
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 1

Low-Complexity Architecture for Cyber-Physical

Systems Model Identification
Charan Kumar Vala, Mark French, Amit Acharyya, and Bashir M. Al-Hashimi, Fellow, IEEE

Abstract—We propose a low complexity architecture for cyber-
physical system (CPS) model identification based on multiple-
model adaptive estimation (MMAE) algorithms. The complexity
reduction is achieved by reducing the number of multiplications
in the filter banks of the MMAE algorithm present in the cyber
component of the CPS. The architecture has been implemented
using FPGA for 16, 32, 64 filter banks as part of position
and velocity estimations of autonomous auto-mobile application.
It has been found up to 78% reduction in multiplications is
possible, which translates to the reduction of 39% LUTs, 13%
FFs, 27% DSPs, and 43% power reduction when compared with
the conventional architecture (without multiplications reduction)
at 100MHz operating frequency. Furthermore, the proposed
architecture is able to identify accurate model of auto-mobile
application just within 510ns, in the presence of external distur-
bances and abrupt changes.

Index Terms—Cyber-Physical Systems, Model Identification,
MMAE, MMAC, Bank of Kalman Filters, FPGA.

I. INTRODUCTION

MODEL identification has numerous cyber-physical sys-

tem (CPS) based applications [1], [2] including au-

tonomous auto-mobiles, adaptive estimation [3], [4], intelligent

adaptive plant control [1], fault detection-isolation [5], [6].

CPS systems are often characterised by high degrees of

uncertainty, and hence practical adaptive control is likely to be

important for good closed loop response. This paper considers

a hardware architecture for the parallel implementation of

multiple model adaptive estimation (MMAE) schemes for

model identification. MMAE forms a component of Multiple

Model Adaptive Control (MMAC) schemes, see [7] for a com-

plete modular analysis. Within MMAC, MMAE algorithms

to identity the physical plant so that the control architecture

can dynamically switch in appropriate controllers in real time.

MMAE based algorithms significantly improve performance

compared to contemporary designs [8], [9], particularly in the

presence of uncertainties including external disturbances and

abrupt changes. However, significant computational demands

and massive number of filter banks required by the MMAE

Manuscript received August 2, 2018; revised October 25, 2018; ac-
cepted November 10, 2018. This work was supported by EPSRC, U.K.,
as a part of PRiME Project under Grant EP/K034448/1 and Grant
EP/N509747/1. This brief was recommended by Associate Editor J. Wu.
(Corresponding author: Charan Kumar Vala.) C. K. Vala, M. French,
and B. M. Al-Hashimi are with the School of Electronics and Com-
puter Science, University of Southampton, Southampton, U.K. SO171BJ (e-
mail: c.k.v@ecs.soton.ac.uk; mcf@ecs.soton.ac.uk; bmah@ecs.soton.ac.uk).
A. Acharyya is with the Department of EE, Indian Institute of Technol-
ogy Hyderabad, Hyderabad 500050, India (e-mail: amitacharyya@iith.ac.in).
Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org. Digital Object Identifier 10.1109/TC-
SII.2018.2881481 DOI: 10.5258/SOTON/D0712

Physical Component

Cyber Component

Residuals-N

Residuals-2

Innovation

Innovation

Innovation

Physical

Plant (Pp*)

Model-1 (DKF-1) Residuals-1

Comparator

And Model

Selection

Output

Model-2 (DKF-2)

Model-N (DKF-N)

Filter Bank

Fig. 1: Proposed architecture for MMAE based model identification.
Each model represents the deterministic Kalman filter with particular
state space matrix.

algorithm [7] preclude its use in resource constrained applica-

tions using embedded computing platforms with low cost or

low power requirements. To the best of our knowledge, there

is no reported hardware architecture for MMAE algorithms.

Therefore, in this paper, we propose for the first time a

low complexity hardware architecture for the computationally

intensive MMAE algorithm for the CPS model identification.

The rest of the paper is organized as follows. Section-II

provides the details of the proposed architecture and section-

III discusses the experimental results and finally section-IV

concludes the discussion.

II. PROPOSED ARCHITECTURE

In general CPS is an integration of computation with physi-

cal processes [1], [2] and it is represented by two components:

Physical and Cyber. The proposed architecture shown in Fig.

1, physical component comprises the physical plant (Pp∗)

and Cyber-component comprises the hardware architecture of

the MMAE based model identification algorithm. The Cyber-

component measures the signals (u2, y2)
T from the physical

component and processes these signals for identifying the

model of the physical plant.

