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Long-range versus short-range effects in cold
molecular ion-neutral collisions
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The investigation of cold interactions between ions and neutrals has recently emerged as a

new scientific frontier at the interface of physics and chemistry. Here, we report a study of

charge-transfer (CT) collisions of Rb atoms with Nþ
2 and Oþ

2 ions in the mK regime using a

dynamic ion-neutral hybrid trapping experiment. We observe markedly different CT kinetics

and dynamics for the different systems and reaction channels studied. While the kinetics in

some channels are consistent with classical capture theory, others show distinct non-

universal dynamics. The experimental results are interpreted with the help of classical-cap-

ture, quasiclassical-trajectory and quantum-scattering calculations using ab-initio potentials

for the highly excited molecular states involved. The theoretical analysis reveals an intricate

interplay between short- and long-range effects in the different reaction channels which

ultimately determines the CT dynamics and rates. Our results illustrate salient mechanisms

that determine the efficiency of cold molecular CT reactions.
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S
tudies of ion-neutral interactions at very low temperatures
have progressed considerably in recent years as a result of
the development of techniques for the combined (hybrid)

trapping of cold atoms and ions1–6. At temperatures in the mK
regime achievable in these experiments, new possibilities open up
for the detailed exploration of collisional and chemical dynamics
at the quantum level. Interactions between cold atomic ions and
neutral atoms have been widely studied with these setups over the
last decade. These investigations have provided insights into cold
reactive processes7–11, the sympathetic and internal cooling of
ions by ultracold atoms12–14, cold three-body recombination
dynamics15, spin-exchange and -relaxation processes16 and the
statistical mechanics of trapped ions in a cold buffer gas17,18.

While a large body of data by now exists on a range of atomic
collisions systems, studies of cold collisions with molecular ions
are still sparse. Previous experiments, included the combination
of cold molecular beams or cryogenic gases with trapped
ions19,20, the merging of molecular beams containing Rydberg
molecules21, and the sympathetic cooling of molecular ions in
hybrid trapping experiments13,22–24. These latter studies uncov-
ered unusually fast kinetics22, the formation of exotic molecular
species23 and reaction blockading of short-lived excited species24

in cold molecular ion-neutral atom systems. These investigations
gave a first glimpse at the wealth of additional phenomena which
can be explored by extending hybrid trapping experiments from
atomic to molecular systems.

In most of the systems studied so far in hybrid trapping
experiments, charge transfer (CT) between the neutral atoms and
ions was found to be a dominating reactive process. CT can be
promoted either by radiative coupling of the entrance channel to
energetically lower-lying CT channels25 or by non-adiabatic
coupling between channels26. In a previous study on reactions
between Nþ

2 molecular ions and Rb atoms22 at collision energies
around 20 mK, a strong dependence of the CT rate coefficient on
the electronic state of Rb was observed. CT was found to be
extremely fast in collisions with excited Rb ð5pÞ2P3=2 atoms. By

contrast, reactions with ground-state Rb ð5sÞ2S1=2 atoms were
observed to be considerably slower than the Langevin limit which
frequently serves as a benchmark for ion–molecule reactions27. In
the Langevin picture, the rate coefficient is limited by capture of
the collision partners by long-range ion-induced dipole interac-
tions whereas the short-range reaction probability is assumed to
be unity28.

The results of ref. 22 already hinted at the importance of the
interplay between short- and long-range effects in cold CT
reactions. Motivated by these findings, we explore this topic here
in a comparative study of the CT between molecular oxygen
(32Oþ

2 ) and nitrogen (28Nþ
2 ) ions with

87Rb atoms using experi-
ments in the cold regime together with computational work to
interpret the dynamics at a molecular level.

The energetics of the reactions considered are illustrated in
Fig. 1. Nþ

2 and Oþ
2 ions in their electronic ground states collide

with Rb atoms in either the ð5sÞ2S1=2 ground or ð5pÞ2P3=2 first

excited electronic state to produce Rbþ ions in the 1S0 ground
electronic state and neutral N2 / O2 molecules. On purely ener-
getic grounds, the molecular CT products can form in a range of
highly exited electronic states in both cases, in particular in col-
lisions with excited Rb atoms in which case a range of low
Rydberg states of the neutral product molecules are energetically
accessible. Figure 1 also makes apparent that the entrance
channels of the reactions considered here correspond to highly
excited electronic states of the collision system.

