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ABSTRACT Background: The enhancement in the performance of the myoelectric pattern recognition

techniques based on deep learning algorithm possess computationally expensive and exhibit extensive

memory behavior. Therefore, in this paper we report a deep learning framework named ‘Low-Complex

Movement recognition-Net’ (LoCoMo-Net) built with convolution neural network (CNN) for recognition

of wrist and finger flexion movements; grasping and functional movements; and force pattern from single

channel surface electromyography (sEMG) recording. The network consists of a two-stage pipeline: 1) input

data compression; 2) data-driven weight sharing. Methods: The proposed framework was validated on two

different datasets- our own dataset (DS1) and publicly available NinaPro dataset (DS2) for 16 movements

and 50 movements respectively. Further, we have prototyped the proposed LoCoMo-Net on Virtex-7 Xilinx

field-programmable gate array (FPGA) platform and validated for 15 movements from DS1 to demonstrate

its feasibility for real-time execution. Results: The effectiveness of the proposed LoCoMo-Net was verified

by a comparative analysis against the benchmarked models using the same datasets wherein our proposed

model outperformed Twin- Support Vector Machine (SVM) and existing CNN based model by an average

classification accuracy of 8.5 % and 16.0 % respectively. In addition, hardware complexity analysis is done

to reveal the advantages of the two-stage pipeline where approximately 27 %, 49 %, 50 %, 23 %, and

43 % savings achieved in lookup tables (LUT’s), registers, memory, power consumption and computational

time respectively. Conclusion: The clinical significance of such sEMG based accurate and low-complex

movement recognition system can be favorable for the potential improvement in quality of life of an

amputated persons.

INDEX TERMS sEMG, movement classification, signal processing, CNN, data compression, weights

compression.

I. INTRODUCTION

The myoelectric controlled powered prosthetic hands and

limbs have the potential for improving the quality of life

of amputated subjects [1]–[6]. The control of such pros-

thetic hands is facilitated by classifying various movements

(e.g. finger and wrist) from the non-invasive recording of

the muscular activity, known as surface electromyography

(sEMG) [7], [8]. However, due to the poor quality of the

acquired sEMG signals from the remnant muscles of the

amputated limb, the real-time classification becomes very

challenging [9]. To overcome this, there have been several

approaches [10]–[14] reported thus far which can be broadly
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classified into the following four categories: (i) reduce

the number of movements considered for classification,

(ii) increase the number of body-worn electrodes, (iii) use

of implantable electrodes and (iv) use of the multi-modal

approach.

Surface electrodes have the advantage of being non-

invasive and measure gross estimate of the muscle activity,

but lack specificity. Reduction of the number of movements

by the user improves the specificity of detection of the com-

mand from the signals [10]. However, this is at the cost

of reduced dexterity and naturalness for the user, and thus

user satisfaction. On the other hand, increasing the number

of body-worn electrodes improves the performance of the

classifier but the outcomes are dependent on the inconsistent

placement of the electrodes making it unsuitable for self-

administration [11].

The alternate is the implantable electrodes which have high

specificity and are placed permanently by the surgeon, and

thus do not require the user placement [12]. However, these

necessitate a surgical procedure for implantation which limits

the widespread usage of such devices. On the other hand,

other approach like multi-modal where sEMG classifier’s

outputs are combined with inertial measurement unit (IMU)

and locational identifiers [13], [14] for better accuracy, but

again their outcomes are limited to people performing spe-

cific activities in repetitive fashion. Thus, the desired system

should be a myoelectric one with few electrodes and capa-

bility to identify several movements so that can provide the

users convenience and natural dexterity.

In this context, many attempts have been made to

improve the recognition of myoelectric based movements

for the prosthetic hands [15]–[21]. These works can largely

be categorized into two focal areas: (i) feature selection

and (ii) classifier selection. The work by Soman et al. [15]

used Twin-Support Vector Machine (SVM) for recogniz-

ing 15 wrist and finger flexion actions from the muscles

of forearm using 4 channels of sEMG recording achieving

average of 82% classification accuracy. Naik et al. [16] per-

formed experiments to select the appropriate SVM kernel

with 4 channels with similar accuracy (82.0%) but with only

for 7 movements. Other studies have combined the classifica-

tion parameters with feature selection [17]. Improvement in

the results have been shown by using source separation using

independent component analysis (ICA) [18]. These have

demonstrated significantly improved accuracy of 95% with

data collected from five transradial amputated participants.

The traditional methodologies require supervision owing to

its dependency on selection of suitable features from raw

sEMG signal while achieving limited classification accuracy

in the performance, thus restricts its usability for the real-time

execution [22].

