and tested for

the case of Tvib 6= Trot using Set2. Restricting this to the G-based approach is motivated by

the fact that it performed best so far, both in terms of final model accuracy and practicability.

First, predictions for Set2 were made based on the G-based model (G-NN) trained on Set1

(Tvib = Trot) and compared with QCT data (QCT), see Figure 7. The accuracy of this

G-based model deteriorates (see Table S3 for all performance measures) as the difference

between Tvib and Trot increases (green lines in Figure 7). Consequently, a new G-based

model was trained and evaluated on Set2. The resulting model predictions (red lines in

Figure 7) are very accurate, close to the level of accuracy of the G-based model trained and

evaluated on Set1. Thus, the G-based approach performs equally well for Tvib = Trot and

Tvib 6= Trot.

In an attempt to further improve the G-based approach, three alternative types of input were

considered. They are all based on reducing the number of input which not only decreases

computational cost, but also removes redundant features which can improve prediction

accuracy.41 Again, continuous distributions were obtained from an RKHS of the discrete
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FIG. 7. Performance of the G-based approach on Set2 from training on Set1 (green) or Set2

(red). Product state distributions from explicit QCT simulations (QCT) compared with model

predictions from the G-based approach by training on Set1 (G-NN (Set1)) and Set2 (G-NN (Set2))

for: (a-c) T = (20000 K, 7000 K, 5000 K) , (d-f) T = (10000 K, 14000 K, 9000 K), (g-i) T = (5000

K, 20000 K, 8000 K).

predictions. The first (G′-based) model used values of the reactant state distributions at

a fixed but reduced number of grid points compared with the G-based model used so far

(see Table S1). Next, a model using only the three temperatures characterizing the reac-

tant state distributions T as input (G(T )-based model) is considered. This is meaningful

because the value of T entirely specifies the equilibrium reactant state distributions. A

third model used averages µ = (µEtrans
, µv, µj) of the reactant state distributions as input

(G(µ)-based model). For generality, these models will be trained and evaluated on Set2 and

all performance measures are summarized in Table S3.

A G′-based approach using two grid points per reactant state distribution (Etrans = 0.3, 3.5

eV; v = 2, 12; j = 30, 150) still allows for accurate predictions of the product state distribu-
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tions. The location of these grid points is largely arbitrary, but they should be sufficiently

spaced to provide information about the distribution at different locations. However, re-

ducing to a single grid point per reactant state distribution (Etrans = 0.6 eV, v = 6, j = 60)

leads to a significant drop in the prediction accuracy. The fact that 2 grid points per reac-

tant state distribution are required for accurate predictions can mainly be attributed to the

presence of noise in the distributions arising from finite sample statistics (see Section IV in

SI for further clarification). The resulting predictions for the above mentioned models for

selected data sets from the test set are displayed in Figure S6 in the SI.

For the G(T )-based model the performance is close to the original G-based model trained

and evaluated on Set2. This is expected, as T entirely specifies the equilibrium reactant

state distributions and allows a NN to predict corresponding product state distributions.

Finally, providing the mean µ of each of the reactant state distributions as input in a G(µ)-

based model also leads to highly accurate predictions. This can be explained by the fact,

that the mean values µ of the reactant equilibrium distributions are uniquely linked to the

corresponding set of temperatures T .

The results of this Section highlight that all three variants of the G-based model yield

similarly high levels of accuracy as the G-based approach, which makes them preferable as

they are computationally less expensive. These results may be specific to reactant state

distributions that can be uniquely specified by a single parameter, such as a temperature or

its mean value µ. To explore this and to further demonstrate the generality of the G-based

approach and its variants, a more diverse dataset for nonequilibrium conditions (Set3) was

finally considered, for which the reactant state distributions are characterized by multiple

sets of temperatures T .

E. Grid-based Models for Nonequilibrium Product State Distributions

As a final application, nonequilibrium DTD models are constructed for Set3 which was

generated by means of a weighted sum (see Eq. 1) using Set2 (see Section II B) with

N ∈ [2, 3], and wn ∈ [1, 2]. Training and validation sets of variable sizes were consid-
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ered, whereas Ntest = 125 throughout. First, a G-based model was trained on Set3 with

Ntrain +Nvalid = 5000. Again, all performance measures are summarized in Table S3.