A. Physical Component

Physical plants (Pp∗) are represented as discrete-time linear

time-invariant (LTI) system in the form

X(k + 1) = AX(k) +Bu1

y1(k) = HX(k)
(1)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 2

(a)

(b)

Innovation

DIV

MUL

abs Kgain XEstimate

Buffer

 Estimate

 Update

Controller unit

XUpdatee

n n-1 n-3 n-4 n-5 n-6 n-7 n-8 n-9

+

+++

++

+

n-2

+

+
rp(T)

Input

Xestimate,

 EstimateS
XInitial,

 Initial

DKF

N=64 Residuals

Output

Innovation

Module-1 Module-2

Sub-Module-1

Sub-Module-2

Sub-Module-3

Sub-Module-4

Sub-Module-5

Sub-Module-6

Sub-Module-7

ArgMin

Comparators

w1

w2 w3

Model Selection

Fig. 2: Proposed Multiple model estimation based model identification architecture (a) Deterministic Kalman filter architecture, (b) Residuals,
ArgMin, Comparator and Model selection.

Where (A,B,H) ∈ R
nxn x R

nx1 x R
1xn are state-space

matrices, state X is ∈ R
nx1, and (u2, y2)

T are the measured

signals, (u0, y0)
T are the external disturbances and (u1, y1)

T

are the original signals at the input and output side of a

physical plant (Pp) respectively.

B. Cyber-Component

The cyber-component represents the hardware architecture

of MMAE algorithm where major functional building blocks

are the bank of Kalman filters, residuals and model selection.

In the MMAE Algorithm-1, a model plant-set defined such that

the true plant Pp∗ lies with a set of N ‘candidate’ plants Pp∗ ∈
{P1, ..., PN}, 1 ≤ p ≤ N . Model identification is performed

on the true plant Pp∗ for robust estimation. In this regard, each

model-plant runs one computationally intensive Deterministic

Kalman Filter (DKF) in the presence of external disturbances.

Thus the complete model identification comprises of N DKF

modules where each DKF processes (u2, y2)
T at every time

instance to provide an estimated outcome. Then the difference

between the estimated and the measured output is computed

(known as Innovation) at every time instance for each model-

plant. Next step is the computation of the weighted sum of

m-number of such innovations per model plant known as

Residuals. The minimum Residual among such N model-

plants represents the best match of the physical plant Pp

(known as Model Selection). The fore-mentioned algorithm is

shown in the form of pseudo-code in Algorithm-1. The total

number of multiplications involved in MMAE algorithm are

equal to the (1+4n+3n2+2n3)N where N , n represents the

total number of models and states respectively. The detailed

comparison of number of multiplications involved in MMAE

algorithm and proposed hardware architecture are given in

Table-1. Most of the multiplications conferred in DKF. This

is evident that, N-DKF modules contains significant number

of multiplications and this brief proposes an architecture to

eliminate most of these, there by making it low-complexity.

The hardware mapping of MMAE algorithm is shown in

Fig. 2. It comprise two modules one containing DKF (line

no: 1-22 in Algorithm-1) with Innovation computation (line

no: 5 in Algorithm-1) and the other one involving Residual
computation (line no: 23, 24 in Algorithm-1) along with model

selection (line no: 25-29 in Algorithm-1, where Tk truncation

TABLE I: Comparison between the MMAE algorithm (Shown in
Algorithm-1) and proposed hardware modules in terms of the number
of multiplications. Where Sub-module 1-7 are associated with DKF,
N= Number of models, n= number of states to be estimated, No. of
mul=Number of multiplications, H.W.A= Hardware architecture.

Sub-Module No. of mul No. of mul in
in MMAE algorithm proposed H.W.A

(1) Innovation Nn 0
(2) S Nn2 0

(3) Kalman Gain Nn2 Nn

(4) Xupdate Nn Nn

(5) Pupdate Nn3 Nn2

(6) XEstimate N(n2 + n) 0
(7)

∑
(P)Estimate N(n3 + n) 0

(8) Residuals N 0
Total (1 + 4n+ 3n2 + 2n3)N (2n+ n2)N

up to time step k). These modules are pipelined to achieve

higher throughput. The controller block is designed to monitor

the data flow between the intra sub-modules of module-1 and

module-2.