The deep-learning methods have the distinct advantage

of performing the data-driven feature extraction while train-

ing, eliminates the computational time of feature selec-

tion [23]. Convolutional neural network (CNN) is one of the

most widely used deep-learning approaches which performs

FIGURE 1. Shows the block diagram of the feed-forward path of a
myoelectric controlled prosthetic limb which is bio-inspired and attempts
to replicate the physiological motor control system [6]. There are a
number of distinct tasks such as supervised data collection,
segmentation, feature selection and extraction, training of the network
followed by classification.

data-driven feature extraction followed by classification (see

Fig. 1) [22]–[26]. Recently, Park and Lee [19] introduced

a CNN model for sEMG based hand movement classifi-

cation and showed 90% accuracy for 6 movements. Later,

Atzori et al. [9] employed CNN for classification of 50 move-

ments in 67 intact subjects and 11 transradial subjects from

Ninapro dataset (DS2) [27]. This method achieved an average

accuracy of 55% while conventional classifiers such as lin-

ear discriminant analysis (LDA), SVM, k-nearest neighbor

(k-NN) and Random Forest classifiers achieved 50%, 60%,

51% and 62% accuracy respectively. The recent study by

Ulysse et al. [20], performed transfer learning using slow

fusion model of CNN for hand gesture recognition from

8 channel sEMG recordings and reported an average accuracy

of 97.8%. Another study by Zhai et al. [21], proposed CNN

based self-recalibrating sEMG pattern recognition technique

and obtained an average accuracy of 78.71% on NinaPro

database for recognition of all movements. All of the above

models used 3D spectrogram of sEMG as an input to CNN

for recognition of different movements which adds extra

computation cost for real-time implementation on resource

constrained platforms. The CNN based pattern recogni-

tion techniques have automatic feature extraction capability

which provides accurate recognition of the user movements

from sEMG recordings. However, these are computationally

expensive and exhibit extensive memory behavior for 3D

input posing a bottleneck for its real-time implementation for

a prosthetic limb where resources are scarce [28].

This paper reports the work to overcome the limita-

tions of the earlier deep-learning methods, and develop

a low-complexity CNN model without compromising the

accuracy and the number of user commands. The proposed

LoCoMo-Net framework is formulated for 1D data and

includes two-stage pipeline: input data compression and a

data-driven weight sharing, working holistically to reduce the

computation and storage requirements as shown in Fig.2. The

two-stage pipeline architecture reduces complexity wherein
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FIGURE 2. Proposed LoCoMo-Net with two-stage pipeline compression
technique.

stage 1 compresses the input by removing the redundant

information and keeps the most informative data [29]. Next,

in stage 2, the weights of the trained neural net model are

compressed by indexing the neurons having the same weight.

Further, to validate the feasibility of our proposed deep neural

network for real-time execution, we have implemented on

software-hardware co-designed solution for prosthetic con-

trol wherein average 27 %, 49 %, 50 %, 23 %, and 43 %

savings achieved in lookup tables (LUT’s), registers, mem-

ory, power consumption and computational time respectively,

depicting low-complexity nature of proposed deep neural

network.

The remainder of the paper is structured as follows-

Section II provides method for data acquisition system and

the proposed LoCoMo-Net framework along with training

and evaluation procedure, Section III presents the results,

Section IV reports the discussion and Section V concludes

the paper.

II. METHODS

A. DATA ACQUISITION SYSTEM

1) DATASET 1 (DS1)

The DS1 consists of eleven able-bodied (age: 26.6 ±

2.05 years, height: 170.6 ± 7.42 cm and weight: 70.6 ±

6.56 kg) and three trans-radial amputated participants (Char-

acteristics are given in Table 6 in the appendix section). It was

ascertained that the able-bodied volunteers did not present

any evidence of skeletal, myo, or neuropathology diseases

along with a normal range of motion without any restric-

tions. In this study, each individual was instructed to perform

15 tasks [15] excluding rest, which is listed in Table 7 in the

appendix section −1.

The experimental protocol was approved by the RMIT

University Human Research Ethics Committee (Melbourne,

Australia) and UFES, Vittoria, Brazil. All experiments were

conducted in accordance with the Helsinki Declaration

(revised 2004), and participants provided their oral and writ-

ten consent before the start of the experiment. The experimen-

tal protocol was the same as used in our previous study [16].

