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Abstract—We study the list decodability of different ensembles
of codes over the real alphabet under the assumption of an
omniscient adversary. It is a well-known result that when the
source and the adversary have power constraints P and N

respectively, the list decoding capacity is equal to 1

2
log P

N
.

Random spherical codes achieve constant list sizes, and the goal
of the present paper is to obtain a better understanding of the
smallest achievable list size as a function of the gap to capacity.
We show a reduction from arbitrary codes to spherical codes, and
derive a lower bound on the list size of typical random spherical
codes. We also give an upper bound on the list size achievable
using nested Construction-A lattices and infinite Construction-A
lattices. We then define and study a class of infinite constellations
that generalize Construction-A lattices and prove upper and
lower bounds for the same. Other goodness properties such as
packing goodness and AWGN goodness of infinite constellations
are proved along the way. Finally, we consider random lattices
sampled from the Haar distribution and show that if a certain
conjecture that originates in analytic number theory is true, then
the list size grows as a polynomial function of the gap-to-capacity.

I. INTRODUCTION

In this paper, we study a problem of communication in

the presence of a power-constrained adversary. Consider a

point-to-point communication setup where a sender wants to

communicate a message m P t0, 1unR of nR bits to a re-

ceiver through a real-valued channel corrupted by a malicious

omniscient adversary. The transmitter sends a signal1 x P R
n

in n channel uses. The adversary can observe the transmitted

signal and corrupt it by adding a noise vector s P R
n, which is

allowed to be any noncausal function of x and the transmission

protocol. The sender and the adversary have power constraints

of P and N respectively, i.e., we impose the restriction that

}x} ď
?
nP and }s} ď

?
nN .2 The goal is to design a

transmission scheme that provides a high data rate R while

ensuring a zero probability of error of decoding the transmited

message from y “ x`s at the receiver. This problem turns out

1This work was done in part when Shashank Vatedka was at the Chi-
nese University of Hong Kong, where he was supported by CUHK Di-
rect Grants 4055039 and 4055077. He would like to acknowledge funding
from a seed grant offered by IIT Hyderabad and the Start-up Research
Grant (SRG/2020/000910) from the Science and Engineering Research Board
(SERB), India. Yihan Zhang has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
682203-ERC-[Inf-Speed-Tradeoff].

This paper was presented in part at 2019 IEEE International Symposium
on Information Theory (ISIT), Paris, France [1].

1We use underline to denote vectors of length n.
2Without further specification, } ¨ } denotes the L2-norm.

to be equivalent to the classical sphere packing problem or one

of designing codes with a minimum-distance constraint, where

we want the maximum R such that there is a set of 2nR points

within a ball of radius
?
nP with the property that every pair

of points is spaced 2
?
nN apart. Finding the capacity of this

channel remains an open problem, but nonmatching upper and

lower bounds are known [2], [3].

Adversarial channels in the presence of omniscient adver-

saries can be viewed as an information-theoretic interpretation

of the classical problem of designing error-correcting codes

with minimum-distance constraints. Alternatively, they can be

viewed as problems of communication with zero error in the

presence of a power-constrained jammer with very strong

capabilities. Besides the encoder/decoder and codebook, the

adversary/jammer is also allowed to design his noise/jamming

signal based on the full knowledge of the transmitted signal.

Codes resilient to such errors are of interest in applications

where there is a threat of potentially strong adversarial attacks.

These codes can also be used over additive noise channels

where the power of the noise signal is known, but the exact

noise distribution could be unknown, and potentially even

be correlated with the transmitted signal. Such problems are

also studied under the broad framework of arbitrarily varying

channels (AVCs) in the literature [4]. This is in contrast to the

Discrete Memoryless Channel (DMC) model in classical Shan-

non theory, where the noise is independent of the transmitted

signal, obeys a fixed (known) law, and a small but nonzero

probability of decoding error is allowed.