In a first approximation, CT is considered to be most efficient
if it is near resonant, i.e., if the entrance and product channels
are energetically similar, and if it does not involve a marked
reconfiguration of the electrons in the molecule29. On these

grounds, it could be expected that CT with Rb atoms in the 2P3=2

excited state should be more efficient owing to the higher den-
sity of near-resonant, electronically favourable product channels
(see Fig. 1).

In the present work, we have employed recently established
experimental methods which allow an improved control over
both the electronic state of the reactants as well as the collision
energy in the mK regime30 to study the kinetics of CT in the
different collision channels. We found a marked dependence of
the dynamics on the initial state of Rb. CT was observed to be
generally fast and the trends were found in many cases not to be
compatible with the expectations outlined above. The experi-
ments were analysed and modelled with the help of electronic-
structure as well as quasiclassical trajectory simulations and
quantum-dynamics calculations. This theoretical modelling
revealed an intricate interplay of long-range interactions and
localised short-range non-adiabatic couplings which, guided by
the topology of the relevant potential-energy surfaces, determine
the details of the CT dynamics and kinetics. This situation stands
in stark contrast to cold CT collisions in atomic systems which
are usually slow and often dominated by radiative couplings 2,4–6.

Results
Overview of experimental procedures. The experiments were
conducted in an ion-neutral hybrid trapping experiment con-
sisting of a linear radiofrequency (rf) ion trap embedded in a
magneto-optical trap (MOT) for Rb atoms (Methods)7,30. Briefly,
Nþ

2 and Oþ
2 ions were produced by REMPI and sympathetically

cooled to mK temperatures by the interaction with a Coulomb
crystal of laser-cooled Caþ ions. The molecular ions were thus
prepared translationally cold in their vibrational ground states,
but exhibited a room-temperature distribution of rotational state
populations. The experiment was operated in two modes. A static
mode in which a cloud of laser-cooled Rb atoms was overlapped
with the Coulomb-crystallised ions and a dynamic mode in which
the cloud of cold Rb atoms was shuttled back and forth through
the ions at a well-defined velocity using radiation-pressure for-
ces30. While the static mode enables the measurement of CT rate
coefficients as a function of the Rb state populations and thus the
determination of state-dependent rate coefficients, the dynamic
mode allows in addition the measurement of reaction rates as a
function of the collision energy with the Rb atoms in either the
ground or a mixture of the ground and excited states. Note that
the reactions of Caþ with Rb are slower by several orders of
magnitude7,22,30 compared to the processes studied here and
therefore play a negligible role in the present experiments.

State-dependent charge-transfer rate coefficients. In a sta-
tionary MOT overlapped with the ions, both the 2S1=2 and 2P3=2

electronic states of Rb addressed by laser cooling on the Rb D II
line are populated7. The relative populations are determined by
the photon-scattering rate controlled by the intensity of the
cooling laser and its detuning from the atomic resonance.

Figure 2 shows the dependence of the effective, i.e., state-
averaged, CT rate coefficient as a function of the Rb(2P3=2)

population for reactions with Nþ
2 in Fig. 2a and with Oþ

2 in
Fig. 2b. The green symbols represent the experimental results and
the dash-dotted lines are linear fits to the data. For Nþ

2 + Rb
(Fig. 2a), a clear dependence of the rate coefficient on the Rb
(2P3=2) population is observed. These results can be compared

with our previous study22 in which this observation has been
rationalised by an enhanced CT rate in the excited channel
dominated by the capture of the ion by the permanent
quadrupole of Rb in the 2P3=2 state22. The fit yields a rate
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coefficient kpðN2Þ=1.7(6) ´ 10−8 cm3 s−1 for reactions with Rb

(2P3=2) (in line with the result of ref. 22) and ksðN2Þ=1.6(3) ´

10−9 cm3 s−1 for reactions with Rb(2S1=2). This new value for ks
replaces the previous upper bound of �2 ´ 10−10 cm3 s−1

reported in ref. 22 where only an imprecise estimate for this
quantity could be given because of the noisier data.