For data collection, we used four bi-polar, active electrode

sEMG system by Touchbionics Ltd, UK. The surface of

the skin was cleaned with alcohol before the attachment of

FIGURE 3. Experimental protocol for recording sEMG data. Where data
was recorded in 4 trails for each activity discriobed in Table 2.

electrodes on the muscle surface. Then, a conductive elec-

trolyte gel was applied to the electrodes, and the ground

electrode was placed on the volar aspect of the wrist. The

data were recorded using a LabVIEW based sEMG acqui-

sition system with a sampling frequency of 1000 Hz for each

channel at a resolution of 16 bits/sample.

The placement of the bipolar electrode on the surface of the

forearm is as follows- channel 1 is positioned at the Flexor

pollicis longus muscle, channel 2 at the flexor digitorum

superficialis muscle, channel 3 at the flexor carpi radial and

ulnaris muscle, and channel 4 at the extensor carpi radial

and ulnaris muscle. The participants were familiarized with

the procedure, equipment, and demonstrated the task before

starting the experiments. For this study, each subject was

instructed to perform 15 tasks, excluding rest, which is listed

in Table 7. Each task described in the Table 7 was performed

in two sessions for the able-bodied participants which lasted

for 50 seconds for single session as shown in Fig. 3.While, for

the amputated participants only one session was performed to

minimize the fatigue due to the experiment. Fig. 3 shows that

the initial 5 seconds of the single session was allocated for

the relaxation of the participants to get comfortable with the

specific task followed by 4 trails of task activity of 10 seconds

each which includes transition time for task onset and tran-

sition time for task end. The repeated movements from the

trials are separated based on the time recorded in one of the

channels when one repetition is completed. The participants

repeated one task for 40 times in a session, which resulted

in 80 sample points for a single task (referred to as Class)

for able-bodied participants and 40 for trans-radial amputated

participants.

2) DATASET 2 (DS2)

In this study, the publicly available NinaPro database which

has been reported in many studies for sEMG pattern recog-

nition [9], [19], [21] was used as the second dataset named

as DS2. The DS2 comprises of NinaPro database 2 (DB2)

and database 3 (DB3) [27], consisting of 40 intact subjects,

and 11 trans-radial amputated subjects respectively. The dis-

abilities of the arm, shoulder, and hand (DASH) scores of the

amputated subject was in the range of 1.67 to 86.67 (scale

0–100). Each subject was requested to perform 49 types of

hand movements including 8 isometric and isotonic hand

configurations; 9 basic wrist movements; 23 grasping and

functional movements; and 9 force patterns. Each move-

ment was repeated 6 times with a 3 s rest in between. The

12-channels sEMG signal was sampled at 2000 Hz. In this
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study, total of 50 movements (49 movements and 1 rest) were

considered from Ninapro database.These include 17 basic

movements of the finger andwrist (index 1 to 17); 23 grasping

and functional movements (index 18 to 40); 9 force pattern

(index 41 to 49) and rest (index 50) for comparison with the

state-of-the-art CNN based models.

B. LoCoMo-NET- PROPOSED DEEP LEARNING

FRAMEWORK

Fig. 4(a) represents the workflow of the proposed deep

learning framework LoCoMo-Net, consisting the CNNmodel

with a two-stage pipeline: input data compression and a

data-drivenweight sharing. The LoCoMo-Net frameworkwas

formulated as one versus all (binary) classification problem

due to its feasibility for training initialization as well as usage

in a practical scenario [30].

For the proposed framework single channel (i.e. chan-

nel 1 of DS1) sEMG data was utilized for classification of

movements with the aim to reduce the computation and com-

plexity for real-time practice. While a matching channel (i.e.

channel 1) was used for NinaPro dataset (DS2). The signal

was segmented with 250 ms and 200 ms window with 50%

overlap for DS1 and DS2 based on the literature to ensure

the delay was within acceptable limits [31]–[33]. The recent

study by [9] done the analysis on effect of normalization on

the classification accuracy. The ‘time window normalization’

of data affects the accuracy most when compared to ‘normal-

ization based on training data’ and ‘no normalization’.

Therefore, in our study sEMG data was normalized to zero

mean and unit variance from the training dataset to avoid

over fitting problem and faster conversion of gradient descent

algorithm [34].

