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Abstract. We present a nonparametric approach based on

local polynomial regression for ensemble forecast of time se-

ries. The state space is first reconstructed by embedding the

univariate time series of the response variable in a space of

dimension (D) with a delay time (τ ). To obtain a forecast

from a given time point t , three steps are involved: (i) the

current state of the system is mapped on to the state space,

known as the feature vector, (ii) a small number (K = α ∗ n,

α=fraction (0,1] of the data, n=data length) of neighbors (and

their future evolution) to the feature vector are identified in

the state space, and (iii) a polynomial of order p is fitted to

the identified neighbors, which is then used for prediction.

A suite of parameter combinations (D, τ , α, p) is selected

based on an objective criterion, called the Generalized Cross

Validation (GCV). All of the selected parameter combina-

tions are then used to issue a T-step iterated forecast starting

from the current time t , thus generating an ensemble forecast

which can be used to obtain the forecast probability density

function (PDF). The ensemble approach improves upon the

traditional method of providing a single mean forecast by

providing the forecast uncertainty. Further, for short noisy

data it can provide better forecasts. We demonstrate the util-

ity of this approach on two synthetic (Henon and Lorenz at-

tractors) and two real data sets (Great Salt Lake bi-weekly

volume and NINO3 index). This framework can also be used

to forecast a vector of response variables based on a vector

of predictors.

1 Introduction

It has been always intriguing to forecast various natural and

physical processes (e.g. rainfall, runoff, lake volumes, etc.),

which appear as a result of coupling of different components

of the Earth system. Theoretically, it is possible to forecast

many of these natural processes using first principles given
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their basic mechanisms, but, unfortunately, it is not practi-

cally possible, since it is associated with the following prob-

lems: a) measurements taken at discrete locations of space

and time, b) initial conditions are associated with significant

uncertainty, c) many of the natural processes are dynamic,

nonlinear, and extremely complex, and are affected by sev-

eral interconnected physical variables, d) heterogeneity of

the model variables on space and time scales, and e) noisy

and finite amount of real data. Additionally, another major

concern is the unavailability of an appropriate mathematical

model. These problems, and the fact that the dependent and

independent variables are coupled, limit the forecast success

for many variables via the development of physical models.

Consequently, time series methods that model the response

variable statistically have become increasingly popular.

The theory of traditional statistical forecasting views the

time series of a response variable as a realization of a ran-

dom process (e.g. Pandit and Yu, 1983), and it is appropriate

only if effective randomness arises from complicated motion

involving many independent and irreducible degrees of free-

dom (Farmer and Sidorowich, 1987). As a result, their pre-

dictability is limited. An alternative cause of randomness

is deterministic chaos, which can occur even in very sim-

ple deterministic systems. It suggests that complex and un-

predictable processes are not necessarily of high degrees of

freedom but might be result of low dimensional dynamical

systems. In a simple way, deterministic chaos or chaotic

systems appear as random processes but internally have a

definite relationship among the variables. Though chaotic

systems result from deterministic phenomenon, have funda-

mental limit on long-term forecasting because its future evo-

lutions are unstable. Nonlinear time series methods exploit

this recognition and reconstruct the dynamics of the system,

thereby developing the potential for short and long-lead fore-

cast.

Much research using geophysical time series (i.e. precipi-

tation, streamflow, etc.) demonstrated the existence of lower

order chaotic behavior on different scales (e.g. Rodriguez-

Iturbe et al., 1989; Sharifi et al., 1990; Jayawardena and
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Lai, 1994; Porporato and Ridolfi, 1996, 1997; Sangoyomi

et al., 1996; Sivakumar et al., 1998, 1999a, 2002; Wang and

Gan, 1998; Krasovskaia et al., 1999; Stehlik, 1999, 2000;

Elshorbagy et al., 2002; Regonda et al., 2004), but there have

been limited efforts in using this information for short term

forecasts. Notable among them are the attempts at forecast-

ing the Great Salt Lake (GSL) bi-weekly volumes (Abar-

banel and Lall, 1996; Abarbanel et al., 1996; Lall et al.,

1996), daily rainfall (e.g. Jayawardena and Lai, 1994), flood

(Laio et al., 2003), and streamflow on daily and monthly

scales (e.g. Jayawardena and Lai, 1994; Porporato and Ri-

dolfi, 1996, 1997, 2001; Liu et al., 1998; Sivakumar et al.,

2001, 2002). However, in other fields, especially, medical,

there are widespread forecast applications (e.g. Kantz and

Schreiber, 1997, 1998; Richter and Schreiber, 1998).