We study a slight variant of this problem, where instead

of uniquely decoding the transmitted message m, the receiver

attempts to recover a list of L codewords with the guarantee

that the transmitted codeword lies in this list. This is called

the list decoding problem, also known as multiple packing, the

latter asks for the maximum R such that there is a set of 2nR

points in a ball of radius
?
nP such that there is no point in

R
n to which there are more than L points from the set within

distance
?
nN . This problem is well studied at least in the

context of binary adversarial channels [5]. In this paper, we

attempt to systematically study upper and lower bounds on

achievable list sizes for various ensembles of random codes

for the real channel.

List decoding for adversarial channels is an interesting

problem in its own right, but can also be a very useful tool

in several other problems. For instance, Langberg [6] showed

that if there exists a coding scheme that achieves a list size

that is at most polynomial in the blocklength n, then even a
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small amount of shared secret key (just about Θplog nq bits

kept secret from the adversary) between the sender-receiver

pair suffices to ensure that the true message can be uniquely

decoded by the receiver. List decoding can also serve as a

useful proof technique for obtaining bounds on the capacities

of other adversarial channels [7], [8], [9].

For an adversarial channel with L2 power constraints, it

is known (see e.g. [8, Appendix D]) that if the transmission

rate R is greater than 1
2
log P

N
, then no coding scheme can

achieve subexponential (in n) list sizes. On the other hand, it

is also known ([8, Appendix D]) that random spherical codes

of rate R ă 1
2
log P

N
can achieve constant (in n) list sizes. We

can therefore call 1
2
log P

N
to be the list decoding capacity of

this channel. Once this is established, it is of interest to find

the least possible list sizes that are achievable as a function of

δ :“ 1
2
log P

N
´R. We will show that in order to find the order-

optimal list sizes as a function of the rate gap to capacity, it

suffices to only study spherical codes, where all codewords x

have norm }x} “
?
nP . It is known that random spherical

codes have list sizes upper bounded by Op 1
δ
log 1

δ
q. We show

that “typical” random spherical codes have list sizes which

grow as Ωp1{δq. In an attempt to devise more “practical”

coding schemes that achieve the list decoding capacity, we

look for structured codes that can guarantee small list sizes.

Specifically, we investigate a class of nested lattice codes and

find lower bounds on the list size. We show that random nested

Construction-A lattices achieve list sizes 2Op 1
δ
log2 1

δ
q. To the

best of our knowledge, this is the first such result which shows

that lattice codes can achieve constant list sizes. However,

the list sizes are exponentially worse than the list sizes for

random spherical codes. We conjecture that there exist lattice

codes that achieve list sizes of Op 1
δ
log 1

δ
q and provide some

heuristic calculations to support this.

We then relax the power constraint of the transmitter and

study the list decodability of infinite constellations (ICs).

Infinite constellations generalize lattices, and to the best of our

knowledge, were first studied systematically in the context of

channel coding by Poltyrev [10]. Poltyrev showed that there

exist ICs that are good codes for the additive white Gaussian

noise (AWGN) channel. In this paper, we introduce an en-

semble of periodic infinite constellations and study upper and

lower bounds on the list size of typical ICs. A list decodable

code for the power-constrained (for both the transmitter and

the adversary) adversarial channel can be obtained by taking

the intersection of the IC with a ball of radius
?
nP . We show

that the code obtained by taking this intersection achieves list

size Op 1
δ
log 1

δ
q.

Note. This paper is a substantially extended version of the 5-

page conference paper [1] which appeared in the proceedings

of ISIT 2019. In [1], results were stated without formal proofs

or with only proof sketches. The current paper includes full

proofs that were omitted in the conference version and novel

results including the list decoding capacity theorem for ICs

(Theorem 24), covering goodness of ICs (Proposition 43), and

list size upper bound for Haar lattices (Lemma 39) under a

Poisson heuristic (Heuristic 38).

A. Overview of our results

Let us now formally describe the problem. The sender

encodes a message m P t0, 1unR into a codeword x in R
n

which is intended for the receiver. The sender has a transmit

power constraint, which is modeled by demanding that the

L2 norm }x} must be no larger than
?
nP for some P ą 0.

The transmission is observed noncausally by an adversary who

corrupts the transmitted vector by adding a noise vector s to

x. The adversary has a power constraint of N , which means

that }s} ď
?
nN for some N ą 0. However, s is allowed to

otherwise be any function of x and the codebook. The receiver

obtains y “ x`s. The list decoder takes y as input and outputs

a list of L messages3, and an error is said to have occurred if

the true message m is not in this list.

