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Low-Complexity Methodology for Complex Square-Root Computation

Suresh Mopuri and Amit Acharyya

Abstract— In this brief, we propose a low-complexity methodology to

compute a complex square root using only a circular coordinate rotation

digital computer (CORDIC) as opposed to the state-of-the-art techniques
that need both circular as well as hyperbolic CORDICs. Subsequently,

an architecture has been designed based on the proposed methodol-

ogy and implemented on the ASIC platform using the UMC 180-nm
Technology node with 1.0 V at 5 MHz. Field programmable gate

array (FPGA) prototyping using Xilinx’ Virtex-6 (XC6v1x240t) has also

been carried out. After thorough theoretical analysis and experimental

validations, it can be inferred that the proposed methodology reduces
21.15% slice look up tables (on FPGA platform) and saves 20.25%

silicon area overhead and decreases 19% power consumption (on ASIC

platform) when compared with the state-of-the-art method without

compromising the computational speed, throughput, and accuracy.

Index Terms— Complex square root, coordinate rotation digital

computer (CORDIC), square root.

I. INTRODUCTION

Complex numbers have been used significantly in scientific com-

munity for the real-time data representation and system modeling,

including electronic circuits, electromagnetism, communication sys-

tems, and signal processing algorithms [1]–[6]. However, existing

real valued square-root computation methods [7]–[13] cannot be used

directly to compute complex square root without requiring additional

hardware. On the other hand, the state-of-the-art architecture for

complex square-root computation was designed using the coordinate

rotation digital computer (CORDIC) involving two circular and one

hyperbolic CORDICs. However, a hyperbolic CORDIC requires more

iterations to obtain the same precision and accuracy when compared

with a circular CORDIC, resulting in more computational complexity

in terms of power consumption and silicon area overhead when

implemented on chip [14]. Motivated by the forementioned facts,

we introduce here in this brief a low-complexity methodology for

computation of the complex square root using only two circular

CORDICs unlike the state-of-the-art method where a hyperbolic

CORDIC is also necessary.

II. THEORETICAL BACKGROUND

Considering a complex number z = p + jq, conventional complex

square root is computed as follows [4]:

√

p + jq =

√

√

p2 + q2 + p

2
+ j

√

√

p2 + q2 + q

2
. (1)

The implementation of (1) requires three square roots and two mul-

tiplications [5], and also have the problem of intermediate overflows.

An alternate method was provided in [6] to eliminate this flaw. How-

ever, it requires more computations including several tests. To avoid
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this computational complexity, a CORDIC-based architecture was

introduced in [14] based on the following equation:
√

p + jq =
√

R cos

(

ψ

2

)

+ j
√

R sin

(

ψ

2

)

(2)

where R =
√

p2 + q2 and ψ = tan−1(q/p). To compute (2) on

hardware, it requires two circular and one hyperbolic CORDICs [14].

For paucity of page, detailed discussion on the CORDIC [15] is

omitted here. However, the fundamental working principle of a

circular CORDIC is as follows:
[

x f

y f

]

=
[

cos θ − sin θ

sin θ cos θ

] [

x0

y0

]

=
[

Rotx (x0, y0, θ)

Roty(x0, y0, θ)

]

(3)

where x0, y0, and x f , y f are the initial and final components of the

vector, respectively. Angle of rotation θ = Vecθ/x (x0, y0, xc/yc).

Rotx/y(.) denotes the x/y component of the rotation-mode CORDIC

output and Vecθ/x (.) denotes the θ/x output of the vectoring-

mode CORDIC, equating one of the x f /y f co-ordinates with either

of xc/yc, respectively. It can be noted that a hyperbolic CORDIC

requires more iterations to obtain the same precision and accuracy

when compared with a circular CORDIC [15], which results addi-

tional computational complexity in terms of area and computational

speed.