By contrast, the results for Oþ
2 + Rb shown in Fig. 2b reveal no

clear dependence of the effective CT rate on the Rb excited-state
population. The hypothetical case of an effective rate coefficient
expected for Langevin capture in the ground channel and, as with
Nþ

2 , dominant ion-quadrupole capture in the excited channel
(solid orange line) does not agree with the observed data.
Surprisingly, the effective rate coefficient closely follows a limiting
value set by Langevin theory (blue solid line), implying Langevin-
type dynamics in both the ground and excited channels of
Oþ

2 + Rb. The Langevin rate coefficient for Oþ
2 + Rb(2S1=2) is

k L
s ðO2Þ= 3.3 ´ 10−9 cm3 s−1 (blue solid line) and a fit of a
constant function to the data yields an effective rate coefficient
keff ðO2Þ= 2.9(8) ´ 10−9 cm3 s−1 (black dash-dotted line).

Collision-energy dependent charge-transfer rate coefficients.
The dynamic mode of the experiment allows both collision-
energy- and state-dependent measurements of CT rate coeffi-
cients by enabling or disabling laser cooling of the Rb atoms
during the shuttling process (Supplementary Note 1). Figure 3
shows the collision-energy and state-dependent rate coefficients
for (a) Nþ

2 + Rb and (b) Oþ
2 + Rb in the collision-energy range

from � 10� 30 mK. Theoretical Langevin rate coefficients for
the two channels are indicated by solid orange and blue lines. For

reactions with Nþ
2 in (a), the Langevin predictions are k L

p ðN2Þ=

6.1 ´ 10−9 cm3 s−1 and k L
s ðN2Þ= 3.5 ´ 10−9 cm3 s−1 in the

excited and ground channels, respectively. For Oþ
2 in (b), the

corresponding values are k L
p ðO2Þ= 5.8 ´ 10−9 cm3 s−1 and

k L
s ðO2Þ= 3.3 ´ 10−9 cm3 s−1.
The blue dash-dotted lines in Fig. 3a, b represent fits of the data to

a constant function corresponding to the expected collision-energy
dependence of the rate coefficient for Langevin-type dynamics. The
fits yield rate coefficients ksðN2Þ= 1.5(2) ´ 10−9 cm3 s−1

and ksðO2Þ= 3.4(1) ´ 10−9 cm3 s−1 for reactions of Nþ
2 and Oþ
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Fig. 1 Energetics of charge-transfer (CT) collisions. Asymptotic energies of the entrance and near-resonant product channels of a Nþ
2+Rb and b Oþ

2+Rb CT

collisions. The molecular ions can undergo CT with Rb in either its ð5sÞ2S1=2 ground or ð5pÞ2P3=2 excited state populated by laser cooling in a magneto-

optical trap. All energies are referenced to the asymptotes of the lowest product channels connecting to the ground state of the relevant neutral molecules.
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with Rb(2S1=2), respectively. In line with the results obtained in the

static mode of the experiment, the rate coefficient for Oþ
2 þ Rb

(2S1=2) is in good agreement with the Langevin-capture prediction

over the entire collision-energy range studied. This suggests that the
dynamics is indeed dominated by long-range ion-induced dipole
interactions and that the short-range reaction probability is close to
unity in this channel. Conversely, the rate coefficient for Nþ

2 + Rb
(2S1=2) is only about one-third of the universal Langevin value,

indicating a pronounced effect of short-range interactions on the
kinetics.