Definition 1 (List decodability over R). Let P,N P Rą0

and L P Zą0. We say that a code C Ă R
n is pP,N,Lq-list

decodable if

‚ The code satisfies a maximum power constraint of P , i.e.,

we have }x}22 ď nP for all x P C.

‚ An omniscient adversary with power N cannot enforce

a list size greater than L, i.e., for all x P C and all s P
Bp0,

?
nNq,4 we have |C X Bpx` s,

?
nNq| ď L.

The rate of C is defined as RpCq :“ 1
n
log |C|.5

A rate R P R is said to be achievable for pP,N,Lq-list

decoding if for infinitely many n, there exist codes C Ă R
n

having rate RpCq ě R that are pP,N,Lq-list decodable.

Remark 1. Another version of list decodability requires |C X
Bpy,

?
nNq| ď L for every y P R

n, not just for y “ x ` s

for some x P C and s P Bp0,
?
nNq. However, these two

definitions are equivalent. This is because for y that does not

result from any codeword via a noise vector of length at most?
nN , clearly C X Bpy,

?
nNq “ H and the condition |C X

Bpy,
?
nNq| ď L trivially holds. Therefore, it does not make

a difference in the definition to include y that is not a feasible

channel output.

In the definition above, we do not prohibit L from being

a function of n. In many applications, it suffices to have list

sizes that grow as Opnγq for a suitably small γ. However, in

this paper, we aim for constant list sizes.

Definition 2 (List decoding capacity). Fix any P,N ą 0.

We say that CpP,Nq is the list decoding capacity if for every

δ ą 0, there exists a γ ą 0 such that CpP,Nq´δ is achievable

for pP,N,Opnγqq-list decoding, and for every δ ą 0, there

exist no codes of rate CpP,Nq ` δ which are pP,N, 2opnqq-

list decodable.

The following result is folklore, and a proof can be found

in [8].

3We sometimes abuse terminology and interchangeably talk about lists of
messages and lists of codewords. This does not introduce confusion since in
this paper we are only concerned with codes whose encoder is a one-to-one
map, i.e., a deterministic encoder.

4Here Bpc, rq denotes an L2 ball in R
n of radius r centered at c. We at

times also write Bnpc, rq to emphasize the ambient dimension.
5Here log is short for log2.
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Theorem 1 (Folklore, [8]). For any P,N ą 0,

CpP,Nq “
„
1

2
log

P

N

`
.6

Again, we are in search of structured ensembles of codes

achieving ideally the same list decoding performance as ran-

dom codes. This problem is not as extensively studied as in

the finite field case.

The class of problems that we are interested in is the

following:

‚ Suppose that we desire a target rate R “ CpP,Nq ´ δ,

for some small δ ą 0. Then what is the smallest list size

L that we can achieve? Specifically, we are interested in

the dependence of L on δ.

‚ What are the fundamental lower bounds on the list size

for a fixed δ?

‚ If we restrict ourselves to structured codes, e.g., nested

lattice codes [11], then what list sizes are achievable?

It was shown in [8] that O
`
1
δ
log 1

δ

˘
list sizes are achievable

using random spherical codes. If we define Sn´1p0,
?
nP q :“

tx P R
n : }x} “

?
nP u to be the pn´ 1q-dimensional sphere

of radius
?
nP , then

Lemma 2 ([8]). Let P ą N ą 0. Fix any δ ą 0, and let R :“
CpP,Nq´δ. Let C be a random codebook of rate R obtained

by choosing the codewords independently and uniformly over

Sn´1p0,
?
nP q, then

Pr

„
C is not

ˆ
P,N,O

ˆ
1

δ
log

1

δ

˙˙
-list decodable


ď 2´Ωpnq.

Our contributions for pP,N,Lq-list decoding are summa-

rized as follows.

‚ We derive lower bounds on the list size of random

spherical codes. We show that if R “ CpP,Nq ´ δ, then

L grows as Ωp1{δq with high probability (whp).

