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Low-Reynolds-number polymer solutions exhibit a chaotic behaviour known as ‘elastic
turbulence’ when the Weissenberg number exceeds a critical value. The two-dimensional
Oldroyd-B model is the simplest constitutive model that reproduces this phenomenon. To
make a practical estimate of the resolution scale of the dynamics requires an assumption
that an attractor of the Oldroyd-B model exists : numerical simulations show that the
quantities on which this assumption is based are bounded. We estimate the Lyapunov di-
mension of this assumed attractor as a function of the Weissenberg number by combining
a mathematical analysis of the model with direct numerical simulations.

1. Introduction

One of the most remarkable properties of viscoelastic fluids is the formation of insta-
bilities at very low Reynolds numbers (Larson 1992; Shaqfeh 1996). Such instabilities
are of a purely elastic nature ; they occur when inertial forces are negligible and elastic
forces are strong. In polymer solutions, elastic instabilities eventually lead to a chaotic
regime known as elastic turbulence (Groisman & Steinberg 2000). The emergence of this
regime is characterized by a fast growth of the Lyapunov exponent of the flow as polymer
elasticity exceeds a critical value (Burghelea, Segre & Steinberg 2004). In addition, the
kinetic-energy spatial and temporal spectra have a power-law behaviour, which indicates
the presence of a large number of active scales in the flow. The spatial spectrum, however,
is steeper than for Newtonian turbulence, i.e. velocity fluctuations are concentrated at
small wave numbers (Groisman & Steinberg 2000; Burghelea, Segre & Steinberg 2007).
Elastic turbulence has important applications in microfluidics in view of the fact

that it strongly enhances mixing in devices that, owing to their microscopic size, are
characterized by a low Reynolds number (Groisman & Steinberg 2001). Moreover, the
potential use of elastic turbulence in the oil industry has recently emerged as a promising
application. Aqueous polymer solutions are indeed used to recover the oil that remains
trapped inside the pores of reservoir rocks after an initial water flooding, and elastic
turbulence has been proposed as a mechanism to explain the unexpectedly high efficiency
of this oil recovery method (Mitchell et al. 2016).
The simplest constitutive model of polymer solutions is the Oldroyd-B model (Oldroyd

1950) in which the dissolved polymer phase is described by a symmetric tensor field,
termed the polymer conformation tensor, which represents the moment of inertia of
polymers averaged over thermal fluctuations. The Oldroyd-B model is thus a system of
partial differential equations (PDEs) that describes the joint evolution of the velocity and
the polymer conformation tensor. In particular, the polymer feedback on the flow is given
by a stress term proportional to the conformation tensor. The relevant dimensionless
number is the Weissenberg number ; i.e. the ratio of the polymer relaxation time and the
typical time scale of the flow. The main limitation of this model is that it assumes linear
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polymer elasticity which, in extensional flows and in the absence of polymer feedback, can
lead to an unbounded growth of the conformation tensor and hence of polymer stresses.

In spite of its simplicity, the model successfully reproduces the main features of elastic
turbulence (Fouxon & Lebedev 2003; Berti et al. 2008; Berti & Boffetta 2010; Grilli,
Vázquez-Quesada & Ellero 2013). In particular, numerical simulations show that elastic
turbulence is observed also in two-dimensional settings. It has attracted much attention
in the mathematical community over the last two decades in which analysts have focused
on the existence, uniqueness and regularity of solutions (see, e.g., Lei, Masmoudi & Zhou
2010; Barrett & Süli 2011; Constantin & Kliegl 2012; Elgindi & Rousset 2015; Hu & Lin
2016, for some recent studies). To our knowledge there are few theoretical results on the
properties of elastic turbulent solutions.