The predictions of this G-based model for three different data sets from the test set are

shown in Figure 8. In particular, the predictions for these three data sets are characterized

by a R2
QCT value closest to the mean R2

QCT value as evaluated over the entire test set, as

well as the highest and lowest R2
QCT value in the test set, respectively. Once again, the

G-based approach gives a very accurate DTD model, close to the G-based model trained

and evaluated on Set2. However, the predictions of the G-based model for Set3 have a

larger variance compared to the G-based model for Set2. To assess the influence of the

training and validation set size on the prediction accuracy, a learning curve was computed

(Figure S7). The NN prediction accuracy does not significantly increase when Ntrain+Nvalid

was increased from 5000 to 30000 in increments of 5000. Hence, this justifies training and

validating the variants of the G-based model only on Ntrain +Nvalid = 5000.

In an attempt to further improve and reduce this model for Set3, the dependence on dif-

ferent amount of input information (as was done for Set2) was tested again. Accurate

predictions are still possible with amplitudes of P (Etrans), P (v), P (j) at three different grid

points (Etrans = 0.3, 1.5, 3.5 eV; v = 2, 6, 12; j = 30, 60, 150), but the prediction accuracy

decreases when reducing this to two grid points (Etrans = 0.3, 3.5 eV; v = 2, 12; j = 30, 150).

Again it is found that with a G′-based approach the number of grid points characteriz-

ing the reactant state distributions can be significantly reduced compared to the grids in

Table S1. This suggests that the possibility to reduce the number of input features (am-

plitudes) in such G-based models is a generic property which can be systematically explored.

Providing the mean µ and standard deviation σ for each reactant state distribution

(Etrans,v,j) in a G(µ,σ)-based approach also yields a good model whereas omitting the

standard deviations σ as input information results in a G(µ)-based model with a signif-

icantly lower prediction accuracy. This should be compared with the G(µ)-based model

for Set2 which yielded accurate predictions. The aforementioned differences of the G′- and

G(µ)-based models for Set2 and Set3 can be attributed to the fact that the reactant state

distributions in Set3 show more diverse shapes compared to Set2, which makes it necessary
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FIG. 8. Performance of G-based models and variants trained and evaluated on Set3. Product state

distributions obtained from explicit QCT simulations (QCT), together with the predictions from

the G- (G-NN), G′

3- (G
′

3-NN), G(µ,σ)- (G(µ,σ)-NN) and G(w,T )-based (G(w,T )-NN) models

trained on Set3. G′

3-NN uses 3 grid points per reactant state distribution (see text). The data

sets considered here are from the test set of Set3. In particular, the predictions for these three

data sets are characterized by (a-c) a R2
QCT value closest to the mean R2

QCT value as evaluated

over the entire test set, as well as (d-f) the largest and (g-i) smallest R2
QCT value in the test set,

respectively. The normalized weights wn/wtot and sets of temperatures T characterizing the data

sets displayed here are given in Table S4.

to provide additional information to maintain a high prediction accuracy. In particular,

reactant state distributions in Set3 are nonequilibrium distributions and consequently can

not be uniquely specified by a single parameter, such as a temperature or its mean value µ,

as was the case in Set2. Rather, the G(µ,σ)-based approach for Set3 showed that the set

of reactant state distributions is characterized by specifying (µ,σ).

Keeping this in mind, extending the G(T )-based approach to Set3 can be achieved by pro-
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viding the sets of temperatures T from which the particular reactant state distributions of

Set3 were generated, together with the set of weights w with which these contributed (see

Section II B). This results in a G(w,T )-based model. To always guarantee the same number

of NN input being specified, as expected by the NN used in this work (see Section II F),

zero padding was used. Such a G(w,T )-based model for Set3 leads to accurate predictions.

The predictions of the G′-, G(µ,σ)- and G(w,T )-based model for selected data sets from

the test set are also reported in Figure 8.

Interestingly, the G-, G′- and G(µ,σ)-based models trained on Set3 can accurately pre-

dict the product state distributions when given the reactant state distributions from Set2.