C. NETWORK TOPOLOGY OF THE PROPOSED

LoCoMo-NET MODEL

The data-driven feature extraction for discriminatively clas-

sifying the subtle forearm movements from single channel

sEMG recording was realized by using two 1D CNN layers,

each followed by Rectified Linear Unit (ReLU) activation

function, max-pooling layer, and dropout layer. After this,

flatten layer was included to transform the 2D feature maps

into 1D data. Lastly, a fully connected layer with softmax

loss function was used for the classification of a particular

task based on the features extracted from the previous lay-

ers. This entire network topology of the proposed LoCoMo-

Net is depicted in Fig. 4(b). In this, softmax loss function

outputs the probabilities of the different classes considered

for the classification and then performs the classification

based on the cost function from the normalized exponential

function. Since, we have formulated this particular problem

as a binary classification, therefore each task has two classes:

class A and class B where class A is the ‘specified task’ and

class B is the ‘other’. The proposed model was formulated

after exploring the hyper-parameter tuning [35] with different

hyper-parameters where 2 convolutional layers, 7 filters of

size 5 × 1, stride rate of 1 in both convolutional layers and

FIGURE 4. (a) Workflow of the proposed LoCoMo-Net where T_set1 and
V_set1 represent the train-test and validating set of DS1 respectively. The
Nested 10 fold CV is used for the selection of best hyper-parameters.
(b) The network topology of the proposed LoCoMo-Net model for
classifying the task.

2 × 1 max-pooling were chosen as optimum parameters for

the given problem. This resultant in 213 neurons in the fully

connected layer for LoCoMo-Net which is also illustrated

in Fig 5. For training the model, categorical cross-entropy

loss function, RMSprop optimizer with a default learning rate

of 0.001 and the batch size of 15 are incorporated where

maximum 50 epochs are used. Dropout is included in the

training to overcome the over-fitting issue on new unseen

data which is set to recommended 50% probability level.
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FIGURE 5. (a) Shows block level architecture of the proposed Min/max
technique; (b) Mean entropy comparison of sEMG with and without input
data compression for 3 amputated and 11 healthy subjects;
(c) Comparison of the raw sEMG signal with compressed sEMG from the
proposed input data compression module implemented on
software (MATLAB) and hardware (FPGA), the analysis shows both the
hardware and software results retains same morphology like raw sEMG
with less number of samples.

To generalize the proposed framework, data of all the subjects

were included during training for each task.

D. EVALUATION METHODOLOGY

The sEMG signal is non-stationary and sensitive to many

factors, such as electrode placement, signal crosstalk and

recording environment [41]. As a result, it leads to a sig-

nificant variation in the sEMG data captured from the same

subject muscles for the same activity performed in different

trials. Therefore, for performance evaluation of the LoCoMo-

Net, each dataset (DS1 and DS2) was divided into two parts

train-test set and validate set. To formulate the model for each

movement in DS1, Trial 1, Trial 3 and Trial 4 from all the

subjects were included in a train-test set named as T_set1,

whereas Trial 2 was used as validating set named as V_set1.

While in DS2, 1st, 3rd, 4th, and 6th numbered repetitions from

all the subjects were considered as a train-test set (T_set2),

whereas 2nd and 5th repetition was used as validating set

(V_set2) exactly the same way as reported in [9],[21].

To get the optimummodel for the given application, hyper-

parametrization was performed with T_set1 of DS1, wherein

nested k-fold cross-validation method was adopted to get

the unbiased evaluation for the proposed model from the

literature [39] for k equal to 10. The nested k-fold validation

ensures that no information is leaked to the model, thereby

providing an unbiased evaluation which was done by utilizing

the Gridsearch cross validation [40] in python. To check the

stability of the selected model, the same parameters from

the DS1 are used for evaluation of the DS2 dataset. For

DS2, T_set2 was used to train the model with parameters

obtained from DS1. After training the model, it was validated

with the unseen V_set2, and then results are tabulated. The

efficiency of the proposed LoCoMo-Net is measured in terms

of accuracy, precision, recall, F1-score, receiver operating

characteristics (ROC) analysis, computation time, power-area

analysis and resource utilization. Subsequently, a compara-

tive analysis was also performed with state-of-the-art models

using the DS1 and DS2 datasets.

E. TRAINING TESTING AND VALIDATION

The proposed LoCoMo-Net framework was implemented

on a Lenovo ThinkStation with an Intel Xeon CPU

E5-2650 v2 processor @ 2.6 GHz and 32 GB RAM. The

model is trained-tested and validated on Keras 2.2.0 environ-

ment configured to use Tensorflow 1.9.0 as backend engine

on a 64 bit Ubuntu operating system. For real-time execu-

tion, we have prototyped the LoCoMo-Netmodel on Virtex-7

Xilinx FPGA platform and performed the validation.