A mathematical definition of the number of degrees of freedom of a system of PDEs is
given by the dimension of its global attractor (Robinson 2001). For the two-dimensional
case the bounds found by Constantin & Kliegl (2012) on the L2-norms of the vorticity
ω and the polymer conformation tensor σ, ‖ω‖2 and ‖σ‖2, are exponential in time (and
double exponential for ‖∇σ‖2). Thus, no bounded long-time averages 〈·〉 have been
found to exist and therefore, in a strictly rigorous sense, no global attractor is known
to exist. Mathematically we can go no further. However, numerical simulations of elastic
turbulence (see §4) suggest that ‖ω‖2, ‖σ‖2 and ‖∇σ‖2 are indeed bounded in time for
various values of Wi . One practical way of progressing is to work under the following
technical assumption with a subsequent strategy :

(i) Given that numerical calculations of ‖ω‖2, ‖σ‖2 and ‖∇σ‖2 are finite in time, as
suggested in §4, we assume that a global attractor A exists ;

(ii) Based on (i), we estimate the Lyapunov dimension of A, which will use the long-
time averages 〈‖ω‖2〉, 〈‖σ‖2〉 and 〈‖∇σ‖2〉 : the numerical bounds found in §4 for these
quantities in terms of Wi are used in our estimates.

A connection between the system dynamics and the attractor dimension is provided
by the notion of the Lyapunov exponents via the Kaplan–Yorke formula. For ordinary
differential equations (ODEs), the Lyapunov exponents control the exponential growth or
contraction of volume elements in phase space, and the Kaplan–Yorke formula expresses
the balance between volume growth and contraction realized on the attractor. The
Kaplan–Yorke formula is used to define the Lyapunov dimension of the attractor and
is the following : for Lyapunov exponents µ1 > µ2 > · · · > µn > · · · , the Lyapunov
dimension dL(A) is given by

dL(A) = N − 1 +
µ1 + . . .+ µN−1

−µN
, (1.1)

where the number N of µn is chosen to satisfy

N−1
∑

n=1

µn > 0 but

N
∑

n=1

µn < 0 . (1.2)

Note that according to the definition of N , the ratio of exponents in (1.1) satisfies

0 6
µ1 + . . .+ µN−1

−µN
< 1 . (1.3)

In simple terms, the value of N that turns the sign of the sum of the Lyapunov exponents
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as in (1.2) is that value that bounds above dL(A) such that

N − 1 6 dL(A) < N . (1.4)

The non-integer Lyapunov dimension dL(A) generally bounds above the fractal and
Hausdorff dimensions dF (A) and dH(A). The Kaplan–Yorke formula originated as a
phase-space argument for ODEs but has been rigorously applied to global attractors in
PDEs by Constantin & Foias (1985) (see also Gibbon & Titi 1997). To use the method for
PDEs to find an estimate for dL(A), it is necessary to extend the idea of the Lyapunov
exponents to global Lyapunov exponents via a trace formula for the two-dimensional
Oldroyd-B model that is explained in §3. This uses the methods of Constantin & Foias
(1985), Constantin, Foias & Temam (1988), Doering & Gibbon (1991) and, in particular,
the L∞-estimates of Constantin (1987). For a two-dimensional system of side L, the
resolution length ℓres of the smallest feature in the dynamics is connected to dL(A) by

dL(A) ∼ (L/ℓres)
2
.

2. The Oldroyd-B model for polymer solutions

On the periodic unit square Ω = [0, 1]2, the dimensionless form of the Oldroyd-B
model is

∂tu+ u · ∇u = −∇p+ Re−1∆u+ β(Wi Re)−1
∇ · σ + F , (2.1a)