III. PROPOSED METHODOLOGY AND ARCHITECTURE

A. Proposed Methodology

Consider a complex number z = p + jq, whose magnitude is

R =
√

p2 + q2. From (2), the proposed methodology has been

divided into three steps. The first step is Cartesian to polar conversion,

which computes the magnitude (R) and arctangent (ψ), as shown

in Fig. 1(a). To compute R and ψ , consider the inputs to the

CORDIC as x0 = p and y0 = q, and operate the CORDIC in the

vectoring mode until the final y-component becomes zero, which can

be expressed as follows:

R = Vecx (p, q, xc/yc); ψ = Vecθ (p, q, xc/yc). (4)

The next step in the proposed methodology is the computation of the

square root of magnitude
√

R. In the state-of-the-art method,
√

R is

computed using the hyperbolic CORDIC as given in [14]. But, here,

we propose a methodology for the computation of
√

R using only

circular CORDIC in the following fashion. From the trigonometric

identities

cos 2� = 2 cos2 � − 1. (5)

Consider |R| ≤ 1. If |R| > 1, it can be easily scaled down to 1

or less by performing a simple shifting operation. For example,

if 2(l−2) < R ≤ 2l where l is an even number, the |R| is scaled

down to less than 1 by right shifting by l bit. After this shifting,

when
√

R computation is over, the final value is left shifted by (l/2)

bit to get the actual value. If Rlower < R ≤ Rupper , the l value

can be computed from R using Table I, where Rlower and Rupper

are the lower and upper boundaries of R, respectively. For example,

considering R = 23, from Table I as 16 < R ≤ 64, then l will be

equal to 6. After right shifting R by 6 bit, R will become 0.359375

and
√

R = 0.5994, which is then readjusted to the actual value√
R = 4.7952 by left shifting 0.5994 by (l/2) = 3 bit.
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Fig. 1. Geometrical representation of proposed methodology. (a) Cartesian to polar conversion. (b) Square-root computation. (c) Polar to Cartesian conversion.

TABLE I

COMPUTATION OF l FROM R (b = WORD LENGTH)

Since |z| = R ≤ 1, assuming R = cos2 �, we will get � =
(k − 1)π + (−1)k−1 cos−1

√
R where k is an integer. For simplicity

and to limit the rotations to first quadrant, we consider k = 1, and

hence cos � =
√

R. Now, (5) can therefore be written as

cos 2� = 2R − 1. (6)

In order to compute
√

R, � and the corresponding cos � can be

computed by the circular CORDIC. Considering the input to the

circular CORDIC is an unit vector on the x-axis making x0 = 1

and y0 = 0, as shown in Fig. 1(b). Since R is known, operating

the circular CORDIC in the vectoring mode until xc = (2R − 1),

θ = 2� can then be computed by recording the overall angular

sweep, as shown in Fig. 1(b). So � can be computed as

� =
Vecθ (1, 0, 2R − 1)

2
= V (1, 0, (2R − 1)) (7)

which can be accomplished just by 1-bit right shift of the numerator.

Since � is known from (6), considering x0 = 1 and y0 = 0 to the

circular CORDIC once again, cos� can be computed as

cos � =
√

R = Rotx (1, 0, �) = Rotx (1, 0, V (1, 0, (2R − 1))). (8)

The final step in the proposed methodology is polar to Cartesian

coordinate conversion. This can be done by considering x0 =√
R and y0 = 0, and operating the CORDIC in the rotation mode

until θ = (ψ/2), as shown in Fig. 1(c). The outputs of this step real

and imaginary parts are of
√

p + jq as follows:
√

R cos
ψ

2
= Rotx

(√
R, 0,

ψ

2

)

(9a)

√
R sin

ψ

2
= Roty

(√
R, 0,

ψ

2

)

. (9b)

B. Proposed Architecture

Fig. 2 shows the architecture designed based on the proposed

methodology, as described in Section III-A. Here, unlike the state-

of-the-art design [14], the proposed architecture has been imple-

mented by reusing only the circular CORDIC, which eliminates the

requirement of the hyperbolic CORDIC and makes the architecture

less-complex. The detailed hardware complexity analysis is given

Fig. 2. (a) Without pipelining. (b) Doubly pipelined architecture with a
detailed signal flow for the proposed methodology.