‚ We then investigate the achievable list sizes for random

nested lattice codes, and show that if R “ CpP,Nq ´ δ,

then L “ 2Op 1
δ
log2 1

δ q is achievable using Construction-A

lattices.

‚ Conditioned on a conjecture (Conjecture 37) for random

lattices, we provide heuristic calculations which suggest

that lattice codes might achieve list sizes that grow as

Oppolyp1{δqq.

We then perform a systematic study of the problem of list

decoding infinite constellations in R
n. An infinite constellation

is defined as a countable subset of Rn.

Definition 3. An infinite constellation C Ă R
n is said to be

pN,Lq-list decodable if for every y P R
n, we have

|C X Bpy,
?
nNq| ď L.

The density of the constellation is defined as

∆pCq :“ lim sup
aÑ8

|C X r´a{2, a{2sn|
an

.

6Here ras` is defined as maxta, 0u.

The normalized logarithmic density (NLD), defined as

RpCq :“ log∆pCq
n

,

is a measure of the “rate” of an infinite constellation. The

effective volume of C is defined as V pCq “ 1{∆pCq and the

effective radius reffpCq is defined as the radius of a ball having

volume equal to V pCq.

Remark 2. In general, one cannot replace lim sup with lim

in the definition of ∆pCq. However, in this paper, we are

only concerned with periodic ICs, i.e., ICs that are unions of

translations of a finite set. For such ICs, the limit does exist.

See [12] and [13] for more discussions on the definition of

density.

Remark 3. For a periodic IC C, the NLD of C remains the

same if we replace the cube r´a{2, a{2sn with any centrally

symmetric connected compact set aB Ă R
n with nonempty

interior and compute the NLD in the following way

∆pCq “ lim sup
aÑ8

|C X aB|
an VolpBq .

Definition 4 (List decoding capacity). Fix any N ą 0. We

say that CpNq is the list decoding capacity if for every δ ą 0,

there exists a γ ą 0 such that CpNq ´ δ is achievable for

pN,Opnγqq-list decoding, and for every δ ą 0, there exist no

codes of rate CpNq ` δ which are pN, 2opnqq-list decodable.

We show that the list decoding capacity for infinite constel-

lations is CpNq “ 1
2
log 1

2πeN
.

Clearly, every lattice is an infinite constellation. We show

that if Λ is a random Construction-A lattice with reffpΛq ě?
nN2δ (or RpΛq ď CpNq ´ δ), then Λ is pN, 2Op 1

δ
log2 1

δ
qq-

list decodable. We also introduce a class of random periodic

infinite constellations C with reffpCq “
?
nN2δ (or RpCq “

CpNq ´ δ) which have list sizes that grow as Op 1
δ
log 1

δ
q.

Additionally, we show a matching lower bound on the list

size for these random infinite constellations.

Remark 4. A code satisfying the requirements in Definition 1

can be list decoded when used on a channel governed by an

omniscient adversary with a maximum probability of error

constraint. This is because the decoder will output a small

list for every transmitted codeword x P C and every attack

vector s P Bp0,
?
nNq. For L “ 1, our problem reduces to

the problem of packing nonintersecting balls of radius
?
nN

such that their centers lie within Bp0,
?
nP q.

We could relax the problem by assuming that the decoder

uses an average probability of error criterion (where the

average is over messages picked uniformly at random) and

the adversary knows only the codebook but not the transmitted

codeword. This models an oblivious adversary and the problem

was studied by Hosseinigoki and Kosut [14] (see also [15]).

They showed that the list decoding capacity for this problem is
1
2
logp1 ` P {Nq1tL ą N{P u. Variants of list decoding with

other types of adversaries have been studied in the literature:

see, e.g., [16], [17].

An intermediate model that lies between the omniscient and

the oblivious models is the myopic model. In this model, we
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assume that a myopic adversary sees a noncausal noisy version

of the transmitted codeword. This problem was studied in [8].

Bounds in this paper and prior work on list sizes of

ensembles of codes/ICs with gap-to-capacity δ are summarized

in Table I.