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)⊤ −Wi−1(σ − I) + Pe−1∆σ, (2.1b)

where u is the incompressible velocity field, (∇u)ij = ∂jui, σ is the polymer conformation
tensor, p is pressure, and where Re, Pe and Wi are the Reynolds, Péclet and Weissenberg
numbers respectively. The positive constant β depends on the polymer concentration and
equilibrium extension. The forcing F is time-independent, periodic and divergence-free
(∇ · F = 0).
The Laplacian term in (2.1b) originates from the diffusion of the centre of mass

of polymers (El-Kareh & Leal 1989), which ensures the global regularity of the two-
dimensional Oldroyd-B model (Constantin & Kliegl 2012) and improves the stability of
numerical simulations, even though the values of Pe used in practice are considerably
lower than its realistic values (Sureshkumar & Beris 1995; Thomases 2011).
In two dimensions, (2.1) can be rewritten in terms of the scalar vorticity ω = ẑ·(∇×u) :

∂tω + u · ∇ω = Re−1∆ω + β(Wi Re)−1 ẑ · ∇× (∇ · σ) + f, (2.2a)

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)⊤ −Wi−1(σ − I) + Pe−1∆σ , (2.2b)

where f = ẑ · (∇×F ) and u = ∇
⊥∆−1ω with ∇

⊥ ≡ (−∂y, ∂x). Since F is periodic, the
spatial average of ω is zero, and the inverse Laplacian of ω is properly defined. Figure
1 shows snapshots of the ω and Trσ fields from a numerical simulation of (2.2) in the
elastic-turbulence regime. Note that Trσ is concentrated over very thin regions, which
is associated with large gradients in the polymer-conformation-tensor field.

3. Lyapunov dimension

In the PDE case the phase space is now infinite-dimensional. Define q = (ω,σ) and
denote by δq = (δω, δσ) the infinitesimal displacement about q ; δq satisfies the linearized
set of equations from (2.2):

δq̇ = A(t)δq (3.1)
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(a) (b)

Figure 1: Pseudocolor plot of : (a) ω and (b) log10 Trσ for Re = Rec/
√
2, Wi = 20,

β = 0.2 and a cellular forcing with n = 4 and f0 = 0.16 (see §4 for the details).

=







−u · ∇δω +
1

Re
∆δω − δu · ∇ω +

β

Wi Re
ẑ · ∇× (∇ · δσ)

(∇δu)σ + σ(∇δu)⊤ − δu · ∇σ − u · ∇δσ + (∇u)δσ + δσ(∇u)⊤ − δσ

Wi
+

1

Pe
∆δσ






,

where the explicit form of the operator A(t) is obtained by using u = ∇
⊥∆−1ω to

express u and δu in terms of ω and δω, respectively. Following Constantin & Foias (1985),
take different sets of initial conditions q(0) + δqi(0) which evolve into q(t) + δqi(t) for
i = 1, . . . , N . If they are chosen to be linearly independent, these δqi form anN -volume or
parallelepiped of volume VN (t) = |δq1 ∧ δq2 . . . ∧ δqN | , which changes along the solution
q(t), so we need to find its time evolution. This is given by V̇N = VN Tr [APN ], which is
easily solved to give

VN (t) = VN (0) exp

{∫ t

0

Tr [APN ] (τ) dτ

}

, (3.2)

where PN (t) is an L2-orthogonal projection onto the finite-dimensional subspace
span {δq1, δq2, . . . , δqN}. In terms of the time average 〈·〉, the sum of the first N global
Lyapunov exponents is taken to be (Constantin & Foias 1985)

N
∑

n=1

µn = 〈Tr [APN ]〉 . (3.3)

To estimate the Lyapunov dimension, we wish to find the value of N that turns the sign
of 〈Tr [APN ]〉. This value of N bounds above dL(A) as in (1.4). As we are interested
in elastic turbulence, we assume Pe ≫ 1, Wi ≫ 1 and 0 < Re < Rec, where Rec is
the critical value for the appearance of inertial instabilities. The derivation has been
relegated to the Appendix. The final result is that the following inequalities are sufficient
conditions on N for the growth rate 〈Tr [APN ]〉 to be negative and the N -volume VN to
contract :

N > cRe〈‖σ‖32〉1/3
(

1 + lnRe + ln〈‖σ‖32〉1/3
)1/2

, (3.4a)