F. PROPOSED TWO STAGE PIPELINE

1) PROPOSED INPUT DATA COMPRESSION MODULE

The input size is one of the parameters that impact the com-

putational behavior of the CNN model; larger the size of the

input data more would be the computational cost for the CNN

model. To reduce the computational cost, we have developed

a technique named ‘Min/Max’ to extract the relevant infor-

mation from the sEMG signal. This was done by finding the

local minima/maxima from the input signal which is based on

the recent study by Phinyomark and Scheme [29] who inves-

tigated the use of local peaks (maxima) and valleys (minima)

as a time domain feature for sEMG signal classification. The

block level architecture is shown in Fig. 5(a) for the proposed
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FIGURE 6. Shows influence of input compression on the computational
cost of the model where for the calculation of total number of
multiplication and addition units in a particular layer is done by
considering N kernels of size FV = FA × FB is getting convolved with K
input feature map of size IV = IA × IB with stride rate of s, which results
in N output feature maps of size OV = OA × OB. Thus, total number of
multiplication (Mj ) and addition (Aj ) operations at jth layer are
Mj = [(OV × FV ) × K ] × N and Aj = [{OV × (FV − 1)} × K ] × N respectively.

‘Min/Max’ was designed based on [36], [37] wherein a local

maxima/minima are defined as a data sample which is not

equal to (either larger or smaller) than the two neighboring

samples. Two comparators simultaneously check whether

Xi+1 is greater than the Xi+2 and Xi and then result are passed

to AND gate which enables a signal (ENB_1 = 1) to store

Xi+1 as local maxima. Similarly, if Xi+1 is smaller than Xi+2

and Xi, then the output of the two comparators are passed

through a NAND gate which enables a signal (ENB_2 = 1)

to store Xi+1 as local minima.

The effectiveness of the ‘Min/Max’ technique was ana-

lyzed with the mean entropy information of the sEMG signal

data input of 250 samples and compressed to 146 samples

for all the tasks and subjects of DS1 which is shown in

Fig. 5(b). It is seen that the compressed data retain the most

important information for all the able-bodied and amputated

participants. Additionally, we performed the comparative

analysis of software results for finding maxima/minima

using ‘Findpeaks’ function available in MATLAB with

our proposed ‘Min/Max’ technique which is shown

in Fig. 5(c).

The influence of the proposed ‘Min/Max’ technique on the

architectural parameters of the proposed network topology is

demonstrated in Fig. 6 wherein the left and right half portion

of the figure depicts the architecture of the proposed network

topology for uncompressed (250 samples) and compressed

input (146 samples) respectively. The proposed ‘Min/Max’

has reduced the input data size by approximately 42% with

negligible loss in accuracy. This reduced the computational

cost of our proposed network topology which is detailed in

the discussion section IV-A.

FIGURE 7. Shows an example of the data-driven weight sharing module.
Where weights of the fully connected layer before compression and after
compression (yellow color show the weights replaced with their
corresponding local maxima or minima depicted with green color in the
zoomed plot) are represented with blue and red color respectively.

FIGURE 8. Block level architecture of the proposed LoCoMo-Net model.

2) PROPOSED DATA-DRIVEN WEIGHT SHARING MODULE

In this module, we proposed a data-driven weight sharing

technique for the compression of weights of the trained

model to make a memory efficient design. The data-driven

weight sharing module can inherently allocate the weight

of maximum magnitude to all the neighboring weights with

less magnitude present at an interval of time. As a result,

multiple connections share the same weights. Thus, only

the effective weight and the indices need to be stored. The

weights of the fully connected layer when plotted resembles

an asymmetrical triangular waveform and the essence of the

proposed module is that at an interval of time the fewer mag-

nitude weights are replaced with the more magnitude weight

present among them. Thus, the output of the compressed

weights when plotted look a lot like an irregular square and

rectangular waveform based on the magnitude of weights as

shown in Fig. 7. Since, the weight sharing is applied to the

trained model weights, therefore it does not require real-time

processing. This has been performed offline in MATLAB by

loading the model file from python and the modified weights

used for further analysis.

G. LoCoMo-NET HARDWARE ARCHITECTURE

The block level architecture of the proposed LoCoMo-Net for

real-time implementation is illustrated in Fig. 8. It includes

model controller, consisting of three parts: (i) Input data

controller; (ii) convolutional controller; and (iii) address-

ing controller for monitoring and controlling the input data
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processing; architectural parameters (like filter size, input

size, and filter depth); and flow of weight parameters respec-

tively. The approach used was similar to reported in the liter-

ature [38] for sEMG data segmentation in real-time using a

250ms windowwith 50% overlap. The classification process

starts with the 1st classifier where all the weights of the 1st

classifier are enabled in the initial stage. Later, based on the

output from the task classification module, further computa-

tion is performed. The steps for hardware implementation of

the CNN model are as follows-

1) The input data compression compresses the sEMG sig-

nal from 250 samples to 146 samples, which are then stored

on the global memory along with the weight parameters

of 15 classifiers.