The performance measures (see Table S3) were calculated by considering the subset of

158 data sets of Set2 from which the test set of Set3 was generated. Even though these

models were trained on reactant state distributions given as a linear combination of two to

three equilibrium distributions, they can accurately generalize to equilibrium reactant state

distributions. This is not the case for the G(w,T )-based model, which yields unreliable

predictions when applied to the reactant state distributions of Set2. This can be attributed

to the zero padding. In particular, such a model can not generalize at all to reactant state

distributions being composed of more than three equilibrium distributions, as this requires

more NN input to be specified than there are input nodes. This point can be addressed in

the future by considering a different NN architecture, allowing for a variable input size.

Conversely, generalizing to reactant state distributions being composed of more than three

equilibrium distributions is possible for the G-, G′- and G(µ,σ)-based models trained on

Set3. Specifically, a set of 125 reactant and product state distributions given as a linear

combination of N ∈ [1 − 10] distributions from Set2 (i.e., from the subset of 158 data sets

of Set2 from which the test set of Set3 was generated) with integer weights wn ∈ [1 − 100]

(see Section II B) was generated, referred to as Set3A. When applied to the reactant state

distributions of Set3A, these models still predict the corresponding product state distribu-

tions with high accuracy, see Table S3. The final DTD model predictions using the G-based

approach as well as its variants for such data sets is shown in Figure 9. Consequently, as

discussed in Section II B, these models are also expected to generalize well to most nonequi-

librium distributions encountered in practice.
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FIG. 9. Performance of G-based models and variants trained on Set3 and evaluated on Set3A.

Product state distributions obtained from explicit QCT simulations (QCT), together with the pre-

dictions from the G- (G-NN), G′

3- (G
′

3-NN), G(µ,σ)- (G(µ,σ)-NN) and G(w,T )-based (G(w,T )-

NN) models trained on Set3. G′

3-NN uses 3 grid points per reactant state distribution (see text).

The data sets considered here are from Set3A. In particular, the predictions for these three data

sets are characterized by (a-c) a R2
QCT value closest to the mean R2

QCT value as evaluated over the

entire Set3A, as well as (d-f) the largest and (g-i) smallest R2
QCT value in Set3A, respectively. The

normalized weights wn/wtot and sets of temperatures T characterizing the data sets displayed here

are given in Table S5.

IV. DISCUSSION AND CONCLUSIONS

The present work demonstrates that machine learning of product state distributions from

the corresponding reactant state distributions for reactive atom + diatom collisions based

on a NN (DTD model) constitutes a promising alternative to a full but computationally
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very demanding (or even unfeasible, e.g., for diatom + diatom type collisions) treatment by

means of explicit QCT simulations. For such DTD models, only a subset of the state space

of the reactant needs to be sampled which drastically reduces the computational complexity

of the problem at hand.6 In particular, DTD models for the N + O2 → NO + O reaction

were constructed following three distinct (F-, K- and G-based) approaches for Tvib = Trot.

Although all three approaches yield accurate predictions for the product state distributions

as judged from R2 and RMSD measures, the G-based approach performs best in terms

of prediction accuracy, generality and practical implementation. On the other hand the

F-based approach is computationally more efficient by a factor of 3 compared with the K-

and G-based approaches. For the K- and G-based approaches it is found that RMSDNN

and R2
NN are close to RMSDQCT and R2

QCT, respectively. This is different for the F-based

approach, where RMSDNN is smaller than RMSDQCT by a factor of 2 (similarly for R2),

see Table I. This indicates that the parametrizations used for the F-based model can still

be improved. In general, an F-based approach is feasible if a universally valid and accurate

parametrization for the distributions can be found, which also allows for an accurate NN

to be trained. However, finding such a parametrization may not always be possible. Conse-

quently, the G-based approach is generally preferred.

The G-based approach and its input-reduced variants (G′-, G(µ,σ)) were found to perform

well, too, for Tvib 6= Trot (Set2) and nonequilibrium reactant state distributions (Set3 and

Set3A). Consequently, the G′- and G(µ,σ)-based models are generally preferred over the

standard G-based model, as the reduced number of input lowers their computational cost.