A key assumption behind nonlinear time series methods is

that even if the exact mathematical description of the dynam-

ical system is not known, the state space (or phase space) can

be reconstructed from a single observed time series (Packard

et al., 1980). The state space is defined as a multidimen-

sional space in which axes correspond to variables of a dy-

namical system. The state space is reconstructed by embed-

ding the univariate time series of the response variable with

a delay time τ in a D-dimensional space (this will be de-

scribed in the following section). The dimension D can be

thought of as the minimum number of state variables required

to describe the system and delay time τ is the average length

of memory in the system. Two popular methods for esti-

mating the embedding dimension (D) in practice are: the

Grassberger-Procaccia (Grassberger and Procaccia, 1983a,

b) approach (GPA), which estimates the dimension mostly

as “fractal” or “non-integer”, and the False Nearest Neigh-

bor (FNN) method (Kennel et al., 1992), which computes

the integer dimension. The delay time (τ ) is estimated using

the Mutual Information approach (Fraser and Swinney, 1986;

Moon et al., 1995). Once the state space is reconstructed, the

forecasting proceeds as follows: (i) the current state of the

system, say, Xt , at the current time step t is identified in the

state space, (ii) a small number (say K) of nearest neighbors

of current state, say XK, and their corresponding successors,

XK+1, are identified in the state space, and (iii) a local func-

tion is fitted to the identified neighbors, XK+1=f (XK), and

(iv) the fitted function is then used to estimate the forecast.

The function f (.) can be a simple weighted average (Farmer

and Sidorowich, 1987) or it can be a higher order polyno-

mial (p≥1). The parameters (D, τ , α, p) and the form of the

function f (.) are typically fixed. This works well if the esti-

mated parameters D and τ capture the dynamics accurately

in the embedded space. In such cases, the forecasts from this

approach will handily outperform linear time series methods,

such as Auto Regressive (AR) models (Casdagli et al., 1990;

Grassberger et al., 1991; Tsonis, 1992; Jayawardena and Lai,

1994; Jayawardena and Gurung, 2000; Lisi and Villi, 2001).

Real data sets, especially geophysical time series, are

short and noisy (due to instrumental and dynamical errors).

Consequently, the estimates of the parameters are not very

reliable, thereby significantly impacting the forecast skills

(Schreiber and Kantz, 1996). Smoothing can reduce the

noise (Schreiber and Grassberger, 1991; Porporato and Ri-

dolfi, 1996, 1997), but then if not done properly it can alter

the underlying dynamics (Sivakumar et al., 1999b). To ad-

dress this, it is intuitive that an ensemble of forecasts has

to be generated from a suite of plausible parameter com-

binations that vary within the state space. This ensemble

approach has several advantages over issuing a single mean

forecast as described above. They are that the ensembles pro-

vide: (i) a natural estimate of the forecast uncertainty, and (ii)

the probability density function (PDF) of the response vari-

able and, consequently, threshold exceedance probabilities

which can be very useful in decision making.

The goal of this paper is to present a new method that pro-

vides a suite of model parameters and, consequently, enables

ensemble forecast of time series. The methodology is first

described. We then demonstrate its utility by applying it to

two synthetic data sets from Henon and Lorenz attractors and

two real data sets, the Great Salt Lake bi-weekly volumes

and the NINO3 (an index of El Niño Southern Oscillation,

ENSO).

2 Methodology

We provide only a limited description of reconstruction of

state space of a dynamical system from a scalar time series of

one of the state variables, and refer the reader to Abarbanel et

al. (1993), Abarbanel and Lall (1996), and Lall et al. (1996)

for background information and details.

A method for state space reconstruction was originally

proposed by Packard et al. (1980), and put on a firm

mathematical basis by Takens (1981). The dynamics

of a time series {x1, x2,........,xn} are fully captured or

embedded in the D-dimensional phase space defined by

Xt={xt , xt+τ , ........, xt+(m−1)τ }. According to the embed-

ding theorem of Takens (1981), to characterize a dynamic

system with an attractor dimension d , D=2d+1-dimensional

phase space is sufficient, whereas Abarbanel et al. (1993)

suggested that, in practice, D>d may be adequate.