TABLE II

MICROROTATION TABLE FOR COMPUTATION (θ1 + θ2/2)

in Section IV. To enhance the speed of the architecture designed based

on the proposed methodology, we use here the concept of doubly

pipelining (DP)—a technique where intermediate microrotations are

directly fed from the vectoring to the rotation-mode circular CORDIC

immediately after these are computed, eliminating the need to wait

until the overall angle is computed explicitly after the entire vectoring

is done [16], [17] [see Fig. 2(a) and (b)]. Detailed discussion on DP is

although omitted here due to paucity of page ([16] and [17] can be

referred for the same). However, to apply DP, microrotations should

be computed or made available on-the-fly.

From (7), (8), and Fig. 1(b), doubly pipeline can be used in the

design to increase the computational speed, but the microrotations are

not available for angle φ. Hence, a procedure is introduced here to

compute the microrotations for φ from 2φ. Considering two angles

θ1 and θ2 with microrotations µ1 and µ2, respectively, and assuming

microrotation 0 and 1 corresponding to clockwise and anticlockwise

directions, respectively, microrotation µ12 = (θ1 + θ2/2) can be

computed as shown in Table II. Therefore, the microrotations for

φ from 2φ can be computed by considering θ1 = 2φ and θ2 = 0.

Similarly, from (9) and Fig. 1(c), the microrotations are required

for (ψ/2) instead of ψ , which can be calculated by considering

θ1 = ψ and θ2 = 0. Hence, to meet the above requirement, as shown

in Fig. 1(b) and (c), the rotation-mode CORDIC is designed for rotat-

ing the given vector by angle (θ/2) instead of θ using microrotations

shown in Table II. The architecture is divided into two modules—

Vectoring and Rotation—as shown in Fig. 3. The pseudocode for the

proposed architecture is given in Fig. 4. In the vectoring module,
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Fig. 3. Architecture designed based on the proposed methodology.

Fig. 4. Pseudocode for architectural implementation based on the proposed
methodology.

the circular vectoring-mode CORDIC (CVCORDIC) has been used

and it takes one of two inputs based on the selection line s0. When

s0 = 0, the input vector to the CVCORDIC [x0, y0] = [p, q]. The

CVCORDIC will rotate the input vector until y-component becomes

zero. Then outputs of the CVCORDIC are xn =
√

p2 + q2 = R and

the microrotations µ will correspond to the angle ψ = tan−1(q/p).

The output of this module will become ψµ = µ. To compute the scal-

ing value l , a combinational circuit is designed using Table I, which

is called the scaling determiner, as shown in Fig. 3. The magnitude

R will be shifted by l bit to right to bring the R value less than 1. Now,

(2R−1) can be computed by shifting R 1-bit left and then subtracting

1. The final outputs of the circular CORDIC and the hyperbolic

CORDIC are needed to be multiplied with CORDIC scaling factors

Kc = 1.646760258121 and Kh = 1.207497067763095, where c and

h denote circular and hyperbolic CORDIC, respectively [15].

When s0 = 1, the input vector to CVCORDIC [x0, y0] will

be [1, 0]. Now the CVCORDIC rotates the input vector until

y-component becomes (2R−1). The output of CVCORDIC microro-

tation µ corresponds to angle 2φ. Then the vectoring module output

is φµ. The microrotations from the vectoring module ψµ, φµ will be

inputs to the rotation module.

Circular rotation mode CORDIC (CRCORDIC), like the vectoring

mode, is used that takes one of the two inputs based on the selection

line s1 like the vectoring module. When s1 = 0, the input vector to

CRCORDIC [x0, y0] = [1, 0] and the input microrotation µ = φµ.

The outputs of CRCORDIC are xn = cos φ =
√

R and yn =
sin φ =

√
1 − R. Now,

√
R will be brought to its original value

by shifting (l/2) bit to left. When s1 = 1, the input vector to

CRCORDIC [x0, y0] = [
√

R, 0] and input microrotations µ = ψµ.

Then the outputs of CRCORDIC are xn =
√

R cos(ψ/2) = a and

yn =
√

R sin(ψ/2) = b.

Fig. 5. Transistor saving as a function of wordlength.