Moreover, G-, G′- and G(µ,σ)-based models trained on Set3 are also expected to gener-

alize well to most realistic nonequilibrium distributions. This is of particular relevance for

applications in hypersonics for which nonequilibrium effects are of importance.

Therefore, it is also of interest to discuss the present findings in the context of the methods

traditionally employed in DSMC13 and CFD simulations for hypersonics. Continuum-level

reaction rates are required in a multi-temperature framework usually employed in CFD
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solvers42–44. The expression for the exchange reaction rates

kexc(T ) =


8kBTtrans

πµ




1/2

πb2maxPr, (13)

where kB is the Boltzmann constant, µ is the reduced mass of the reactants. Here, Pr is

the reaction probability, which can be obtained in a computationally inexpensive way by

integrating one of the predicted product state distributions. While rates derived in this man-

ner are based on equilibrium distributions characterized by T , the vibrational population is

nonequilibrium at high temperatures (T ≥ 8000 K).9 Nonequilibrium effects are particularly

relevant for diatomic dissociation because high vibrational states have significantly increased

probability for dissociation. For instance, for the dissociation of N2 (in N2 + N2) studied

in Ref. 20, at Ttrans = Trot = 10000 K, the dissociation probability to form N2 + N + N

increases by a factor of 500, when Tvib is increased from 8000 K to 20000 K. Conversely, for

the exchange reaction considered in the present work, at Ttrans = Trot = 10000 K, increasing

Tvib from 5000 K to 18000 K results in an increase in the reaction rate by only 40 % (see

Figure 10). Therefore due to the weaker dependence of the exchange reaction probability on

vibrational energy, a Boltzmann distribution at Tvib may be sufficient for modeling exchange

rates. However, if necessary, the simple model for non-Boltzmann distribution developed in

Ref. 25 can be approximated by a linear combination of Boltzmann distributions to include

non-Boltzmann effects in the reaction rates for exchange reactions as well. The reactant

state distributions can then expressed as a linear combination of equilibrium distributions,

as was done here for Set3, from which Pr can be calculated. Furthermore, the average vibra-

tional energy change due to decomposition reactions, another key input required in CFD,

can also be obtained by taking an appropriate moment of the product state distributions.11

As an alternative to CFD for hypersonic flow, coarse grained Master equations (ME) are

being used for modeling chemical kinetics.45–47 Here, several rovibrational states are lumped

together in groups and only the transition rates between these groups are required which

considerably speeds up such simulations. The accuracy of such an approach directly depends

on the criterion with which the groups are generated, though.48,49 A DTD model as devel-

oped here constitutes a new framework for tracking the time evolution of the population in

each rovibrational state in a computationally feasible manner. In the context of the present
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FIG. 10. Exchange reaction rates kexc(T ) for N + O2 → NO + O as a function of Tvib, where

Ttrans = Trot.

work the DTD model can be repeatedly used for drawing reactant state distributions at each

time step for propagating the ME. This is similar to sequential QCT proposed in Refs.50,51

and DMS method10, but computationally more efficient because it avoids explicit trajectory

calculations.

The product state distributions predicted from the DTD models can also be used for devel-

oping simple function-based, state-specific models for exchange reactions in DSMC.25,52–54

Such a model can be used within DSMC to estimate state-specific exchange (forward and

backward) reaction probabilities instead of the total collision energy (TCE)55 model. Fur-

thermore, DTD models also provide a QCT-, physics-based alternative to the phenomeno-

logical Borgnakke-Larsen model56 which is currently employed to sample internal energy

and translational energy of products formed in exchange reactions.

There is scope to further extend and improve the present methods. One of them concerns

the application of the G-based models to predict product state distributions which can

subsequently be used as reactant state distributions for QCT simulations or DTD models.

This way, starting from a set of reactant state distributions transient distributions can be

obtained after a certain number of cycles. This will be of particular relevance for applications

in hypersonics. Moreover, data construction schemes, such as constructing nonequilibrium
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distributions as a linear combination of equilibrium distributions, may prove useful for train-

ing DTD models from a small set of reactant and product state distributions obtained from

explicit QCT simulations that generalize far beyond the conditions used for the reactant

state distributions.