1) Deterministic Kalman Filter (DKF): The inputs of

DKF module are A(i), B(i), H(i) with initial conditions

XInitial (state variables),
∑

(P)Initial (covariance) and y2.

The DKF module computes innovation, Kalman gain, update

and estimation of state variable (X), covariance
∑

(P). As

shown in Algorithm-1 from line 1-22, all these computations

involves in matrix multiplications, inversion, additions and

subtractions. Since A(i), B(i), H(i), are constant matrices,

the computation of innovation, XEstimate,
∑

(P)Estimate

are performed by using addition and shifting operations.

Thereby the use of multipliers eliminated completely from

the computation of these steps. The Kalman gain, Xupdate,
∑

(P)update computations majorly depend on the innovation,

XEstimate,
∑

(P)Estimate matrices, these matrices changes

at every iteration. Therefore these computations should be

performed by using the multipliers. The term BBT conferred

in the
∑

(P)Estimate is pre-computed and reused in every

iteration of DKF, by that we are able reduce significant

number of multipliers. The detailed reduction in number of

multiplications at each step of MMAE are given Table-1. The

original MMAE algorithm requires (1 + 4n + 3n2 + 2n3)N
number of multiplications. However in the proposed archi-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 3

0

1

2

3

4

5

6

7

8

1 2 3 4 5210 211 212 213 214

0

500

1000

1500

2000

2500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

No. of multiplications in MMAE

Reduced No. of multiplications in the proposed Hardware

architecture

No. of multipliers used in the proposed hardware

architecture

Number of models

N
u

m
b

e
r

o
f

M
u

lt
ip

li
c
a

ti
o

n
s

 Scale (c)

E
rr

o
r

ra
te

REG

*

a

b
c

c3

c2

c1

d1

m2

m3

m1

d

out

e

c4

(a) (b)

Fig. 3: Multiplications reduction using the proposed hardware architecture: comparison for 1 to 64 models (Note: Number of multipliers
used in proposed architecture are even less than the number of multiplications required), (b) Error rate comparison for various scaling factors
and (c) Reusable multiplier architecture

Algorithm 1 model adaptive estimation (MMAE) based model

identification

1: Kalman Filter:
2: INPUT: State Space Matrix of LTI System A(i), B(i), H(i),

XInitial,
∑

(P)Initial and y2
3: for i =1 to N do
4: Sub-module 1
5: Innovation = y2 −H.Xestimate(i)
6: abs(Innovation(i))
7: Sub-module 2
8: S(i) = H.

∑
(P)(i).HT

9: S−1(i) = Scale/S(i)
10: Call Residuals
11: Kalman Gain:
12: Sub-module 3
13: K(i) =

∑
(P).HT .S−1(i)

14: Sub-module 4
15: Xupdate(i) = Xestimate(i) +K(i).Innovation(i)/Scale
16: Sub-module 5
17:

∑
(P)update(i) =

∑
(P)(i)−K(i).H.

∑
(P)(i)/scale

18: Sub-module 6
19: Xestimate(i) = A(i).Xupdate(i) +B(i).U
20: Sub-module 7
21:

∑
(P)estimate(i) = A(i).

∑
(P)update(i).A

T (i) +
B(i).BT (i)

22: end for
23: Residuals:
24: rp(k)(i) =

∑T

t=T−l
‖Innovation‖[HPHT+1]−1 , T ≥ l

25: Model Selection:
26: for j =1 to N do
27: Pqf = argmin

p∈P

(min
(u

p
1
,y

p
1
)T∈TkMp

‖Tk(u2, y2)
T +Tk(u

p
1, y

p
1)

T ‖)

28: end for
29: OUTPUT: Identified Model

tecture, by using shifting, addition and pre-computation, the

total number of multiplications reduced to (2n + n2)N and

detailed comparison shown in Fig. 3(a). For N = 64 with

n = 2 the total number of required multiplication observed

in MMAE algorithm are 2368 and the proposed hardware

architecture reduced them to 512 and approximately 78%

reduction is observed. Due to the data dependency between the

sub-modules of DKF, the total operation of DKF is performed

in 7 clock cycles, enabling us to reuse the multipliers and

thereby total number of multipliers are further reduced from

(2n + n2)N to n2N . In this hardware architecture for 64

number of models with n = 2, we have used only 256

multipliers. This yields 50% reduction in terms of multipliers,

on the hardware architecture.