N > cRe2/3〈‖∇σ‖22〉1/3
(

1 + lnRe + ln〈‖∇σ‖22〉1/2
)1/3

, (3.4b)

where ‖ · ‖22 =
∫

Ω
| · |2dx, |σ|2 =

∑

i,j |σij |2, |∇σ|2 =
∑

i,j,k |∂kσij |2 and c is regarded
as a generic, positive, dimensionless constant. These conditions depend on estimates
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for
〈

‖σ‖32
〉

and
〈

‖∇σ‖22
〉

. It has been shown in Constantin & Kliegl (2012) that these
are exponential in time and thus cannot be used. Instead we turn to direct numerical
simulations to find their behaviour in terms of Wi .

4. Direct numerical simulations of elastic turbulence

To simulate solutions of (2.2), we use the approach described in Gupta, Perlekar &
Pandit (2015) and Gupta & Pandit (2017). For the time integration, we use the fourth-
order Runge–Kutta scheme with timestep δt = 10−4, while the fourth-order central-finite-
difference scheme with 10242 collocation points is employed for the spatial derivatives. To
accurately resolve the steep gradients of σ, we apply the Kurganov–Tadmor scheme to
the advection term in (2.2b) (Kurganov & Tadmor 2000) (see Vaithianathan et al. 2006,
for the application of this scheme to viscoelastic fluids), which allows us to set Pe = ∞
in (2.2). The velocity is calculated from the vorticity via the Poisson equation ∆ψ = ω,
where ψ is the stream function: u = ∇

⊥ψ. The pseudospectral method is used to solve
the Poisson equation in Fourier space. The simulations were performed on [0, 2π]2 and
the solutions were rescaled appropriately.
Three kinds of forcing are considered: a cellular forcing f = −f0n[cos(nx) + cos(ny)]

with n = 4, a cellular forcing with n = 10, and a Kolmogorov forcing f = −f0n cos(nx)
with n = 8. In all simulations Re = Rec/

√
2, where Rec is the critical Reynolds number

above which inertial instabilities occur; hence in the absence of polymers (β = 0)
the stationary vorticity field shows alternating vortices and antivortices for the cellular
forcing and a parallel sinusoidal flow for the Kolmogorov forcing. The parameter β is set
to β = 0.2. We checked that in the elastic-turbulence regime the kinetic-energy transfer
due to the fluid inertia is negligible, so the chaotic dynamics is entirely due to polymer
stresses.
The numerical simulations show that 〈‖∇σ‖22〉1/3 is greater than 〈‖σ‖32〉1/3 and, at

largeWi , 〈‖∇σ‖22〉1/3 ∼ Wiα with α ≈ 0.7 for the three different forcings considered here
(see figure 2). This result is in agreement with the observation of large gradients in the
polymer conformation field in figure 1 as well as in previous numerical simulations (Berti
et al. 2008; Berti & Boffetta 2010). It follows that the value of N such that N -volumes
contract is determined by inequality (3.4b). We conclude that, in the elastic-turbulence
regime and under the specified assumptions, the two-dimensional Oldroyd-B model has
a finite-dimensional global attractor with Lyapunov dimension

dL(A) 6 N , (4.1)

whereN is the minimum value ofN satisfying (3.4b). Thus, up to logarithmic corrections,

dL(A) . cRe2/3〈‖∇σ‖22〉1/3 ∼ CWiα , (4.2)

where α ≈ 0.7 and C depends on Re. We have also performed numerical simulations at
smaller values of Re, which indicate that α does not depend on Re. It is worth noting that
since ‖∇σ‖ grows with Wi , inequality (3.4) implies that a lower Re requires a higher Wi

to obtain the same attractor dimension. This is in agreement with the stability analysis
of the Oldroyd-B model, according to which the critical Wi for the appearance of elastic
instabilities increases as Re decreases (e.g. Larson 1992; Boffetta et al. 2005).