Overall, the present work establishes that NN-based models for distribution-to-distribution

learning can be developed based on explicit trajectory-based data. This will apply to both,

data generated from QCT and quantum simulations if sufficiently converged and complete

data can be generated. More generally, the approach presented in this work will also be

applicable to situations in which initial distributions are mapped on final distributions by

means of a deterministic algorithm such as molecular dynamics simulations. In the future it

may also be of interest to consider a fourth approach to DTD learning based on a distribu-

tion regression network57 promising a higher prediction accuracy with fewer NN parameters

compared to the approaches investigated in this work. Moreover, it may also be interesting

to explore the possibility for constructing a “state-to-distribution” model which would be

intermediate between the DTD model and the earlier STS model6.

DATA AND CODE AVAILABILITY

All data required to train the NNs has been made available on zenodo https://doi.

org/QQQ/zenodo/QQQ and the code for training the DTD models is available at https:

//github.com/MMunibas/DTD.
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I. GRIDS

Etrans [eV] v j E′

trans [eV] v′ j′

0.0 0 0 0.1 0 0

0.2 2 15 0.3 2 20

0.4 4 30 0.5 4 40

0.6 6 45 1.0 6 60

1.0 9 60 1.5 9 80

1.5 12 90 2.0 12 100

2.0 15 120 2.5 15 125

2.5 18 150 3.0 18 150

3.0 21 180 3.5 21 175

3.5 24 210 4.5 24 200

4.5 27 240 5.5 27 220

5.5 30 - 6.5 30 240

6.5 33 - 7.5 33 -

7.5 36 - 8.5 36 -

8.5 - - 9.5 42 -

9.5 - - 10.5 47 -

10.5 - - - - -

11.5 - - - - -

TABLE S1. Grid points used in this work for sampling the reactant (P (Etrans), P (v), P (j)) and

product state distributions (P (E′

trans), P (v′), P (j′)).
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II. STATISTICAL EVALUATION

For statistical evaluation, NNs in the F- and G-based models were trained on 10 in-

dependent random splits of Ntot into Ntrain, Nvalid and Ntest for Set1 as well as Set1 and

Set3, respectively. For each of the 10 resulting F- and G-based models, RMSDNN, R
2
NN and

RMSDQCT, R
2
QCT values were evaluated over the test set and subsequently the correspond-

ing mean and standard deviation were calculated. These results are displayed in Table

S2. Taking the reported standard deviations as a reference, we can be confident that any

performance difference between two models larger than ∼ 0.0001 is not solely of statistical

nature. In particular, we expect this to apply to approaches and data sets other than the

ones reported in Table S2 and will therefore refer to this estimate throughout this work.

DTD model F-NN G-NN G-NN

Training & test Set1 Set1 Set3

RMSDNN 0.00072± 0.00005 0.00089± 0.00002 0.00092± 0.00003

R2
NN 0.99948± 0.00011 0.99930± 0.00005 0.99905± 0.00010

RMSDQCT 0.00142± 0.00004 0.00107± 0.00003 0.00106± 0.00004

R2
QCT 0.99816± 0.00014 0.99901± 0.00005 0.99882± 0.00011

TABLE S2. Performance measures (RMSDNN, R
2
NN, RMSDQCT and R2

QCT) for statistical eval-

uation of F- (F-NN) and G-based models (G-NN) trained and tested on Set 1/3.

III. STATISTICAL MEASURES

The RMSDQCT and R2
QCT values of all G-based models and variants, applied to the

different data sets are summarized in Table S3.
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DTD model Training Test RMSDQCT R2
QCT