As shown in Fig. 2(a), DKF module comprises of seven

sub-modules. In the first sub-module Innovation and its

absolute values are computed. This consists of subtraction

and multiplication of two matrices (H and Xestimate) (line

no: 5 in Algorithm 1). However, since H is constant and can

be pre-computed, hence the multipliers are eliminated and

entire matrix multiplication boiled down to simple additions

and shifting. For example, considering h1x1 where h1 = 13,

multiplication can be removed by expressing the equation as

h1x1 = 13x1 = (8x1) + (4x1) + (1x1).

= 23x1 + 22x1 + 20x1

= ls(x1, 3) + ls(x1, 2) + x1

(2)

where ls(a, b) signifies a left-shifted by b bits. In this

example, the multiplier is replaced by just three adders and

two shifters. These shifters can be implemented by simple

hardware wiring.

In the second sub-module S and S−1 (line no: 8, 9 in

algorithm-1) are computed. This consists of multiplication of

three matrices (H.
∑

(P)(i).HT). This is also performed by

reusing the same structure discussed in first sub module and

explained further using equation-1. In general S−1 computa-

tion requires a division that increases the hardware complexity.

For instance, in a Xilinx FPGA, fixed-point addition takes one

cycle, whereas a single precision floating-point adder would

require 14 cycles while using one order of magnitude more

resources for the same number of bits. Therefore, here we have

used a LUT based method. However, to retain the precision

of this LUT based division, we up-scaled the numerator first

and then use the denominator as the address to fetch the

appropriate data from the LUT. Scaling factor was decided

based on the empirical simulations running for various scaling

factors and the error rates are shown in Fig. 3(b). For the

scaling factor 211, 212, 213, and 214 the error rates 7.78, 6.12,

6.36, 5.59, and 5.58 respectively observed. As the scaling

factor increases, the size of LUT also increases, in this work

optimally we have chosen 213 as scaling factor.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 4

TABLE II: Reusable multiplier operation. kg=Kalman gain,
AI=abs(Innovation) and SM=Sub module OTM=Output to the sub-
module in1 =

∑
(P)HT and in2 = H

∑
(P)

Inputs to multiplier Control Bits
OTM

a b c d e c1 c2 c3 c4
S−1 - - in1 - 0 0 0 1 SM3
- - AI - kg - 1 1 0 SM4
- in2 - - kg 1 0 1 0 SM5

In the third sub-module, by using n reusable multipliers,

Kalman gain (line no: 13 in Algorithm-1) is computed and

corresponding results were stored in registers. The architecture

for reusable multiplier is shown Fig 3(b). Where a, b, c, d, e
are the inputs of multiplexer (MUX) and c1, c2, c3, c4 are the

control bits to the MUX. To compute Kalman gain, the inputs

to reusable multiplier are S−1 and
∑

(P)HT , the outcome

of multiplier is stored in a register and in the next cycle it

is used ot compute the Xupdate. Fourth sub-module involves

the computation of Xupdate (line no: 15 in Algorithm-1).

This requires n multipliers and shifters for the computation of

K ∗Innovation/Scale. However the multipliers used in third

sub-nodule are reused here and right shifters are implemented

by wiring. Outcome of these n multipliers is added to the

Xestimate to obtain Xupdate. It is to be noted the division

with scale can performed by the right shifting of numerator.

Fifth sub-module involves computation of
∑

(P)update (line

no: 17 in Algorithm-1). The term K∗H∗
∑

(P)/scale requires

n2 multipliers that is computed by re using the n multipliers

from third sub-module and n other multipliers. Then computed

results are subtracted from
∑

(P) to obtain final
∑

(P)update
value. Overall DKF module uses only n2 multipliers and the

data path of these multipliers supervised by the controller. The

detailed operation of reusable multiplier is given in Table-II.

The sixth and seventh sub-modules involves computation

of XEstimate and
∑

(P)Estimate respectively. Since state

space matrix A is constant, the term
∑

(P)update(i).A
T (i)

(line no: 21 in algorithm-1) is computed using the shifting

operations like as explained in first sub-module’s discussion

and equation (1). Since state space matrix B is constant, the

term BBT (line no: 21 in algorithm-1) is computed once and

the same results are reused for computing
∑

(P)Estimated in

every iteration of DKF. Finally XEstimate and
∑

(P)Estimated

were computed using addition and shifting operation and these

results are stored in registers for providing input to DKF in

next iteration. In the Similar fashion 64-DKF modules were

designed for each state space matrix set A(i), B(i), H(i)
where 1 ≤ i ≤ 64. The 64 absolute values of innovations

are stored in a buffer and send to module-2 for selecting

appropriate model.