For Nþ
2 + Rb(2P3=2), both the magnitude and collision-energy

dependence of the rate coefficient are consistent with a CT
dominated by long-range ion-quadrupole capture in line with
previous findings22. The orange dash-dotted line in Fig. 3a
represents a fit of the data for Nþ

2 + Rb(2P3=2) to a classical

capture model including ion-quadrupole interactions (Supple-
mentary Note 2) yielding a quadrupole moment of
Q ¼ 15:45ð1:22Þ a.u. for the Rb (2P3=2) state. This result can be

compared with a theoretical value of Q ¼ 12:9 a.u. computed
at the MRCISD level of theory (Methods). At a collision
energy Ecoll=kB = 20mK, a rate coefficient kpðN2Þ= 1.1(1) ´

10−8 cm3 s−1 was determined from these data.
For Oþ

2 + Rb(2P3=2) in Fig. 3b, the experimental rate
coefficients (orange triangles) appear to be considerably smaller
than their predicted ion-quadrupole capture limit (dash-dotted
orange line) and even slightly smaller than the corresponding
Langevin limit (solid orange line). This finding points to a
pronounced influence of short-range interactions on the
dynamics, in contrast to Nþ

2 + Rb (2P3=2) where this channel

seems to be clearly dominated by universal long-range capture
behaviour.

Potential energy surfaces. Insights into the widely varying CT
dynamics across the systems and channels studied can be gained
from analysing the relevant potential energy surfaces (PESs).
Figure 4 shows the potential curves of both singlet and triplet
electronic states of the N2 and O2 molecules as a function of the

molecular bond length r. The curves for the relevant cationic
ground states are the solid green lines. Solid blue lines indicate the
cationic curves shifted by the ionisation potential of Rb which
correspond to the relevant energies of the lowest entrance
channels for the CT reaction. The dashed lines represent the same
curves offset by the energy of excitation to the Rb (2P3=2) state.

The potential curves shown are cuts through the three-
dimensional PES of the collision system with the Rb moiety at
an infinitely large distance from the molecule. Curve crossings
(indicated by circles) between the shifted ionic and neutral curves
appear close to the molecular equilibrium geometry in both
systems providing opportunities for non-adiabatic transitions and
therefore CT around the crossing points.

As the collision partners all have doublet electron–spin
character, collisions can occur on either singlet or triplet PESs.
Figure 5 shows cuts of the adiabatic potential surfaces for (a)
Nþ

2 + Rb (2S1=2) and (b) Oþ
2 + Rb (2S1=2) close to the computed

minimum energy path for CT in the singlet channels at a linear
collision geometry. For Nþ

2 + Rb, an electronic barrier is found
along this reaction path. While a CT reaction along this
coordinate is thus in principle possible, the height of the barrier
exceeds 5000 cm−1 and thus inhibits CT at the low collision
energies of order � 10�2 cm�1 of the present experiments.

The potential-energy profile for Oþ
2 + Rb(2S1=2) in Fig. 5b also

exhibits a barrier along the shown reaction coordinate for CT. In
this case, however, the barrier is submerged and thus provides no
significant impediment to CT at the experimental collision
energies. A similar curve crossing can also be found in the
corresponding triplet reaction channel (see the red curve in
Fig. 4b crossing the entrance channel close to the equilibrium
geometry within the magenta circle). Thus, together with the
experimental findings it can be surmised that the short-range CT
probability is near unity in both the singlet and triplet collision
channels for Oþ

2 + Rb(2S1=2) and that the CT rate coefficient is

near the capture limit dominated by long-range Langevin-type
interactions.

Since CT in Nþ
2 + Rb (2S1=2) is unlikely to occur via the singlet

collision channel, Fig. 6 shows cuts of the triplet PES of the
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collision systems along the N2–Rb coordinate R for different N2-
Rb orientation angles θ. In the linear geometry (θ ¼ 0, Fig. 6a)
the entrance channel with symmetry 3

Σ
þ crosses with a 3

Π

surface asymptotically connecting to the C3
Πu state of N2. In a

non-linear (θ ≠ 0) collision geometry (Fig. 6b–d), the 3
Π surface

splits into an A0 and an A00 component with the A0 surface
undergoing avoided crossings with the entrance channel surface
(also A0 in this symmetry). The separation of the resulting

adiabatic surfaces at the crossing points, and hence the non-
adiabatic coupling between them, increases with increasing
orientation angle θ. The probability of non-adiabatic transitions
around the crossings, and therefore CT, is thus expected to be
strongly dependent on the orientation of the collision partners.