G-NN Set1 Set1 0.0010 0.9991

G-NN Set1 Set2 0.0016 0.9974

G-NN Set2 Set2 0.0011 0.9990

G′

1-NN Set2 Set2 0.0022 0.9878

G′

2-NN Set2 Set2 0.0011 0.9990

G(T )-NN Set2 Set2 0.0011 0.9990

G(µ)-NN Set2 Set2 0.0011 0.9990

G-NN Set3 Set3 0.0011 0.9989

G′

2-NN Set3 Set3 0.0013 0.9984

G′

3-NN Set3 Set3 0.0011 0.9988

G(w,T )-NN Set3 Set3 0.0011 0.9988

G(µ)-NN Set3 Set3 0.0020 0.9959

G(µ,σ)-NN Set3 Set3 0.0011 0.9987

G-NN Set3 Set2 0.0012 0.9988

G′

3-NN Set3 Set2 0.0012 0.9987

G(w,T )-NN Set3 Set2 0.0125 0.8907

G(µ,σ)-NN Set3 Set2 0.0012 0.9988

G-NN Set3 Set3A 0.0009 0.9991

G′

3-NN Set3 Set3A 0.0009 0.9990

G(µ,σ)-NN Set3 Set3A 0.0011 0.9988

TABLE S3. Performance measures (RMSDQCT and R2
QCT) of all G-based models and variants

considered in this work. Here, G′

i-NN denoted the G′-based model with i grid points per reactant

state distribution. The column labelled training denotes the data set on which the model was

trained on, whereas the test column specifies the data set whose test set was used to calculate

these performance measures. The number of significant digits being reported is based on the

findings of Section II in the SI.
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IV. G′-BASED MODELS FOR EQUILIBRIUM REACTANT STATE

DISTRIBUTIONS

G′-based models are variants of G-based models which use a significantly reduced num-

ber of grid points per reactant state distribution. Consider the case of a G′-based model,

developed for equilibrium reactant state distributions such as Set2.

As these are equilibrium distributions they are characterized by a corresponding temperature

once the system-specific parameters are fixed (here these are the energies of the rovibra-

tional state of the diatom). Thus, providing the value (“amplitude”) of the distribution at

a single, ”suitably chosen” grid point uniquely determines the corresponding distribution in

the absence of noise and it is expected that this suffices as input to accurately predict the

corresponding product state distributions. This is supported by the finding that G(µ)- and

G(T )-based models yield accurate predictions once (µ and T ) are specified. However, it is

important that the grid point chosen does not correspond to a crossing point between two

equilibrium distributions at two different temperatures.

In practice, however, the reactant state distributions considered in this work suffer from

noise due to finite sample statistics. In the presence of noise the grid points should be placed

at locations where the difference between equilibrium distributions at different temperatures

is largest. Grid points located where this difference is small, such as at the tail of these

distributions, further raises the difficulty of distinguishing between equilibrium distributions

at different temperatures when taking noise into account. Consequently, the presence of

noise serves as an explanation on why G′-based models developed for equilibrium reactant

state distributions of Set2 suffer from a significant drop in the prediction accuracy when the

number of grid points is reduced to a single point per distribution.
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V. ADDITIONAL FIGURES

FIG. S1. Product state distributions obtained by explicit QCT simulations (QCT) as well as the

corresponding references (-R) and predictions (-NN) obtained in the (a-c) F-based (F-R, F-NN), (d-

f) K-based (K-R, K-NN) and (g-i) G-based approaches (G-R, G-NN). Furthermore, the amplitudes

to construct the reference RKHS-based representations in the K- and G-based approaches are

displayed (circles). The data sets considered here are from the test set of Set1 and result in

predictions with the largest R2
NN value in the test set: (a-c) T = (17750 K, 12500 K, 12500 K),

RMSDNN = 0.0002, R2
NN = 0.99997, (d-f) T = (16750 K, 8000 K, 8000 K), RMSDNN = 0.0006,

R2
NN = 0.9997, (g-i) T = (9750 K, 5000 K, 5000 K), RMSDNN = 0.0005, R2

NN = 0.9998.
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FIG. S2. Product state distributions obtained by explicit QCT simulations (QCT) as well as the

corresponding references (-R) and predictions (-NN) obtained in the (a-c) F-based (F-R, F-NN), (d-

f) K-based (K-R, K-NN) and (g-i) G-based approaches (G-R, G-NN). Furthermore, the amplitudes

to construct the reference RKHS-based representations in the K- and G-based approaches are

displayed (circles). The data sets considered here are from the test set of Set1 and result in

predictions with the smallest R2
NN value in the test set: (a-c) T = (5000 K, 8000 K, 8000 K),