The False Nearest Neighbor (FNN) method proposed by

Kennel et al. (1992) is used in this study to estimate the em-

bedding dimension of the phase space. Other methods such

as the correlation dimension method (Grassberger and Pro-

caccia, 1983a, 1983b) can also be used but the FNN method

is much more robust (Abarbanel and Lall, 1996). FNN

method estimates the minimum embedding dimension of the

phase space by computing the number of false neighbors in

each embedded phase space. The delay time τ needs to be

appropriately chosen. If the value of τ is less than the ap-

propriate value then the data values will not be independent,

resulting in a loss of information and characteristics on the

attractor structure. If τ is too large, i.e. much larger than the

information decay time, then there is no dynamical correla-

tion between the state vectors and it causes a loss of informa-

tion on the original system (Jayawardena and Lai, 1994). The

choice of τ is usually made with the help of autocorrelation
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function or mutual information content (Fraser and Swinney,

1986; Jayawardena and Lai, 1994; Moon et al., 1995). Limi-

tations of these methods are discussed in Abarbanel and Lall

(1996) and Porporato and Ridolfi (1996, 1997).

Using a selected value of the embedding dimension and

delay time, the state space is reconstructed (as described

above) and the forecast for T time step into the future is given

as

Xt+T = f (Xt ) + εt . (1)

Xt is the feature vector at time t and f (.) is a function (linear

or nonlinear) that maps current state to a future point in the

state space. Typically, the function f (.) is estimated locally

within a neighborhood of the feature vector in the state space

(Farmer and Sidorowich, 1987). We use locally weighted

polynomials, also defined as LOCFIT (Loader, 1997) to esti-

mate the function. In this, a polynomial of order p is fitted to

K(K=α ∗ n, α=(0, 1]) nearest neighbors of the feature vec-

tor in the state space. Clearly, if K=n (or α=1) and p=1,

then it collapses onto a traditional multiple linear regression.

Since the function is estimated locally, it has the flexibility

to approximate any differentiable functional form appropri-

ate for the data. For theoretical details of this approach, see

Loader (1999). This approach has been widely applied with

good results in ensemble streamflow forecast (Grantz, 2003),

flood frequency analysis (Apipattanavis et al., 20041), en-

semble streamflow simulation (Prairie, 2002), and in spatial

interpolation of hydroclimatic fields (Rajagopalan and Lall,

1998; Owosina, 1992).

General Cross Validation (GCV) is used to guide the se-

lection of optimal parameters, α and p. The optimal com-

bination of parameters is, typically, the one that produces a

minimum GCV. The GCV (α, p) score function is defined

as:

GCV(α, p)=

n
∑

i=1

e2
i

n

(

1−m
n

)2
, (2)

where ei is the error, n is the number of data points, m is the

number of parameters.

Because of limited sample size and noise (measurement

noise and internal noise) in the data, there is always uncer-

tainty in the computed embedding dimension of real systems

and in estimated parameters. Hence, a single estimate of

embedding dimension and delay time might not adequately

represent the dynamics of the system, especially for fore-

casting. Therefore, it is intuitive to obtain a suite of plau-

sible parameters of the state space. To this end, we pro-

pose the selection of all the parameters (D, τ, α, p) using

the GCV score function. Thus, the function in Eq. (2) would

be GCV(D, τ, α, p).

1Apipattanavis, S., Rajagopalan, B., and Lall, U.: Local poly-

nomial technique for flood frequency analysis, J. Hydro. Eng., in

review, 2004.

2.1 Forecast algorithm

The algorithm for implementation is as follows:

1. Compute the embedding dimension and delay time us-

ing the standard methods (e.g. FNN and MI). Using this

as reference, choose a suitable range of values of D and

τ .

2. Reconstruct the phase space for a selected D and τ com-

bination.

3. Calculate the GCV for the reconstructed phase space by

varying the smoothing parameter of local polynomial

function (i.e. neighborhood size) and the order of local

polynomial.

4. Repeat steps 2 and 3 for all combinations of D, τ , α and

p.

5. Select a suite of “best” parameter combinations that is

within 5% of the lowest GCV.