Quasiclassical trajectory and quantum dynamics calculations.
To gain quantitative insight into the non-adiabatic dynamics of
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Nþ
2 + Rb (2S1=2), we performed both quasiclassical trajectory

simulations and quantum scattering calculations of the CT.
The classical trajectory simulations employed a modified
Landau–Zener formalism on the two coupled two-dimensional
A0 surfaces of Fig. 6 for modelling the CT (Methods). In the
simulations, the bond length was frozen at the equilibrium
value for Nþ

2 , thus yielding a two-dimensional dynamics along
the distance R between the centres-of-mass of Nþ

2 and Rb and
the orientation angle θ. Rate coefficients have been calculated
for Ecoll=kB ¼ 10, 20, and 30 mK from running 5000 indepen-
dent trajectories each. The CT rate coefficients obtained are
shown as red diamonds in Fig. 3 and are in good agreement
with the experimental values.

Further insights into the CT dynamics can be gained from an
analysis of the trajectories. Reactive CT trajectories are divided
into two categories: (i) trajectories with a single collision, i.e.,
direct trajectories, and (ii) trajectories with multiple collisions,
i.e., indirect trajectories. To categorise the trajectories, we classify
them according to the collision time defined as the time elapsed
between the first and last time a trajectory satisfies a geometrical
criterion, here the sum of the three inter-atomic distances has to
be smaller than 35 a.u. Most of the trajectories have collision
times around � 0:5 ps and the processes are, therefore, direct.
This is illustrated in Supplementary Fig. 1, which shows a scatter
plot of collision time vs. impact parameter at Ecoll=kB ¼ 20 mK.
At 20 mK, 4374 of the 5000 trajectories show CT (3294 direct and
1080 indirect), whereas 626 end as Nþ

2 + Rb (with 67 flyby or no
collision, 513 direct and 46 indirect).

Three illustrative example trajectories, one direct and two
indirect, are shown in Fig. 7. The dynamical path of the indirect
trajectory with two collisions shown in Fig. 7b is displayed in
Fig. 8 as its projection onto the two PESs. Large parts of the
available configurational space are sampled despite the low
collision energy. Crossings of the trajectory between the two PESs

are distributed along all values of θ and concentrated around
R � 8 and 12 a.u. as can be expected from the 1D cuts through
the PES shown in Fig. 6. Multiple recrossings (labelled as events
“A” and “B”) occur over the duration of the dynamics (indicated
by the changing colours of the trajectory).

The trajectories, both direct and indirect, typically show multiple
crossings between the surfaces (note that even a direct trajectory
typically traverses four crossing regions). After the first collision, an
outward trajectory ending up on the upper (entrance) surface is
frequently trapped in the deep potential well as the low initial
collision energy has been redistributed into other internal degrees
of freedom and is not available for dissociation of the complex
anymore. These trajectories often show pronounced large-
amplitude internal rotations of the complex, i.e., the Rb orbits
the N2 moiety at large distances several times, see Fig. 8. These
trajectories can then undergo multiple collisions. However, once an
outward trajectory ends up on the lower (CT) surface after
traversing the outer crossing point, it cannot return anymore
because of the repulsive character of the lower potential surface in
this region (see Fig. 6). Thus, the distinct short-range topology of
the two coupled surfaces ultimately contributes to explaining the
high, but not unit, efficiency for CT in this channel. It is also
evident that a long-range Langevin-capture picture cannot explain
the complex short-range dynamics and its impact on the kinetics
as observed in the experiments.