2) Residuals and Model Selection: The architecture shown

in Fig. 2(b) was used for computing the residuals and model

selection (line no: 23-29 in algorithm-1). This module takes

input (Innovation) from DKF module and computes the final

model which is close to the physical plant. The operation of

residual sub-module is explained as follows:

Initially innovations from N-DKF modules are forwarded

to the N-residual sub-modules (Fig. 2(b)). Each residual sub-

module stores these innovations in their respective shift reg-

isters. At each clock cycle these innovations are shifted their

-60

-40

-20

0

20

40

60

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

2
8
7

3
0
0

3
1
3

3
2
6

3
3
9

3
5
2

3
6
5

3
7
8

3
9
1

4
0
4

4
1
7

4
3
0

4
4
3

4
5
6

4
6
9

4
8
2

Innovation on FPGA Innovation in Matlab

In
n

o
v

a
t
io

n

Fig. 4: Innovation comparison between the FPGA and Matlab com-
putations.

location by one place. Once the shift registers filled by m
innovations it starts computation of residual. In this interval

the model selection block sends the default identified model

as 1 and after filling all the shift registers, each value in the

shift register multiplied with weights (w1, w2, w3) as shown in

Fig. 2(b) and then added together for getting final residual. To

reduce hardware complexity the weights w1, w2, w3 are chosen

as multiples of two such that the residuals can be computed

just by left shifting the innovations. This module comprises

of shift register, adders and shifting operations. Subsequently

N-residuals are forwarded to argmin (Fig. 2(b)) module for

computing the minimum location among all. This argmin
sub-module is a pipelined architecture with log2 Nmax stages

of comparators organized in tree structures.

III. RESULTS AND DISCUSSION

The proposed architecture has been coded in Verilog, syn-

thesized using Xilinx′s Vivado 2017.4 and prototyped on

Virtex ultra scale plus FPGA (VCU118).

For the validation purpose of this prototype, we considered

position and velocity estimation models for autonomous auto-

mobile application- one of the major applications in CPS [10].

The state space equations of estimated position and velocity

defined as

Pk+1 = Pk + T.Vk + 1/2.T 2.uk + 1/2.T 2.De +Noise (3)

Vk+1 = Vk + T.uk + T.De +Noise (4)

respectively where P = position, V = velocity, k =
time, T = time constant uk= Input acceleration,

De= External disturbances.

In this design we have considered 64 uncertainty lev-

els such that Dexternal, Noise ∈
[

− 31.3, 68.5
]

∪
[

−
5.64, 6.05

]

and corresponding state space models with matrix

set A(i), B(i), H(i) were generated where 1 ≤ i ≤ 64.

Based on these models, 64 bank of DKFs are designed on the

hardware. Physically measured data (y2 in Algorithm − 1),

emulated using MMAE Algorithm-1 comprising of 64 models

as discussed in the last section, were generated in Matlab

and combined with random noise and abrupt changes. These

emulated data were stored in the BRAM of FPGA and fed to

the design at every clock cycle. The proposed architecture was

designed using 32 bit word length and it was found to be able

to identify the physical plant model by processing the system’s

input and output in the presence of external disturbances.

Vivado integrated logic analyser (ILA) was used for verifying

the obtained results from the proposed architecture.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 5

0

10

20

30

40

50

60

70

1

1
9
0

3
7
9

5
6
8

7
5
7

9
4
6

1
1
3
5

1
3
2
4

1
5
1
3

1
7
0
2

1
8
9
1

2
0
8
0

2
2
6
9

2
4
5
8

2
6
4
7

2
8
3
6

3
0
2
5

3
2
1
4

3
4
0
3

3
5
9
2

3
7
8
1

3
9
7
0

4
1
5
9

4
3
4
8

4
5
3
7

4
7
2
6

4
9
1
5

5
1
0
4

5
2
9
3

5
4
8
2

5
6
7
1

5
8
6
0

6
0
4
9

6
2
3
8

Original FPGA

0

10

20

30

40

50

60

70

1

1
0
8

2
1
5

3
2
2

4
2
9

5
3
6

6
4
3

7
5
0

8
5
7

9
6
4

1
0
7
1

1
1
7
8

1
2
8
5

1
3
9
2

1
4
9
9

1
6
0
6

1
7
1
3

1
8
2
0

1
9
2
7

2
0
3
4

2
1
4
1

2
2
4
8

2
3
5
5

2
4
6
2

2
5
6
9

2
6
7
6

2
7
8
3

2
8
9
0

2
9
9
7

3
1
0
4

Orginal FPGA

(b)