6. Each selected “best” combination is then used to gener-

ate a forecast.

7. The suite of “best“ combination forecast then provides

an ensemble of conditional mean forecast that reflect

parameter/model selection uncertainty.

3 Description of test cases

As mentioned earlier, we applied the ensemble forecast

methodology on synthetic data from Henon and Lorenz at-

tractors and on two geophysical time series (Great Salt Lake

bi-weekly volume and NINO3 index). The data sets are de-

scribed below. In all the cases, the model is fitted (i.e. suite

of parameters obtained) on a subset of the data and blind pre-

dictions (no data outside the fitting subset is used for predic-

tions) are made for T time steps ahead. The forecasts are

made from several starting points to show the change in the

predictability – one of the aspects of nonlinear systems.

3.1 The Henon system

The Henon system is described by the following coupled

equations (Henon, 1976):

xt+1 = 1 − a ∗ x2
t + yt

yt+1 = b ∗ xt
.

Values of a=1.4, b=0.3, and initial observation (x0, y0) as

(0, 0) are chosen to generate a time series of 4000 observa-

tions using the above equations. Figure 1a shows the times

series of the x variable of the Henon system.
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Fig. 1. Time series of the synthetic and real data sets: (a) Henon

x coordinate, (b) Lorenz x coordinate, (c) Standardized bi-weekly

volumes of Great Salt Lake, and (d) monthly NINO3 index.

3.2 The Lorenz system

The Lorenz System is described by the following equations

(Lorenz, 1963):

ẋ = −σ(x + y)

ẏ = −x ∗ z + r ∗ x − y

ż = x ∗ y − b ∗ z

.

Here we take σ=16, r=45.92, b=4, 1t=0.05 and initial ob-

servation (x0, y0,z0) as (1, 0, 0) to generate a time series of

6000 observations. Figure 1b shows the times series of the x

variable of the Lorenz system.

3.3 The Great Salt Lake time series

The Great Salt Lake of Utah is located at approximately

40◦ to 42◦ N and 110◦ to 112◦ W and is the fourth largest,

perennial, closed basin, saline lake in the world. The GSL

drains an area of 90 000 km2 and its water level has been

recorded since 1847 at 15 days (bi-weekly) interval. San-

goyomi (1993) compiled biweekly data sets of GSL time se-

ries and reported variability on annual, interannual, and, in-

terdecadal scales. The time series is shown in Fig. 1c. Of

particular interest is the fall and rise of the lake in the mid

1920s and 1980s, which had tremendous implications to the

regional economy (James et al., 1979). Large scale ocean-

atmospheric features over the Pacific Ocean have been shown

to modulate the interannual and interdecadal variability of

the Lake volumes (Mann et al., 1995; Lall and Mann, 1995;

Moon, 1996; Moon and Lall, 1996) and fluctuations in the

GSL are related with patterns in regional precipitation, tem-

perature, and streamflow over quasi-periodic interannual and

interdecadal scales (Sangoyomi, 1993; Mann et al., 1995;

Abarbanel et al., 1996; Lall et al., 1996; Moon and Lall,

1996; Sangoyomi et al., 1996).

Dynamical characteristics of the GSL, stochastic or de-

terministic chaos, dimensionality and predictability are de-

scribed in Sangoyomi et al. (1996), which indicate the GSL

to be a low dimensional chaotic system (i.e. dominated by a

few degrees of freedom). Being a closed lake of arid region

and having a large surface area, long-term average evapora-

tion rate exceeds the average precipitation; and it integrates

the basin hydrologic response by filtering out the noisy pro-

cesses into a few dominant processes, thus supporting the

low dimensional characteristics. Here, we forecast the lake

volumes from several starting points of fall (1925–1930) and

rise (1983–1987) of the GSL.

3.4 NINO3

NINO3 is a widely used index of the tropical Pacific ocean-

atmospheric phenomenon, ENSO. It is a time series of av-

eraged monthly Sea Surface Temperature (SST) anomalies

in the tropical Pacific covering the domain of 4◦ N–4◦ S

and 90◦–150◦ W. This time series starts from 1856 and is

shown in Fig. 1d. Details of data prior to the modern ob-

servational period can be found in Kaplan et al. (1998).