5. Conclusions

Through a mathematical and numerical analysis of the two-dimensional Oldroyd-
B model in the elastic-turbulence regime, we have made a practical estimate of the
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Figure 2: Plot of 〈‖ω‖22〉1/2 (black squares), 〈‖σ‖32〉1/3 (blue circles) and 〈‖∇σ‖22〉1/3 (red
triangles) as a function of Wi for Re = Rec/

√
2, β = 0.2, and (a) cellular forcing with

n = 4, f0 = 0.16, (b) cellular forcing with n = 10, f0 = 2.50, (c) Kolmogorov forcing with
n = 8, f0 = 1.28; (d) Kinetic-energy spectrum for Wi = 20 for case (a) in red, case (b)
in blue and case (c) in black. The spectrum shows a power-law behaviour E(k) ≃ k−a

with a ≈ 3.1 for case (a), a ≈ 3.0 for case (b) and a ≈ 3.7 for case (c).

dimension of its (assumed) global attractor, as suggested by numerical simulations. We
have also shown that the complexity of the attractor is related to the formation of
large gradients in the polymer conformation field. Although the asymptotic power-law
dependence of dL(A) on Wi was found to be the same for different forcings, further
studies are required to confirm the potential universality of the exponent α.

As mentioned in the introduction, the main limitation of the Oldroyd-B model is
the absence of a maximum polymer elongation. Other constitutive models of polymer
solutions, such as the FENE-P model, overcome this limitation by introducing a non-
linear elastic force that diverges when Trσ approaches the square of the maximum
elongation (see Thomases et al. 2011; Gupta & Pandit 2017, for the application of the
FENE-P model to the study of elastic turbulence). However, using a non-linear elastic
force does not prevent the formation of large gradients in the σ-field (Thomases et al.

2011). In other words, large values of ∇σ seem to occur independently of the form of
the force that describes the elasticity of polymers. Our estimate (4.2) depends on ‖∇σ‖2
rather than ‖σ‖2. This fact suggests that, albeit based on the Oldroyd-B model, (4.2)
may also be relevant to other constitutive models.

Our analysis can be adapted to the Oldroyd-B model coupled with the unsteady Stokes
equations, in which the u · ∇u term is set to zero; the estimates for N given in (3.4)
are unchanged. The Re = 0 case, in which (2.1a) is replaced with the Stokes equations
(Thomases & Shelley 2009; Thomases, Shelley & Thiffeault 2011), would require by
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contrast a separate analysis, because ω would depend on σ via a time-independent
differential relation and (2.2) would reduce to a dynamical system in the σ-space only. It
would also be interesting to explore whether or not a relation exists between the exponent
α in (4.2) and the exponent of the singular structures that emerge near to hyperbolic
points in the Re = 0 case (Renardy 2006; Thomases & Shelley 2007).
Elastic turbulence is observed at low Re and high Wi . When both Re and Wi are

high, the addition of polymers to a two-dimensional turbulent flow suppresses large-scale
velocity fluctuations (Amarouchene & Kellay 2002). This phenomenon is once again
correctly reproduced by the Oldroyd-B model (Boffetta, Celani & Musacchio 2003). Our
estimate (A 16), which gives a sufficient condition for the contraction of N -volumes, holds
for all values of Re. It would be interesting to investigate the implications of this estimate
for the attractor dimension in the high-Re regime.

The authors would like to acknowledge useful discussions with G. Boffetta, A. Mazzino,
S. Musacchio, P. Perlekar and S.S. Ray. The work of ELCMP was supported by EACEA
through the EMMA program. ELCMP and DV acknowledge the support of the EU COST
Action MP 1305 ‘Flowing Matter.’ The authors also acknowledge the Obervatoire de la
Côte d’Azur for computing resources.