2) Control signal enables the convolution module to start

performing the convolution between the filter and com-

pressed sEMG data.

3) ReLU and max-pooling computation are pipelined with

convolution operation to eliminate the storage for intermedi-

ate feature maps in convolution and ReLU stages. The output

of pooling module is stored into the local memory.

4) The intermediate data from the local memory are sent

to the convolutional module again to perform the convolution

for the 2nd convolutional layer.

5) Next, ReLU and pooling for the 2nd convolutional

layer are performed, and outputs are overwritten in the local

memory.

6) Now, the intermediate data from the local memory are

passed to the fully connected (FC) module where matrix

multiplication is performed. This resulted in an output hav-

ing two neurons which are sent to the softmax module for

classification.

7) The softmax module assigns the ‘1’ and ‘0’ values to the

neurons based on high and low probability respectively. If the

output is ‘1’ (high), then it shows the input sEMG belongs

to the 1st classifier, i.e., Task 1 is classified. Otherwise,

next classifier’s weights are loaded, and the same process is

repeated from stage 2 to 6 until the softmax module outputs

‘1’ (high).

H. PERFORMANCE ASSESSMENT

In this study, to validate the performance of the proposed

LoCoMo-Net model, we have done a comparative analysis

with different models using the same network topologywhich

are as follows-

1. Conventional No-compression (NC) model: In this

model, the CNN model parameters are identical to the

LoCoMo-Net model except it doesn’t include the input

data compression module and data-driven weights

compression module.

2. Proposed Input-compression (IC) model: In this model,

the CNN model parameters are identical to the

LoCoMo-Net model except it includes input data com-

pression module and excludes data driven weight shar-

ing module.

TABLE 1. Neural network architectural information of different models.

3. Proposed LoCoMo-Net model: This proposed model,

includes the input data compression module followed

by the data-driven weight sharing module which

resulted in reduced computational andmemory demand

compared with NC and IC models.

III. RESULTS

Table 1 and 2 show the comparative analysis of neural

net architectures and performance metrics of NC, IC and

LoCoMo-Netmodels respectively. The low-complexity archi-

tecture of the proposed LoCoMo-Net with negligible loss in

accuracy compared to NC and IC validates the proposed two-

stage pipeline technique. For classification, all 50 movements

of DS2 were considered at the same time but for ease of

understanding the average classification accuracy of basics

movements, grasping and functionalmovement and force pat-

tern were given individually in Table 2 (including able-bodied

and amputated participants). The average classification accu-

racy achieved by LoCoMo-Netmodel for all movements of 11

able-bodied subjects, 3 amputated subjects, DB2 and DB3 is

93.4%, 88.8%, 94.7%, and 88.7% respectively. Precision,

recall, and F1 score are considered effective metrics for

imbalance class distribution therefore, we have included these

metrics in our analysis for LoCoMo-Net model which are

given in Table 2. The average precision, recall and F1-score

for all movements of 11 able-bodied subjects: 93.8, 98.2 and

95.9; 3 amputated subjects: 92.3, 93.6 and 92.9; DB2: 95.4,

98.2 and 96.7; DB3: 91.6, 93.9 and 92.7. Further, most of the

existing works performed the analysis with 200ms window

length, therefore, we have also included the analysis with

200ms window length in Table 2 for fair comparison with

the existing works. Furthermore, the receiver operating char-

acteristics (ROC) curve was generated with a true positive

rate (TPR) against the false positive rate (FPR) to measure

the separability of classes for the LoCoMo-Net model. This

is depicted in Fig. 9, where the area under the curve (AUC)

is 0.94.

A. HARDWARE COMPLEXITY ANALYSIS

The proposed LoCoMo-Net was prototyped on the Virtex-7

Xilinx FPGA platform (Fig. 10) for a 16-bit word length

with a clock frequency of 100 MHz for assessing its real-

time capabilities. The NC and the proposed IC model were
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TABLE 2. Comparative performance analysis of NC (no-compression), IC (input-compression) and LoCoMo-Net models in terms of accuracy.

TABLE 3. Hardware complexity analysis for NC, IC and LoCoMo-Net model for 15 task classification. (memory used unit is bit.)

also implemented for comparative analysis of their com-

putational complexity. The results show that the proposed

LoCoMo-Net model utilizes fewer resources and consumes

less power compared to conventional NC model which is

tabulated in Table 3. The total computational time and power

consumption of LoCoMo-Netmodel is approximately 4.7 ms

and 137mW respectively, showing the feasibility of proposed

LoCoMo-Net in real-time settings.