ENSO has significant implications to global climate (e.g. Ro-

pelewski and Halpert, 1986) and, consequently, to the global

socio-economy. Hence, understanding its dynamics and pre-

dictability is crucial to improve seasonal climate forecast.

There are several approaches to ENSO forecasting – statisti-

cal (e.g. Barnett et al., 1988; Barnston and Ropelewski, 1992;

Balmaseda et al., 1994; Latif et al., 1994; Xue et al., 1994;

Mason and Mimmack, 2002) and dynamical (e.g. Cane et

al., 1986; Zebiak and Cane, 1987; Barnett et al., 1993; Bal-

maseda et al., 1994; Latif et al., 1994; Chen et al., 1995,

1997, 2004; Tziperman et al., 1995; Xue et al., 1997). Zebiak

and Cane (1987) were the first to develop a simple model for

ENSO and successfully predicted the El Niño of the 1986–

1987.

Several researchers explored the ENSO dynamics and ex-

plained some of its attributes, e.g. onset, termination, and

cyclic nature to seasonal cycle (see references in Tziperman

et al., 1994, 1995), whereas attributes irregularity and par-

tial locking to seasonal cycle are unexplained because of its

complexity (Rasmusson and Carpenter, 1982). Lower or-

der chaotic dynamics (e.g. Vallis, 1986, 1988; Munnich et

al., 1991; Chang et al., 1994; Tziperman et al., 1994, 1995)

was shown to be a plausible reason for irregularity. In fact,

Tziperman et al. (1994, 1995) and Jin et al. (1994) proposed

a model that presumed ENSO dynamics as low order chaotic

and explained all the attributes of ENSO dynamics. Tziper-

man et al. (1994) suggested ENSO as a chaotic system with

few (i.e. ≤9) dominated degrees of freedom.
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Fig. 2. Ensemble forecasts of Henon x coordinate (a) Blind pre-

diction starts from index 3701, and (b) Blind prediction starts from

3711. The inter quartile range of the ensembles are shown as dashed

lines, the 5th and 95th percentiles are as dotted lines, the true values

as points connected by solid lines, and the best AR forecast shown

as solid line.

4 Results

As mentioned in the previous section, the ensemble forecasts

are generated using the methodology developed earlier in the

paper. For all the cases, the inter quartile range of the ensem-

bles are shown as dashed lines, the 5th and 95th percentiles

are as dotted lines, and the true values shown as points con-

nected by solid lines. Forecasts from the best AR models

that use Akaike Information Criterion (AIC) (Brockwell and

Davis, 2002; Chatfield, 2003), are also shown as solid lines

for comparison with traditional linear time series methods.

4.1 The Henon system

This system has two variables (i.e. x and y), and so the true

embedding dimension is 2; the estimates from FNN and GPA

methods also confirm this. Plotting x [i] vs. x [i+1] unfolds

the attractor in a two-dimensional phase space (not shown),

suggesting the phase space dimension and delay time as 2

and 1, respectively (Henon, 1976; Kennel et al., 1992). Con-

sidering these values as reference, we search over D=1 to

5 and τ=1 to 10 for the best combination of state space pa-

rameters. We compute GCV for each of these combinations

by varying neighbor size (α) and degree of local polynomial

fit (p). The “best” combinations with GCV values within

the 5% range of the lowest value are selected, resulting in 15

combinations. These combinations are used to generate fore-

casts for 100 time steps into the future. Interestingly, all the

selected combinations exhibit the same parameter values of

D=2, τ=1 and p=2 but with various neighborhood sizes (i.e.

α). Note that the D and τ values are equal to the true values

of the system.

Blind predictions start from index 3701. Each of the se-

lected combinations is used to obtain a forecast for 100 steps

into the future. Forecasts from the best AR model fitted to

the data are also generated. The forecasts are shown in Fig. 2.

Notice that the ensemble forecasts predict extremely well the

first 40 to 50 time steps, that they are indistinguishable from

the true values (Fig. 2a). Subsequently, the forecast trajec-

tories start to diverge, i.e. the inter quartile range starts to

 

Fig. 3. Same as Fig. 2 but for Lorenz x coordinate, blind prediction

starts from (a) index 5368, and (b) index 5371.

expand. Unlike this, the best AR forecast is barely able to

predict correctly the first ∼5 to 10 time steps and, subse-

quently, stays flat at the mean value. Similar observations

can be seen with forecasts starting from index 3711 shown in

Fig. 2b.