Appendix. Derivation of the decay rate of N-dimensional volumes

Here we show the main steps needed to obtain (3.4). The trace Tr [APN ] can be
expressed as (e.g. Constantin & Foias 1985; Doering & Gibbon 1995; Robinson 2001)

Tr [APN ] =

N
∑

n=1

∫

Ω

Φn · AΦn dx, (A 1)

where {Φn}Nn=1 = {(φωn ,φσ
n)}Nn=1 is an orthonormal set spanning the subspace generated

by the displacements {(δωn, δσn)}Nn=1 and where {φωn}Nn=1 is such that
∫

Ω
φωnφ

ω
m dx = 0

if n 6= m and {φσ
n}Nn=1 with (φσ

n)
⊤ = φσ

n is such that
∫

Ω
φσ

n : φσ
m dx = 0 if n 6= m. The

orthonormality of {Φn}Nn=1 should then be interpreted as follows :
∫

Ω
φωmφ

ω
n dx+

∫

Ω
φσ

m :
φσ

n dx = δmn, whence

N
∑

n=1

∫

Ω

|Φn|2dx =

N
∑

n=1

∫

Ω

(

|φωn |2 + |φσ
n|2

)

dx = N . (A 2)

The symbol ‘:’ denotes the inner product between matrices, σ : σ′ ≡ Tr[σ⊤σ′]. The
following inequality (e.g. Robinson 2001) will also be used when we estimate the norms
of φωn ,φ

σ
n or of their gradients

Θ ≡ Tr [−∆PN ] = −
N
∑

n=1

∫

Ω

(

φωn∆φ
ω
n + φσ

n : ∆φσ
n

)

dx > cN2. (A 3)

The terms appearing in (A 1) can be explicitly listed as (the terms that follow from
u · ∇δω and u · ∇δσ vanish because of the incompressibility of u)

Tr [APN ] = Re−1
N
∑

n=1

∫

Ω

φωn∆φ
ω
n dx+ Pe−1

N
∑

n=1

∫

Ω

φσ
n : ∆φσ

ndx (A 4a)

−
N
∑

n=1

∫

Ω

φωnvn · ∇ω dx−
N
∑

n=1

∫

Ω

φσ
n : (vn · ∇σ) dx (A 4b)
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+β(Wi Re)−1
N
∑

n=1

∫

Ω

φωn ẑ · (∇ ×∇ · φσ
n) dx−Wi−1

N
∑

n=1

∫

Ω

|φσ
n|2 dx (A 4c)

+
N
∑

n=1

∫

Ω

φσ
n : [(∇vn)σ + σ(∇vn)

⊤] dx+
N
∑

n=1

∫

Ω

φσ
n : [(∇u)φσ

n + φσ
n(∇u)⊤] dx, (A 4d)

where vn = ∇
⊥∆−1φωn . By using (A 3), the Laplacian terms in (A 4a) can be shown to

satisfy (under the assumption Pe > Re)

Re−1
N
∑

n=1

∫

Ω

φωn∆φ
ω
n dx+ Pe−1

N
∑

n=1

∫

Ω

φσ
n : ∆φσ

n dx 6 −Re−1Θ . (A 5)

We treat the advective terms (A 4b) by using the result of Constantin (1987) and its
subsequent use in Doering & Gibbon (1991) : i.e. a Cauchy–Schwarz inequality, an L∞

bound for the terms involving vn, and (A 3)

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

[

φωnvn · ∇ω + φσ
n : (vn · ∇σ)

]

dx

∣

∣

∣

∣

∣

6 c (1 + lnΘ)1/2Θ1/4(‖∇ω‖2 + ‖∇σ‖2) .