The proposed model was formulated for binary task classi-

fication, therefore, the weights for each task need to be stored

individually. However, only one hardware implementation for

the classifier is required for all the tasks. Thus, 15 task weight

parameters and one classification hardware were required for

classifying 15 movements from DS1. The results reported

in Table 3 shows the model complexity of the proposed

LoCoMo-Net model for classifying 15 movements. Further,

in the classification of 50 movements from DS2, the hard-

ware complexity remains the same but the computational

time increases due to serial execution. Thus, the proposed

two-stage pipeline: the input data-compression followed by

data-driven weight sharing resulted in reduced computational

time by the extent of data compression.

B. BENCHMARKING OF THE PROPOSED

LoCoMo-NET MODEL

We have benchmarked our LoCoMo-Netmodel with the other

work [15] which has considered these 15 movements from

DS1. In comparison, research reported in this manuscript has
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FIGURE 9. ROC curve of LoCoMo-Net model.

FIGURE 10. FPGA prototyping of the LoCoMo-Net model shown for Task
15 (DS1), where red color circle indicates output with illuminating LED
and yellow color circle indicates input knob.

investigated the performance on the data from 11 able-bodied

and 3 trans-radial amputated participants while their work

used recordings from 9 subjects: 8 able-bodied and 1 ampu-

tated participant. To ensure unbiased comparison, we have

evaluated the performance based on the average accuracy

of the able-bodied and amputated participants. The results

are shown in Table 4, which show that the LoCoMo-Net

has approximately 8.5% increase in classification accuracy

compared to Twin-SVM for all the 15 movements for 250ms

input window length.

One of the obvious strength of this study is that it per-

forms unsupervised feature extraction and learning while

earlier comparable studies [15] used one feature, i.e., root

mean square (RMS). The traditional methods of sEMG based

movement classification rely on handcrafted feature selec-

tion followed by extraction before classifying the intended

movements as shown in Fig 1. As a result, this process put

a significant amount of time due to the human intervention

and exertions in finding suitable features, and feature extrac-

tion increases computational time and complexity. Therefore,

with the pre-determined window size, data-driven feature

TABLE 4. Comparison of classification accuracy with state-of-the-art
model.

TABLE 5. Comparison of LoCoMo-Net model parameters with the
state-of-the-art cnn based models (where LC represents locally connected
layer).

selection and extraction leads to higher accuracy and shorter

delays compared with traditional methods.

C. COMPARISON WITH THE STATE-OF-THE-ART CNN

MODELS FOR sEMG HAND MOVEMENT CLASSIFICATION

There are very few studies presented in the literature

on the CNN based sEMG hand movement classifica-

tion [9], [19], [20], [21], [42] and [43]. A comparative

summary of the architectural overview and classification

accuracy of the state-of-the-art CNN models with the pro-

posed LoCoMo-Net model are reported in Table 5. The

study by [9], [19], [21], [42] and [43] evaluated their

model on the publicly available Ninapro database, i.e. DS2.

Therefore, the comparison with these studies would be
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fair in terms of accuracy. The comparison results show

that the proposed model achieved an improvement of 4%,

55.4%, 18.9%, 13.8% and 30.7% in accuracy compared

to [9], [19], [21], [42] and [43] respectively. The study by [20]

has shown an increase in performance compared to the pro-

posed LoCoMo-Net model by 4.4%. However, this cannot be

a fair comparison owing to the fact that they have evaluated

their model on diffeent dataset, having less number of move-

ment types compared to the propsoed methodology [10].

The parameters of the deep-learning models such as input

size, input type (1D or 3D), filter size, number of filters,

convolution layers, pooling layers, and the fully connected

layer directly contribute to the computational complexity

of the model as given in Table 1 and Fig. 6. The com-

parison of state-of-the-art CNN models with the proposed

model on computational complexity was done based on the

input type, number of layers, filter size, number of filters

given in Table 5. The model complexity of the proposed

LoCoMo-Net model described in Table 5 is based on our

hardware implementation where the same hardware will be

reused (serial computation) for classifying 50 movements.

Thus, it results in total computational time (worst case) of

approximately 15.8 ms (317 µs × 50 + 5 µs). The total

time, the sum of input window length and computational time

equals to 265.8 ms (250 ms + 15.8 ms), which is within the

acceptable limit of real-time prosthetic control, i.e., 300ms as

given in the literature [31]. In the case of parallel computation

of the LoCoMo-Net model, the model complexity will be

50 times for 50 movement classification while maintaining

the computation time to only 317µs. This shows the trade-off

between computation time and model complexity. Further, all

of these state-of-the-art models [9], [19]–[21], [42], [43] have

to pay the penalty in terms of latency and extra-hardware cost

due to the requirement of the 3D spectrogram as an input.