The insights from classical dynamics were corroborated by 1D
quantum-scattering calculations of the CT (Methods) performed
at different orientation angles θ (Supplementary Fig. 2). This 1D
treatment is in the spirit of an infinite-order sudden approxima-
tion (IOSA) previosuly employed for ion-neutral collisions31. The
quantum results for the CT rate coefficients averaged over all
orientation angles are indicated by the green symbols in Fig. 3a
and are in good agreement with both the experimental and
classical-dynamical results.
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Discussion
From the good agreement between experimental results and the
two different theoretical treatments of the CT rate coefficients for
Nþ

2 + Rb (2S1=2), several conclusions can be drawn. First, the CT

dynamics can be understood in classical terms and apart from
surface hopping, distinct quantum effects such as tunnelling and
zero-point motion do not seem to play a major role due to the
large mass of the collision partners involved.

Second, it appears adequate to approximate the dynamics in
reduced dimensionality, i.e., in 2D or even in 1D within an IOSA-
type approximation, in order to correctly reproduce the observed
kinetics. Note, however, that this cannot be expected for Oþ

2 + Rb
(2S1=2) in which case the reaction coordinate is more complex, see
Fig. 5b. Note also that an 1D treatment cannot capture the
roaming-type behaviour which seems to be important for certain
types of collisions.

Third, in spite of the complex and dense electronic structure in
the energy region of the entrance and exit channels (see Fig. 4), it
seems sufficient to describe CT in Nþ

2 + Rb (2S1=2) by including
only two coupled PESs. This can be rationalised in terms of the
strong non-adiabatic couplings which happen around the cross-
ing points between the two surfaces. Couplings to other states
which show no crossings with the entrance channel in the energy
region sampled by the experiments are expected to be con-
siderably weaker and do not appear to affect the CT dynamics
appreciably.

Fourth, the QCT calculations reveal that the reaction
mechanism is a combination of direct and complex-forming
collisions. The latter typically show large-amplitude orbiting
motions of the Rb around the N2 moiety before the reaction
occurs. This behaviour is somewhat reminiscent of the roaming
dynamics recently discovered in a range of polyatomic reaction
systems32–35. Indeed, the type of dynamics uncovered here can be
expected to be a common feature in cold reactions which proceed
via the formation of a reactive complex with very little excess
energy36. Note that in a full 3D model of the dynamics, one can
also expect the excitation of the N–N stretching vibration in the
complex which was frozen in the present 2D treatment poten-
tially leading to an even more diverse collision dynamics.

A quantitative modelling of the dynamics of the Oþ
2 + Rb

(2P3=2) CT was outside the scope of the present study because of
the considerably increased computational cost of the quantum-
chemistry calculations for this excited channel.
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The cold CT dynamics explored in the present molecular
collision systems has to be contrasted with the results of the
atomic systems studied so far. In the vast majority of cases
reported, CT was observed to be slow, i.e., the rate coefficients
were found to be several orders of magnitude smaller than the
universal capture limit, and dominated by radiative
couplings9,11,16,25,37–39. Notable exceptions are specific chan-
nels in Caþ þ Rb7, Ybþ þCa8, Ybþ þ Rb40, Ybþ þ Li11 and
Caþ þ Li39 in which CT was found to be non-adiabatic, but
still considerably slower than the capture limit. By contrast, the
CT rate coefficients of the systems considered here were all
found to be close to the capture limit or only slightly slower.
The good agreement between the experimental and the theo-
retical non-adabatic CT rate coefficients suggest that CT is
indeed dominated by non-adiabatic effects in the present case.
This conclusion is also corroborated by a recent theoretical
study which found that radiative couplings are small in the
Nþ

2 + Rb system41. Because the increased complexity of
molecular compared to atomic collision systems provides more
numerous opportunities for channel crossings, it can be
expected that the situation observed here for Nþ

2 + Rb and
Oþ

2 + Rb is fairly general. It can be surmised that CT will often
be non-adiabatic and fast in the molecular systems of interest
for cold-collision studies.