(A 6)
To estimate the feedback term in (A 4c), we use integration by parts, the Cauchy–Schwarz
inequality, the relations |∇× (φωn ẑ)| = |∇φωn | and |∇ · φσ

n|2 6 |∇φσ
n|2, and (A 3) :

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

φωn ẑ · (∇×∇ · φσ
n) dx

∣

∣

∣

∣

∣

6

N
∑

n=1

∫

Ω

|∇φωn ||∇φσ
n| dx 6 Θ . (A 7)

The second term in (A 4c) satisfies

Wi−1
N
∑

n=1

∫

Ω

|φσ
n|2dx = bWi−1 , 0 < b 6 N 6 cΘ1/2 . (A 8)

The stretching term in (A 4d) that involves∇vn is first integrated by parts. The Cauchy-
Schwarz inequality is then applied twice to obtain

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

φσ
n : [(∇vn)σ + σ(∇vn)

⊤] dx

∣

∣

∣

∣

∣

6 2

N
∑

n=1

∫

Ω

(|φσ
n||∇σ||vn|+ |∇φσ

n||σ||vn|) dx.

We then use the same techniques employed to get (A 6) and obtain :

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

φσ
n : [(∇vn)σ + σ(∇vn)

⊤] dx

∣

∣

∣

∣

∣

6 c (1 + lnΘ)1/2
(

Θ1/2‖σ‖2 +Θ1/4‖∇σ‖2
)

.

(A 9)
The other stretching term in (A 4d) is estimated by first applying the Cauchy–Schwarz
inequality :

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

φσ
n : [(∇u)φσ

n + φσ
n(∇u)⊤] dx

∣

∣

∣

∣

∣

6 2‖∇u‖2
∣

∣

∣

∣

∣

∫

Ω

(

N
∑

n=1

|Φn|2
)2

dx

∣

∣

∣

∣

∣

1/2

.

We note that in two dimensions ‖∇u‖2 = ‖ω‖2 and then use the Lieb–Thirring inequality
for the set of orthonormal functions {Φn}Nn=1 (Constantin, Foias & Temam 1988) and
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(A 3) to obtain
∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

φσ
n : [(∇u)φσ

n + φσ
n(∇u)⊤] dx

∣

∣

∣

∣

∣

6 c‖ω‖2Θ1/2 . (A 10)

Using (A 5)–(A 10), the trace Tr [APN ] can now be estimated in terms of Θ as follows

Tr [APN ] 6
(

βWi−1 − 1
)

Re−1Θ − bWi−1 + c(1 + lnΘ)1/2Θ1/2‖σ‖2
+c(1 + lnΘ)1/2Θ1/4 (‖∇σ‖2 + ‖∇ω‖2) + c‖ω‖2Θ1/2 . (A 11)

In the third term in the right-hand side of (A 11), it is useful to write Θ1/2 = ΘaΘ1/2−a

with 0 < a < 1/2. Taking the time average of (A 11) and applying the Cauchy–Schwarz
and Hölder’s inequalities on the time variable yields

〈Tr [APN ]〉 6
(

βWi−1 − 1
)

Re−1〈Θ〉 − bWi−1 + c〈‖ω‖22〉1/2〈Θ〉1/2

+c〈(1 + lnΘ)3/2Θ3a〉1/3〈Θ3(1/2−a)〉1/3〈‖σ‖32〉1/3

+c〈(1 + lnΘ)Θ1/2〉1/2
(

〈‖∇σ‖22〉1/2 + 〈‖∇ω‖22〉1/2
)

. (A 12)

The bound in (A 12) can be improved by estimating 〈‖∇ω‖22〉. We first multiply (2.2a)
by ω, integrate over space, and take the time average (noting that is necessary to use our
assumption that ‖ω‖2 is finite and hence 〈∂t‖ω‖22〉 = 0) :

Re−1〈‖∇ω‖22〉 =
〈

∫

Ω

ωẑ ·∇×F dx
〉

+ β(Wi Re)−1
〈

∫

Ω

ωẑ ·∇× (∇·σ) dx
〉

. (A 13)

We then integrate by parts and apply the Cauchy–Schwarz inequality, first in space and
then in time, to obtain