Therefore, all the models in the literature are computationally

heavily expensive and would need huge memory for storage

when compared to proposed LoCoMo-Net model.

IV. DISCUSSION

The performance of a single channel sEMG signal for real-

time recognition of the user movements was achieved by

compressing the data prior to CNN which reduced the com-

putation cost. The input data compression was followed

by data-driven weight sharing concept to make the pro-

posed LoCoMo-Net less memory-intensive for execution on

resource constrained platform. This study has also investi-

gated the impact of number of channels and compression on

the behavior of deep learning model which is detailed further

in this section.

A. SIGNIFICANCE OF PROPOSED TWO-STAGE

COMPRESSION

One Stage: Input data compression: The influence of

input size (number of samples) on the computational behav-

ior, i.e., output shape and the total number of parameters

on the same CNN architecture can be interpreted from

FIGURE 11. Scalability analysis for different number of channels.

Fig. 6 and Table 1. This shows the IC model requires less

computation and resources compared to the NC model. The

same has been tested by real-time prototyping on FPGA

platform wherein IC model requires 30%, 37%, 41%, 17%,

and 43% less number of LUTs, registers, memory, power con-

sumption and computational time respectively in contrast to

NCmodel given in Table 3.While time lost with compression

of input data (One Stage: Input data compression) is 5 µs,

hence makes it feasible for execution in real-time.

The entropy based analysis is shown in Fig. 5(b) and the

study reported by [29], confirmed that the proposedMin/Max

technique extracts the relevant information present in the

signal. Similarly, the comparison of the performance with IC

and NC models show insignificant accuracy loss (Table 2).

Thus, the input compressionmodule or feature extraction [29]

did not alter the performance but reduced the complexity,

making it suitable for real-time implementation.

Two Stage: Input data compression followed by data-

driven weight sharing: The performance of input data com-

pression followed by data-driven weight sharing is given

in Table 1, 2 and Table 3. The total number of different

weights in the FC layer of NC, IC, and LoCoMo-Net model

are 828, 464, and 294 respectively. This shows a reduction

of approximately 65% and 26% in the number of weights

of the proposed LoCoMo-Net model with an expense of

approximately 0.35% and 0.1% accuracy loss compared to

NC and ICmodel respectively. However, a similar impact was

shown from the hardware implementation results presented

in Table 3. The proposed LoCoMo-Net model required 27%,

49%, 50%, 23% and 43% less number of LUT’s, registers,

memory, power consumption and computational time respec-

tively compared to NC model.

B. SCALABILITY OF THE LoCoMo-NET MODEL

The scalability of the proposed LoCoMo-Net model was

tested for a number of channels ranging from 1 to 4. It was

found that improvement in the accuracy with the increase

in the number of channels was small. However, the model

complexity increased by n times for n number of channels,

as shown in Fig. 11. This makes the implementation for

VOLUME 8, 2020 2100812



A. Gautam et al.: Locomo-Net: Low-Complex Deep Learning Framework for sEMG-Based Hand Movement Recognition

TABLE 6. Characteristics of the trans-radial amputated participants.

TABLE 7. Task performed during sEMG recording.

real-time application requiring n parallel hardware, which

increases the cost and complexity. The scalability of the

LoCoMo-Netmodel with respect to n number of channels can

be represented by equation 1.

Model = n× (C1 + C2 + P1 + P2) + F + D (1)

where C1, C2, P1, P2, F , and D are Conv1D_1, Conv1D_2,

Pooling_1, Pooling_2, Flatten and Dense layers respec-

tively. The average classification accuracy of 11 able-bodied

subjects (DS1) for 1 channel, 2 channels, 3 channels and

4 channels are 93.4%, 93.3%, 93.5% and 93.6% respectively.

Therefore, to reduce the computational-complexity single

channel sEMG is included in the proposed LoCoMo-Net.

V. CONCLUSION

The proposed deep learning framework LoCoMo-Net based

on CNN has two-stage pipeline compression: 1) input data

compression and 2) data-driven weight sharing. This design

reduces the number of LUTs, registers, memory, power con-

sumption and computational time by 27%, 49%, 50%, 23%

and 43% respectively compared to NC model without sacri-

ficing the performance. In addition, the proposed LoCoMo-

Net shows an average improvement in the performance of

approximately 8.5% and 16.0% in contrast to Twin-SVM

and the recent CNN model [21] respectively. The results

from our investigation regarding performance enhancement

as well as hardware efficiency can be considered favorable

for the potential implementation in the real prosthetic limb

applications.
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