The trends observed here could be rationalised in terms of the
efficiency of the non-adiabatic couplings involved. When the
non-adiabatic transition probability during a collision is close to
unity, the kinetics can be modelled by universal classical capture
theory and is governed by the specific long-range interactions in
the system, as observed here for Nþ

2 + Rb(2P3=2) and Oþ
2 + Rb

(2S1=2). Otherwise, the exact CT rates depend on the specific
positions of curve crossings and the strengths of the relevant non-
adiabatic couplings as well as on the topologies of the PESs
involved, as observed here in Nþ

2 + Rb(2S1=2). The short-range
dynamics in this system was found to exhibit multiple transits of
crossing regions in single and multiple collision events with the
latter showing large-amplitude internal motions of the reaction
complex. In this case, the effects of the long-range dynamics on
the kinetics are superseded by short-range effects which cannot be
predicted without detailed theoretical modelling. This illustrates
that it cannot, a priori, be anticipated whether universal beha-
viour applies and in particular whether the universal Langevin
picture which is often invoked in the explanation of cold ion-
neutral reactive processes is valid.

Methods
Experimental methods. The experimental setup used in the present study has
been described in detail previously7,30,37. Briefly, an ion-neutral hybrid trap was
implemented by superposing a linear rf trap19 for the trapping and cooling of ions
with a MOT for 87Rb atoms7. The ion trap was operated at a frequency of
3.25MHz with an amplitude of V rf ¼ 400 V and featured 12 separately addres-
sable electrodes for applying static and rf voltages. An atomic beam of Ca was
generated from a resistively heated oven from which Caþ ions were loaded into the
trap by non-resonant photoionization. The Caþ ions were subsequently laser
cooled to form Coulomb crystals1. Molecular ions were generated inside the trap
from photoionization of room temperature background gas at a background
pressure of 1 ´ 10−8mbar using a 2þ 1½ � resonance-enhanced multiphoton
ionisation (REMPI) via the a001Σþ

g electronic state for N2
42 and via the 3

Φg (ν ¼ 1)

Rydberg state for O2
43. The molecular ions were sympathetically cooled by the Caþ

ions to form strings localised on the rf null line of the trap. Following photo-
ionization, the background pressure was kept at 1 ´ 10−8mbar for 30 s to allow
collisions to establish a room temperature distribution of rotational-state popula-
tions in the vibrational ground state of the ions. An EMCCD camera coupled to a
microscope was used to obtain images of the Coulomb crystals by collecting the
spatially resolved fluorescence of the trapped ions. The MOT was continuously
loaded from background Rb vapour replenished by an alkali–metal dispenser. The
MOT is capable of operating in three modes: stationary operation, bright shuttling
and dark shuttling. In the stationary mode, the cold atom cloud was superimposed
on the ions, while in shuttling mode the cold atoms were repeatedly shuttled
through the ions at well defined velocities using radiation pressure forces30

enabling the tuning of the collision energies in the experiments. In the bright
shuttling mode, the transversal Rb cooling lasers were left on so that parts of the Rb
atoms were excited to the 2P3=2 state during transit. In the dark shuttling mode, all

lasers were switched off after accelerating the atom cloud so that the populations
were confined to the ground state.

Electronic structure calculations. The PESs for the ground and excited electronic
states were obtained using the multireference configuration interaction method
restricted to single and double excitations, MRCISD, starting from orbitals
obtained with the multi-configurational self-consistent field method, MCSCF44. All
atomic valence orbitals, i.e., both binding and antibinding molecular orbitals, were
included in the complete-active-space reference wave functions. The N and O
atoms were described using the augmented correlation-consistent polarised core-
valence quintuple-ζ quality basis sets (aug-cc-pCV5Z)45. The scalar relativistic
effects in Rb were included by employing the small-core relativistic energy-
consistent pseudopotential ECP28MDF to replace the inner-shells electrons46,
while remaining electrons were described with the large ½14s14p7d6f 1g� basis set47.
The electronic structure calculations were performed with the MOLPRO package
of ab initio programs48.

Ab initio energies were calculated for two excited 3A0 electronic states of RbNþ
2

on a two-dimensional grid in Jacobi coordinates (R; θ) for a fixed N–N distance
r ¼ 2:074 a.u. corresponding to the equilibrium bond length in Nþ

2 . Here, R is the
distance from the centre of mass of N2 to Rb, r is the distance between the two N
atoms and θ is the angle between r and R. The upper PES adiabatically correlates

with the Nþ
2 (X

02
Σ
þ
g ) + Rb(2S1=2) asymptote while the lower surface dissociates

towards N2(C
3
Πu)+ Rbþ .