TABLE III

TRANSISTOR COUNT (TC) COMPARISON WITH THE STATE OF THE

APPROACH FOR DIFFERENT WORDLENGTHS AND CORDIC STAGES

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Hardware Complexity Analysis

In this section, we analyze the performance of the proposed

design in terms of the hardware complexity for arithmetic operations.

The proposed architecture has two CORDICs, but the state-of-the-

art method has three CORDICs. Throughout the analysis, we keep

a generalized view of number of stages in CORDIC as n and

wordlength is b, and provide a comparison on a uniform platform

considering only a ripple carry adder (RCA) and a conventional array

multiplier (CAM). Each CORDIC stage consists of two additions and

two subtractions. The CORDIC requires a multiplication operation

to multiply the final outputs with kc and kh . Considering a b-bit

RCA requires b full adders (FA), and bXb CAM requires b(b − 2)

FA plus b half adders (HA) and b2
AND gates. In addition, one

FA cell requires 24 transistors, one HA cell consist of 12 transistors,

and a two-input AND gates consists of 6 transistors.

Denoting transistor count by T C , the T CRCA = 24 b and

T CCAM = 6b(5b − 6). The total TC involved in the state of the

art comprising of three numbers of CORDICs can be expressed as

12 ∗ n ∗ T CRCA + 5 ∗ T CCAM. The TC comparison with the state

of the art [14] is shown in Table III. It is evident from Table III

that the proposed design is approximately one order better than the

state-of-the-art approach in terms of complexity represented by T C .

Transistor saving (TS) for the arithmetic operations is expressed in

terms of TC. TS with respect to the state-of-the-art method can be

computed as

TS = 4 ∗ n ∗ T CRCA + T CCAM. (10)

Fig. 5 shows the TS per wordlength (TSPW) for the proposed

architecture compared with the state-of-the-art architecture [14] for

the number of stages in CORDIC and different wordlengths. As can

be seen from Fig. 5, the TSPW for different wordlengths is 29%

compared with the state-of-the-art approach.

B. Timing Analysis

Considering a vector [p, q] as the input to the DP CORDIC at

t = 0 and assuming CORDIC comprising of n stages, it requires
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Fig. 6. Register transfer level simulation snapshot for the proposed architecture.

Fig. 7. MAE comparison for the proposed architecture for different input wordlengths. (a) b = 4. (b) b = 8. (c) b = 16. (d) b = 32. (e) Probability of error
versus comparison for the proposed architecture with respect to bit position for n = 16.

n clock cycles to compute R and ψµ (see Fig. 2). During the time

between t = 0 and t1 (Fig. 2), the microrotations (ψµ) are stored

in a buffer. Then onward, the CORDIC will be operated in the DP

mode that computes
√

R [during t1 to t2 (Fig. 2)]. This step also

requires n clock cycles. In the next step at (t2 +1), the microrotation

information stored in the first step is applied to the rotation-mode

CORDIC instead of the explicit angle from the vectoring-mode

CORDIC. The final output appears at t3. The latency of the designed

architecture is 3n clock cycles. Reusing only the circular CORDIC

results in 100% throughput. On the other hand, unlike the proposed

methodology, the state-of-the-art design [14] uses the hyperbolic

CORDIC, which has to repeat few iterations when compared with

the circular CORDIC, resulting in more latency ≥ (3n + 2) clock

cycles.

C. Implementation Results

The proposed architecture (Fig. 3) and the state-of-the-art architec-

ture are coded in VHDL for 16-bit input wordlength. As discussed

in Section IV-A, the final outputs of the circular CORDIC and

the hyperbolic CORDIC are multiplied with the scaling factors

Kc and Kh . The field programmable gate array (FPGA) proto-

type for this architecture has been done on the Xilinx Virtex-

6 FPGA (XC6v1x240t). The synthesis results of FPGA prototype

implementation and comparison with the state-of-the-art architecture

[14], the digit recurrence method-based architecture [4], and the

conventional architecture [5] are shown in Table IV. From Table IV,

the proposed design methodology saves 77.34%, 75.68%, and 21.15%

slice look up tables (LUTs) when compared with the digit recurrence

method-based architecture [4], the conventional architecture [5], and

the state-of-the-art architecture [14], respectively.