RMSDNN = 0.0020, R2
NN = 0.9973, (d-f) T = (6750 K, 18750 K, 18750 K), RMSDNN = 0.0036,

R2
NN = 0.9887, (g-i) T = (19000 K, 18750 K, 18750 K), RMSDNN = 0.0015, R2

NN = 0.9984.
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FIG. S3. P (v′) and P (j′) obtained by explicit QCT simulations (QCT) as well as the corresponding

fits to the parametric surprisal model1 (Model). The data sets considered here are from Set1: (a-b)

T = (20000 K, 5000 K, 5000 K), (c-d) T = (5500 K, 20000 K, 20000 K). While the model closely

matches the QCT data for (a-b), it is insufficiently described by the model for (c-d), in particular

P (v′).
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FIG. S4. P (v′) obtained by explicit QCT simulations (QCT) as well as the corresponding references

obtained in the F-based approach using Eq. 6 (F-R 1) and Eq. 12 (F-R 2). The data sets considered

here are from Set1: (a) T = (12500 K, 5750 K, 5750 K), (b) T = (9500 K, 16000 K, 16000 K), (c)

T = (5750 K, 19250 K, 19250 K). These results illustrate that Eq. 12 leads to a better quality of

fit compared to Eq. 6.

FIG. S5. (a) P (v′) obtained by explicit QCT simulations for (Ttrans = 12000 K, Trovib = 5250

K; black) and (Ttrans = 12000 K, Trovib = 5500 K; red) with similar shape. (b-c) Corresponding

featurizations using the K-based approach. Here, the displayed features (kernel coefficients) are

(b) non-standardized and (c) standardized. These results illustrate that positive and negative

kernel coefficients can cancel. Hence, different combinations of kernel coefficients are able to model

similarly shaped distributions, here P (v′).
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FIG. S6. Product state distributions obtained from explicit QCT simulations (QCT), as well as

the corresponding predictions of the G- (G-NN), G′

2- (G
′

2-NN), G(T )- (G(T )-NN) and G(µ)-based

models (G(µ)-NN). G′

2-NN uses 2 grid points per reactant state distribution (see main text). The

data sets considered here are from the test set of Set2: (a-c) T = (20000 K, 7000 K, 5000 K), (d-f)

T = (10000 K, 14000 K, 9000 K), (g-i) T = (5000 K, 20000 K, 8000 K).
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FIG. S7. Learning curve for the G-based model trained and evaluated on Set3 with a variable size

of the training and validation sets. Here, both RMSDNN and 1 − R2
NN are measures for the NN

prediction accuracy. The NN prediction accuracy did not significantly increase when Ntrain+Nvalid

was increased from 5000 to 30000 in increments of 5000.

Panels wn/wtot T [K]

(a-c) 2/5 (11750, 6250, 6250)

2/5 (7750, 8250, 8250)

1/5 (16750, 19000, 19000)

(d-f) 1/2 (10000, 14750, 14750)

1/2 (20000, 18000, 13000)

(g-i) 2/3 (19500, 17750, 17750)

1/3 (5000, 7000, 19000)

TABLE S4. Normalized weights wn/wtot and sets of temperatures T = (Ttrans, Tvib, Trot) charac-

terizing the data sets displayed in Figure 8.
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Panels wn/wtot T [K]

(a-c) 39/77 (15000, 19750, 19750)

6/77 (14250, 9500, 9500)

32/77 (10250, 10250, 10250)

(d-f) 71/611 (15000, 19750, 19750)

82/611 (15250, 12250, 12250)

84/611 (14250, 18500, 18500)

16/611 (9500, 19750, 19750)

24/611 (10000, 14000, 15000)

23/611 (20000, 11000, 16000)

95/611 (9750, 20000, 20000)

89/611 (19500, 17750, 17750)

51/611 (14500, 19500, 19500)

76/611 (10250, 10250, 10250)

(g-i) 18/77 (17500, 7500, 7500)

32/77 (7750, 16000, 16000)

5/77 (10000, 18000, 8000)

22/77 (18750, 5000, 5000)

TABLE S5. Normalized weights wn/wtot and sets of temperatures T = (Ttrans, Tvib, Trot) charac-

terizing the data sets displayed in Figure 9.
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