Time
Time

M
o

d
e

l
N

u
m

b
e

r

(a)

0.114

0.32

0.244

0.017

0.503

0.006

Clocks

Signals

Logic

BRAM

DSP

I/O

 Total Power =1203mW

0.151

0.71

0.683

0.02

0.575

0.006

Clocks

Signals

Logic

BRAM

DSP

I/O

 Total Power = 2145mW(c) (d)

Fig. 5: Identified model by the proposed architecture when models switched for every (a) 3000ns (b) 6000ns, FPGA Power consumption
results for 64 number of models with 32-bit word length (c) Conventional architecture (d) Proposed architecture

TABLE III: Module wise breakdown of the FPGA resource utilization
of the proposed architecture

Module LUT FF DSP

DKF 847 887 16

Residuals 152 0 0

Comparator 36 40 0

Division 40 0 0

Model Selection 10 10 0

A. Performance

For the Cyber-space performance metrics are accurate

model identification in the presence of uncertainty and time

taken to identify the model after physical plant changed

its model. As discussed in section-II, model identification

considerably depend on Innovation values (line number-5

in Algorithm-1). Therefore Innovation (which is output of

DKF module) results are shown in Fig. 4. It is observed that

the Matlab and FPGA results match closely with each other.

In order to assess the performance of proposed architecture

in-terms of model identification we consider, 2 case studies

here, when emulated physical plant changes at (a) 3000ns,

(b) 6000ns and corresponding results were shown in Fig. 5(a)

and (b) respectively. To illustrate, considering at 254th time

instant in Fig. 5(a), physical plant changes its model from 59

to 9 (shown in dotted blue) which is accurately identified by

the FPGA prototype (shown in brown). Similarly the physical

plant, as shown in Fig. 5(b), changes the model from 58 to

14 at 604th time instant and it was also accurately identified

by the prototype. The proposed architecture is able to identify

the models in just 510 ns between 1 ≤ N ≤ 64 corresponding

to the changing physical plant.

B. Hardware Resource Utilization

1) FPGA: The breakdown of the FPGA resource utilization

of the proposed architecture is presented in Table-III. Among

the all modules, 78% of LUT’s, 94% of FF’s and 100%

of DSP’s are utilized by DKF. This is evident to say that

DKF is the computationally intensive. In order to assess

the variation of resource consumption with respect to model

size and resource utilization shown in Table-IV. It can be

observed that the resource utilization increases with respect

to model size for a fixed word length. However, for the data

fetching to the FPGA and corresponding validation required

Vivado ILA to be incorporated that in turn would consume

62328 (5.27%) of lookup table (LUT), 63070 (2.67%) of Flip-

Flops, 1024 (14.97%) of DSP’s and 28 (1.3%) Block RAM

Tile on Virtex ultra scale plus FPGA (VCU118) at 100MHz

operating frequency. To show the performance improvement

of proposed low-complexity architecture, since there is no

reported architecture present, the MMAE algorithm also im-

plemented using conventional architecture (direct mapping of

MMAE algorithm to the hardware) it is also 1st of its kind,

which results in 100813 LUT’s, 69980 FF’s and 1408 DSP’s

resource utilization for 64 number of models with 32-bit word

length. It can be noticed that the proposed low-complexity

architecture improved by 39%, 13% and 27% of LUT’s,

FF’s, DSP’s resource utilization respectively when compared

with the conventional architecture, detailed utilization with

respect to various bank of filter models is given in Table-IV.

The utilization percentage with respect to the total available

resources on VCU118 also give in same table.

2) ASIC: To give an insight into the low power consump-

tion of the proposed architecture and to place the proposed

complexity reduction methodology in the context of CPS,

ASIC implementation has also been carried out using 65nm

technology using Synopsis Design Compiler. Total synthesized

cell area of the design is 3.04 mm2 and power consumption

is 737µW @ 1 MHz frequency
3) Power: The detailed breakdown of FPGA power con-

sumption using the Xilinx power analyser between the con-

ventional (Fig. 5(c)) and proposed low-complexity (Fig. 5(d))

architectures are shown in Fig. 7. Proposed low-complexity

architecture showed that 64%, 54%, 24%, 12% power con-

sumption reduction in logic, signals, clocks, and DSP respec-

tively. The over all power consumption of proposed archi-

tecture reduced by 43% when compared to the conventional

architecture, for 64-bank of filters with 32-bit word length.