Two-dimensional analytical PESs for the two coupled 3A0 electronic states were
constructed from the ab initio energies using the reproducing kernel Hilbert space
(RKHS) technique49,50. For the radial dimension (R), a reciprocal power decay
kernel was used which smoothly decays to zero / 1

R4 and gives the correct long-

range behaviour for ion-neutral type interactions. For the angular degree of
freedom, a Taylor spline kernel was used.

Quantum scattering calculations. The rate coefficients for the non-adiabatic CT
collisions were calculated in the spirit of an infinite-order sudden approximation
(IOSA). One-dimensional cuts of the two crossing PESs were transferred from an
adiabatic to diabatic representation assuming a Lorentzian shape of non-adiabatic
couplings centred at the crossing points. Next, 1D quantum-scattering calculations
of the CT between two coupled diabatic potential energy curves were realised for
several angles as presented in Supplementary Fig. 2. Subsequently, angle-resolved
rate coefficients were integrated over all possible orientation angles. To get 1D CT
rate coefficients, the coupled-channels equations for the nuclear motions were
solved using a renormalized Numerov propagator51 with step-size doubling and
about 100 step points per de Broglie wavelength in the exit channel as implemented
in ref. 52. The ratios of the wave function at two adjacent grid points were pro-
pagated from small finite interatomic separations in the classically forbidden region
where the scattering wave-function amplitude is negligible to large particle
separations R, and where polarisation potentials are negligible as compared to the
collision energy. The K and S matrices were extracted by imposing long-range
scattering boundary conditions in terms of Bessel functions. The inelastic rate
coefficients were obtained from the elements of the S matrix summed over all
relevant partial waves l and thermally averaged assuming a Maxwell–Boltzmann
distribution. The results of the quantum scattering calculations were numerically
converged with respect to grid parameters, collisions energies, and partial waves.

Quasiclassical dynamics simulations. The quasiclassical trajectory (QCT)
method followed in this work has been discussed in detail in ref. 53 based on
refs. 54,55. Hamilton’s equations of motion were solved using a sixth-order sym-
plectic method. Initial conditions for a trajectory were sampled from a standard
Monte Carlo sampling method54. The rotational states of Nþ

2 were sampled from a
Boltzmann distribution at room temperature (300 K). Stratified sampling54,56 was
used to sample the impact parameter b. Two time steps (Δt) of 0.6 (from the
beginning of a trajectory until it reaches R< 35 a.u.) and of 0.05 fs (for the first time
a trajectory reaches R< 35 a.u. to the end) were used for the numerical integration
to ensure conservation of total energy and total angular momentum.

The trajectory surface hopping method57 was used to determine CT rates
including non-adiabatic transitions within a modified Landau–Zener58–61

formalism. The modified Ladau–Zener formula depends on the adiabatic potential
energies of the states involved in the transition and at time tc is

P
j!k
LZ ¼ exp �

π

2_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔVa
jkðxðtcÞÞ

3

d2

dt2
ΔVa

jkðxðtcÞÞ

v

u

u

t

0

@

1

A: ð1Þ

Here, P
j!k
LZ is the transition probability from state j to state k and ΔVa

jkðxÞ is the

adiabatic energy difference between these states. Whenever ΔVa
jkðxÞ reached a local

minimum, transition probabilities were calculated and momentum corrections
along different degrees of freedom were applied62 after a successful hop to keep the
total energy and angular momentum conserved for a given trajectory.
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The rate coefficients at a particular collision energy (Ecoll) were calculated from

k ¼ ge

ffiffiffiffiffiffiffiffiffiffiffi

2Ecoll

μ

s

πb2max

Nr

N tot

; ð2Þ

where μ is the reduced mass of the collision system, N r is the number of reactive
(CT) trajectories (weighted by stratum statistical weight), N tot is the total number
of trajectories, ge is the electronic degeneracy factor (here 3/4) and bmax is the
maximum impact parameter for which a CT reaction can occur.
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