4.2 The Lorenz system

For the Lorenz system, there are three variables and, hence,

the embedding dimension is 3. GPA and FNN methods in-

dicate a dimension of 2.06 and 3, respectively. GCV scores

are computed for the same ranges of D and τ as with the

Henon system. Here too, 15 “best” combinations have their

GCV values within 5% of the least GCV combination. These

combinations have D=2 and 3, τ=1 and 2, and p=2 with

various neighbor sizes. Blind forecasts are issued from in-

dices 5368 and 5371. Forecasts starting from index 5368

(Fig. 3a) show a wide inter quartile range indicative of large

uncertainty. This is consistent with the fact that the region

(x=0) is the unstable part of the attractor and, hence, low

predictability. On the other hand, forecasts issued from index

5371 (Fig. 3b) which is quite away from x=0 has a tighter

inter quartile range for the first ∼35 points and then starts

to expand significantly just when the true value crosses the

(x=0) region. The best AR predictions barely capture the

first 3 points indicating their inadequacy and incapability to

provide good forecasts even in the part of the system that

has good predictability. Notice that the Lorenz system ex-

hibits less predictability compared to Henon. This is consis-

tent with their Lyapunov exponents (Wolf et al., 1985), i.e.

largest Lyapunov exponent of Lorenz is 2.2 bits/s, whereas

for Henon it is 0.6 bits/s (larger the Lyapunov exponent lesser

the predictability). However, it should be remembered that

prediction is highly dependent on the position of the initial

point in the phase space, as noted in the above two examples.

4.3 The Great Salt Lake time series

We present blind predictions (i.e. no data outside the fitting

subset is used for prediction) for two cases: (i) the fall of the

lake volume (during 1925–1930), and (ii) the dramatic rise

and fall (during 1983–1987). The GPA and FNN methods

suggest an embedding dimension of 4 and the mutual infor-

mation (Moon et al., 1995) indicates a delay time of 14. Var-
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Fig. 4. Same as Fig. 2 but for the standardized bi-weekly volume of

GSL. Blind forecasts for four years starting from (a) 15 December

1924 (index 1851), (b) 15 April 1925 (index 1859), (c) 1 July 1925

(index 1864), and (d) 15 October 1925 (index 1870).

ious sections of the GSL time series yield similar embedding

dimension and delay time values. These are consistent with

those obtained by Sangoyomi et al. (1996). GCV values are

computed over the range of D=2 to 6, τ=10 to 20, and p=1

to 2 with various neighbor sizes. Fifteen combinations with

GCV values within 1.2% of the least GCV value are selected.

For the low volume region, we start the blind forecast from

December 1, 1924 (index 1851) and also from three differ-

ent points thereafter, just when the lake was in the process of

undergoing a regime transition (see Fig. 1c) from an “aver-

age” volume to a “low” volume state. In this case, the fifteen

selected combinations have the range of parameters as D=4

and 5, τ=10, 14, and 15, p=1 and 2, and α=0.1–0.5. The

inter quartile range of the ensembles is tight and is able to

capture the transition to the “low” volume regime (for fore-

casts starting from 1 March and 1 June 1925, Figs. 4b and

4c) – the best AR model performs well at the beginning but

then fails to make the transition to the “low” volume regime.

For the other cases, the ensemble forecasts do quite well for

the first 1∼2 years and then the inter quartile range tends to

expand. Note the sensitivity of the predictability to different

starting points (see Figs. 4a, 4b, 4c, and 4d). These results

are qualitatively similar to those reported in Lall et al. (1996).

The difference is that we are now able to offer some uncer-

tainty bounds on the forecast.

The period 1983–1987 covers the dramatic rise of the GSL

and its subsequent decline. Various auto regressive methods

fail to blind forecast this event (Lall et al., 1996). The blind

forecasts are started from index 3264, which corresponds

to October 15, 1983, and from several points along the ris-

ing limb. It can be seen that transition from low-volume to

average-volume regime has already taken place. The best

 

Fig. 5. Same as Fig. 4, blind forecasts starting from (a) 15 Oc-

tober 1983 (index 3264), (b) 15 January 1984 (index 3270), (c) 15

September 1984 (index 3286), and (d) 1 January 1987 (index 3341).

fifteen combinations based on GCV result in the parameter

range of D=4 and 5, τ=10 and 14, p=2, and α=0.1–0.4.