IV. CONCLUSION

MMAE based model identification will play an important

role in CPS. However, the intense computational demands

imposed by MMAE algorithm precludes its use in resource

constrained CPS applications. Therefore to make MMAE

suitable for resource constrained CPS applications, a low-

complexity architecture was introduced in this brief. It is to

be noted that proposed architecture is generic and scalable

to any number of models. The proposed architecture was

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 6

TABLE IV: Resource utilization comparison between the Proposed architectures with respect to the model size. Conventional = Direct
mapping of MMAE algorithm without reduction in multiplications, Proposed = Low-complexity architecture, % percentage with respect to
the total available resources on VCU118-FPGA

Model Size (N)
LUT FF DSP Power in mW

Conventional Proposed Conventional Proposed Conventional Proposed Conventional Proposed

16 26019 (2.2%) 15760 (1.3%) 22292 (0.94%) 16544 (0.69%) 352 (5.4%) 256 (3.9%) 582 329

32 50942 (4.3%) 28593 (2.4%) 39244 (1.6%) 30601 (1.2%) 704 (10.8%) 512 (7.9%) 1104 613

64 100813 (8.5%) 60989 (5.15%) 69980 (2.9%) 60860 (2.5%) 1408 (21.7%) 1024 (15.8%) 2145 1203

implemented on Virtex ultra scale plus FPGA and achieves

an improvement of 39% LUT’s, 13% FF’s , 27% DSP’s

and 43% power consumption respectively when compared the

conventional architecture.

REFERENCES

[1] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards
survivable cyber-physical systems,” in Distributed Computing Systems

Workshops, 2008. ICDCS’08. 28th International Conference on. IEEE,
2008, pp. 495–500.

[2] I. Ruchkin, S. Samuel, B. Schmerl, A. Rico, and D. Garlan, “Challenges
in physical modeling for adaptation of cyber-physical systems,” in
Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on. IEEE,
2016, pp. 210–215.

[3] V. Hassani, A. P. Aguiar, M. Athans, and A. M. Pascoal, “Multiple model
adaptive estimation and model identification usign a minimum energy
criterion,” in American Control Conference, 2009. ACC’09. IEEE, 2009,
pp. 518–523.

[4] B. Chen, L. Yu, W.-A. Zhang, and A. Liu, “Robust information fusion
estimator for multiple delay-tolerant sensors with different failure rates,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60,
no. 2, pp. 401–414, 2013.

[5] B. Pourbabaee, N. Meskin, and K. Khorasani, “Sensor fault detection,
isolation, and identification using multiple-model-based hybrid kalman
filter for gas turbine engines,” IEEE Transactions on Control Systems

Technology, vol. 24, no. 4, pp. 1184–1200, 2016.
[6] P. Lim, C. K. Goh, K. C. Tan, and P. Dutta, “Multimodal degradation

prognostics based on switching kalman filter ensemble,” IEEE trans-

actions on neural networks and learning systems, vol. 28, no. 1, pp.
136–148, 2017.

[7] D. Buchstaller and M. French, “Robust stability for multiple model
adaptive control: Part i the framework,” IEEE Transactions on Automatic

Control, vol. 61, no. 3, pp. 677–692, 2016.
[8] J. Fu, T. Chai, Y. Jin, and C.-Y. Su, “Fault-tolerant control of a

class of switched nonlinear systems with structural uncertainties,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 2,
pp. 201–205, 2016.

[9] R. Sakthivel, S. Mohanapriya, H. R. Karimi, and P. Selvaraj, “A robust
repetitive-control design for a class of uncertain stochastic dynamical
systems,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 64, no. 4, pp. 427–431, 2017.

[10] D. Simon, “Kalman filtering,” Embedded systems programming, vol. 14,
no. 6, pp. 72–79, 2001.

	Introduction
	Proposed Architecture
	Physical Component
	Cyber-Component
	Deterministic Kalman Filter (DKF)
	Residuals and Model Selection

	Results and Discussion
	Performance
	Hardware Resource Utilization
	FPGA
	ASIC
	Power

	conclusion
	References