TABLE IV

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM

WITH THE STATE OF THE ART ON FPGA

The ASIC implementation has been done for the proposed archi-

tecture and the state-of-the-art architecture at the UMC 180-nm

technology at VDD = 1 V and clock frequency at 5 MHz. The

ASIC synthesis and physical design have been done with the help of

a synopsis design compiler and an IC compiler. The ASIC synthesis

results and performance comparison are shown in Table V. From

Table V, it can be noted that the proposed design saves the 20.25% on-

chip area when compared with the state-of-the-art architecture [14].

It has been found that removal of the hyperbolic CORDIC from the

state-of-the-art design flow in the proposed methodology saves 31%

of leakage power and 16.32% of dynamic power when compared with

the existing architecture [14], resulting in an improvement in power

consumption of 19.52%. Although the ASIC synthesis has been done

at 5-MHz clock frequency, the design can be operated up to 121-MHz

clock frequency.

A snapshot of register transfer level simulation is shown in Fig. 6.

The input to the complex square-root module is a complex number

p+ jq whose real and imaginary parts are p and q. Considering p =
30 and q = 40 is shown in Fig. 6. After Cartesian-to-polar coordinate
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TABLE V

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM

WITH THE STATE OF THE ART ON ASIC

conversion, the next step is square-root computation sqr t_r = 7.

The final step is polar-to-Cartesian conversion, after this conversion,

the outputs of the complex square-root module are a = 6 and b = 3.

The same simulation is repeated for different p and q values.

D. Error Analysis

Accuracy of the designed architecture based on the proposed

methodology is determined by comparing outputs from FPGA with

MATLAB’s inbuilt “sqrt” function. A set of 2048 randomly gener-

ated complex numbers are taken as an input and a mean absolute

error (MAE) was calculated with various stages of CORDIC for

different input wordlengths. Fig. 7(a)–(d) shows the variation of MAE

for the proposed architecture and the hyperbolic CORDIC-based

state-of-the-art architecture with different CORDIC stages n = 4,

8, 12, 16, and 20 and with wordlengths b = 4, 8, 16, and 32. From

Fig. 7(a)–(d), it is evident that as the number of CORDIC stages

increases, MAE decreases due to the improvement in the resolution

of CORDIC. The proposed approach has 0.2% improvement in MAE

for n = 8 and b = 8. Besides MAE, it is also important to analyze

the precision of the designed architecture based on the proposed

methodology. Hence, following the similar treatment adopted in [18],

“bit position error” metric is computed considering n = 16-stage

CORDIC implemented using 16-bit arithmetic. As per [18], using

(E) as an absolute error, bit position error, E2, can be represented as

E2 = |(ln(E)/ln(2))|. The bit position error for the proposed archi-

tecture has been compared with the state-of-the-art approach [14],

as shown in Fig. 7(e). It is evident from Fig. 7(e) that precision up

to 12 out of 16 bits is intact for both the proposed and state-of-the-

art approaches. The error is more for the state-of-the-art approach

at 16-bit position when compared with the proposed architecture.

Performance comparison in terms of the area and power consumption

as well as resource utilization is reported in Tables IV and V that still

stand valid under the constraint of the same computational precision

for the state of the art and the proposed design. Since the state-

of-the-art approach [14] uses hyperbolic CORDIC, it requires more

iterations and operations to obtain the same precision as the circular

CORDIC at higher bits.

V. CONCLUSION

In this brief, a low-complexity methodology to compute a complex

square root using only circular CORDIC is proposed eliminat-

ing the need of the hyperbolic CORDIC from the state-of-the-art

architecture [14]. Subsequently, respective architecture has been

designed using the DP technique and results have been validated

using MATLAB, FPGA, and ASIC platforms resulting in saving

of 20.25% on-chip area, 19.52% power consumption (ASIC), and

21.15% slice LUTs (FPGA) without compromising accuracy when

compared with the state-of-the-art architecture.
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