Polynomial order two (i.e. quadratic) is selected in all the

combinations, given the rise of the time series a higher order

is intuitive. Ensembles from these combinations for different

starting points are shown in Fig. 5. The ensemble forecasts

generally do a good job performing particularly well in cap-

turing the rise and fall of the Lake volume when the starting

point is slightly along the rising limb (Fig. 5c). The best AR

model performs poorly in almost all the situations, regardless

of the starting point, and it always tends to the mean (which

is 0 in the case of the standardized volume data). Given that

the forecasts in both the cases are blind and almost four years

into the future, the ensemble forecasts’ skill in capturing the

PDFs is impressive.

It could be argued that the high GSL volume in the early

part (1868–1877) of the record is responsible for better fore-

casting the high volume period of the mid 1980s (Fig. 5). To

test this, data for the 1909 to 1984 period is used to select the

model parameters and blind predictions are made for the rise

and fall of the lake volume in the mid 1980s. Interestingly,

the predictions are quite good (figure not shown), albeit with

a decreased lead time in comparison to Fig. 5. This shows

that the embedding of the time series is able to capture the

underlying dynamics and, consequently, can predict features

not observed in the past.

4.4 NINO3

We apply the method to two El Niño events of 1982 and 1997

and two La Niña events of 1984 and 1999. Unlike the GSL

time series, the embedding dimension and the delay time

computed from the FNN and MI methods yield slightly dif-

ferent values for different lengths of the data. This is some-
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Fig. 6. Same as Fig. 2 but for the NINO3 index. Blind forecast

of 1982–1983 El Niño event issued from different starting points

(a) November 1982, (b) December 1982, (c) January 1983, and (d)

February 1983.

what to be expected, as the NINO3 data is noisier and shorter

than the GSL time series.

Two El Niño events (1982–1983 and 1997–1998) are se-

lected for this study. The data spanning 1856–1981 indicate

an embedding dimension 4 with a delay of 16. For the pe-

riod 1856–1996, they are 5 and 13, respectively. The 1982–

1983 event selected 600 combinations that have GCV values

within the 1.05% of the least GCV with parameters range of

D=2 to 5, τ=11 to 21, p=1 and 2, and α=0.1–1.0. Forecasts

are made at the start of each month from November 1982

(Fig. 6a). Both methods perform similarly at the start but the

ensemble predictions are better for forecasts from Decem-

ber (Fig. 6b). Note that the AR forecast issued from January

(Fig. 6c) quickly tends towards the mean (which is 0, in this

case), while the ensembles indicate a rise and then a gradual

fall. For the forecast issued in February (Fig. 6d), the AR

seems to do better, due to the fact that the AR methods tend

towards the mean value. The ensembles do a slightly better

job but the overall this event is difficult to predict.

For the 1997–1998 event, the combinations have simi-

lar parameter ranges as with the 1982–1883 event, except τ

ranges from 8 to 16. Figure 7 shows the forecasts issued at

the start of different months i.e. August, September (Figs. 7a

and 7b), and November, December (Figs. 7c and 7d). Note

that in all the cases the ensemble predictions perform much

better than the AR-model. In particular, it is able to repro-

duce the rise and fall starting from September (Fig. 7b).

The data prior to the 1984 and 1999 La Niña events yield

a dimension and delay time of 5 and 17, respectively. The

“best” combinations have parameters in the range of D=2

to 5, τ=12 to 22, p=1 and 2, and α=0.1–1.0. For the

1984 event, predictions are issued in September and Decem-

 

Fig. 7. Same as Fig. 6, but blind forecast of 1997–1998 El

Niño event issued from (a) August 1997, (b) September 1997, (c)

November 1997, and (d) December 1997.