〈‖∇ω‖22〉1/2 6 Re‖F ‖2 + βWi−1〈‖∇σ‖22〉1/2. (A 14)

Moreover, Jensen’s inequality allows us to express (A 12) as a function of 〈Θ〉 :
〈Tr [APN ]〉 6

(

βWi−1 − 1
)

Re−1〈Θ〉 − bWi−1 + c〈‖ω‖22〉1/2〈Θ〉1/2

+c(1 + ln〈Θ〉)1/2〈Θ〉1/2〈‖σ‖32〉1/3 + cRe(1 + ln〈Θ〉)1/2〈Θ〉1/4‖F ‖2
+c

(

1 + βWi−1
)

(1 + ln〈Θ〉)1/2〈Θ〉1/4〈‖∇σ‖22〉1/2. (A 15)

Note that for this last inequality to hold, a must be such that Θ3(1/2−a) and (1 +
lnΘ)3/2Θ3a are concave functions. The choice a = 1/5 guarantees that Θ3(1/2−a) is
concave for all values of Θ and (1+ lnΘ)3/2Θ3a is concave for Θ > 5. This restriction on
Θ is justified since Θ > cN2 and in elastic turbulence N is large. The trace 〈Tr [APN ]〉
is thus guaranteed to be negative if 〈Θ〉 satisfies

(

1− βWi−1
)

〈Θ〉 > cRe〈‖ω‖22〉1/2〈Θ〉1/2 + cRe2(1 + ln〈Θ〉)1/2〈Θ〉1/4‖F ‖2 (A 16)

+cRe(1 + ln 〈Θ〉)1/2
{

〈Θ〉1/2〈‖σ‖32〉1/3 +
(

1 + βWi−1
)

〈Θ〉1/4〈‖∇σ‖22〉1/2
}

.

Under the assumptions that 0 < Re < Rec and Wi ≫ 1, it is easy to see that (1 −
βWi−1)〈Θ〉 ≈ 〈Θ〉 is greater than each of the terms in the first line of (A 16). As ‖F ‖2
is independent of Wi , 〈Θ〉 dominates the forcing term. In the elastic-turbulence regime
of the Oldroyd-B model, the kinetic-energy spectrum decays rapidly as a function of
the wave number (Berti et al. 2008; Berti & Boffetta 2010), and ‖ω‖2 is expected to be
small as Wi increases. Therefore, 〈Θ〉 also controls the enstrophy term in (A 16)—this
is confirmed numerically in figure 2.
The number of significant terms in (A 16) is thus reduced to two. Direct numerical
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simulations of the Oldroyd-B model show that in elastic turbulence Trσ grows as Wi

increases and σ develops strong gradients (Berti et al. 2008; Berti & Boffetta 2010).
Therefore, both ‖σ‖2 and ‖∇σ‖2 are expected to increase with Wi . To analyze the σ-
and ∇σ- terms in (A 16), it is useful to note that for any M independent of 〈Θ〉1/2 > 4
and any 0 6 λ < 3/2 the following holds

〈Θ〉1/2 > cM1/(2−λ)(1 + lnM)1/2(2−λ) =⇒ 〈Θ〉 > cM〈Θ〉λ/2(1 + ln〈Θ〉)1/2, (A 17)

which can be proved by generalizing an analogous result by Doering & Gibbon (1991).
The inequalities below are thus sufficient conditions for (A 16) to hold :

〈Θ〉1/2 > cRe〈‖σ‖32〉1/3
(

1 + lnRe + ln〈‖σ‖32〉1/3
)1/2

, (A 18a)

〈Θ〉1/2 > cRe2/3〈‖∇σ‖22〉1/3
(

1 + lnRe + ln〈‖∇σ‖22〉1/2
)1/3

, (A 18b)

Since Θ > cN2 (see (A 3)), these can be converted into sufficient conditions on N , as in
(3.4).
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