Fig. 8. Same as Fig. 6 but for blind forecasts of 1984–1985 La

Niña event issued from (a) September 1984, (b) December 1984,

(c) January 1985, and (d) March 1985.

ber (Figs. 8a and 8b, before La Niña reaches it’s negative

peak), in January (Fig. 8c), and in March (Fig. 8d). For all

the cases, predictions from both the methods perform sim-

ilarly and yield good results during its peak (Fig. 8c) and

after its peak (Fig. 8d). For the 1999 event, predictions

are issued in June (Fig. 9a), November (Fig. 9b), Decem-

ber (Fig. 9c), and in February (Fig. 9d). Here too the meth-

ods perform similarly, with increasing skill of the predictions

when issued closer to the negative peak of the events. Lastly,

we issue forecasts for the recent past starting 1 May 2002
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Fig. 9. Same as Fig. 6, but for blind forecast of 1999–2000 La Niña

event issued from (a) June 1999, (b) November 1999, (c) December

1999, and (d) February 2000.

and 1 July 2004 for the GSL volumes and NINO3, respec-

tively (Fig. 10). For the ENSO, neutral to weak La Niña

conditions during the coming months are indicated by the

forecasts. This seems to be consistent with the forecasts

issued by the climate centers (http://iri.ldeo.columbia.edu;

http://www.cpc.ncep.noaa.gov) using dynamical and statis-

tical models.

5 Summary and discussions

We developed a new framework to generate ensemble fore-

casts of univariate time series. In this, the state space is

first reconstructed by embedding the univariate time series

of the response variable in a space of dimension D with a

delay time τ . To obtain a forecast from a given time point

t , three steps are involved: (i) the current state of the system

is mapped on to the state space, known as the feature vector,

(ii) a small number (K) of neighbors and their future evo-

lution to the feature vector are identified in the state space,

and (iii) a polynomial of order p is fitted to the identified

neighbors, which is then used for prediction. Whereas in tra-

ditional nonlinear dynamical based forecasting approach, the

parameters D and τ are obtained using standard algorithms

and are fixed throughout the forecast period, and so are the

other parameters p and α.

With short noisy data, which is often the case in real life,

the parameters have significant uncertainty; hence, keeping

them fixed does not yield good forecasts. Furthermore, it is

only appropriate to generate ensemble forecasts that can nat-

urally provide the forecast uncertainty. To facilitate this, our

proposed framework entails the use of an objective criterion,

the Generalized Cross Validation. The GCV score is com-

puted for several parameter combinations of (D, τ, α, p).

From this, a suite of parameter combinations with low GCV

 

Fig. 10. Near term forecast of the real data sets. Blind forecast of

(a) GSL starting at 1 May 2002 (index 3709), and (b) NINO3 index,

issued on 1 July 2004.

scores is selected. Each of the selected combinations is then

used to issue a T-step iterated forecast starting from the cur-

rent time t , thus generating an ensemble forecast. We demon-

strated this method on two synthetic and two real data sets

and the performance was quite good. The unique aspect of

this approach is that the varying parameter combinations at

different points in the state space provide the ability to better

capture the underlying dynamics from noisy data. Another

useful aspect of the proposed methodology is that the con-

fidence intervals provided by the ensembles are wider and

narrower for different forecast starting points, reflecting the

uncertainty at different parts of the state space. However, tra-

ditional time series models (e.g. AR, ARMA, etc.) and even

nonparametric methods tend to provide a fixed confidence

interval that is often narrow and also unrealistic.

The method presented here may be improved in several

ways. First, explicitly accounting for the error in the forecast

model (Eq. 1) should allow the production of more realistic

probabilistic forecasts in situations where there is low pre-

dictability. For example, when the Great Salt Lake is in a

regime transition (Figs. 5a and 5d), the observed time series

lies well outside the forecast ensemble spread – explicitly ac-

counting for forecast model error for each parameter combi-

nation should inflate the ensemble spread in these situations.

Second, assigning weights to different parameter combina-

tions, e.g. based on the Generalized Cross Validation metric,

may also provide more reliable probabilistic forecasts. Third,

smoothing of geophysical time series using wavelet or sin-

gular spectrum analysis may result in further improvements

in probabilistic forecast skill for noisy time series. Rigor-

ous evaluation of these methods using ensemble diagnos-

tics (e.g. the ranked histogram and spread-skill relationships,

Whittaker and Loughe, 1998; Hamill, 2001) and comparison

with physical models (e.g. the Cane-Zebiak ENSO forecast-

ing model, Zebiak and Cane, 1987) is necessary before these

methods can be used in real-time applications.
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