B. Organization of the paper

In Sec. II, we survey the literature on list decoding over

finite fields. Notation and prerequisite facts and lemmas are

listed in Sec. III and Sec. III-B, respectively. A table of

frequently used notation can be found in Appendix A. A lower

bound on list sizes of random spherical codes is provided

in Sec. IV while some of the calculations are deferred to

Appendix B. In Sec. V, we turn to study list decodability of

random nested Construction-A lattice codes. For the benefit of

the readers who are not familiar with lattices, a quick primer

is provided in Sec. V-B. We define infinite constellations

in Sec. VI, and give matching upper and lower bounds on

list sizes of an ensemble of regular infinite constellations in

Sec. VII. Results on other goodness properties of ICs are

presented in Appendix C. Finally we give some heuristic

results on the list sizes achieved by lattice codes. We recall

the Haar distribution on the space of lattices in Sec. VIII,

then introduce two important integration formulas by Siegel

and Rogers in Sec. IX-A and their improvements in Sec. IX-B.

We prove a list size upper bound conditioned on a conjecture

in Sec. X-A. We conclude the paper in Sec. XI with several

open problems.

II. PRIOR WORK

A. Prior work on list decoding over finite fields

Given a prime power q and R P p0, 1q, how can one

construct a subset C of F
n
q of size qnR such that the points

in C are as far apart (in Hamming distance) as possible?

This question is motivated by communication through noisy

channels and is studied under different notions of “far apart”.

Consider a transmitter who wishes to convey an arbitrary q-ary

message of length nR to a receiver through a noisy channel. To

protect the information against noise, the transmitter can add

some redundancy and send a coded version of the message

through the channel. Classical coding theory is devoted to

the study of the situation where the codeword is a length-

n vector over Fq and the adversary who has access to the

transmitted codeword is allowed to change any np symbols

where 0 ă p ă 1 is a constant. The receiver is then required to

figure out the original message given a maliciously corrupted

word. For fixed q and p, the goal is to design an as-large-

as-possible set of codewords so as to get as-much-as-possible

information through in n uses of the channel, while ensuring

that the receiver can decode the message correctly under any

legitimate attack by the adversary. We are interested in the

asymptotic behaviour of the throughput as the blocklength n

grows.

It is not hard to see that the above question is equivalent

to the question of determining the optimal density of packing

Hamming balls of radii np in F
n
q . The best possible density

R is widely open. People thus consider relaxed versions of

this problem. Instead of asking the receiver to output a unique

correct message, we allow him to output a list of L messages

which is guaranteed to contain the correct one. For fixed q,

there is now a tradeoff among three quantities: R, p and

L. The question is nontrivial only when L is required to

be small, otherwise outputting all qnR messages is always

a valid scheme. This problem is called list decoding. It is

sometimes also referred to as multiple packing since it can be

alternatively thought of as packing balls such that they can

overlap but there are no more than L balls on top of any point

in the space. Let dH denote the Hamming distance and let

Bn
Hpy, npq :“ tx P F

n
q : dHpy, xq ď npu denote the Hamming

ball of radius np centered at y.

Definition 5 (List decodability over Fq). A code C Ď F
n
q

is said to be pp, Lq-list decodable if for any y P F
n
q ,ˇ̌

C X Bn
Hpy, npq

ˇ̌
ď L.

It turns out that such a relaxation indeed makes the problem

easier. In this case, we entirely understand the information-

theoretic limit of list decoding. Specifically, Zyablov and

Pinsker [18] showed:

Theorem 3 (List decoding capacity over Fq , [18]). For any

constant δ ą 0, any 0 ă p ă 1´1{q and any n large enough,

there exists a pp, 1{δq-list decodable code C Ď F
n
q of rate

1 ´ Hqppq ´ δ; on the other hand, any code C Ď F
n
q of rate

1´Hqppq ` δ is not pp, Lq-list decodable unless L “ qΩpnδq.

The sharp threshold 1 ´ Hqppq around which the list size

exhibits a phase transition is known as the list decoding capac-

ity, denoted by C. The stunning point of the above theorem

is that the list size can be made a constant, independent of n,

while a rate close to the list decoding capacity is still achieved.

Throughout the paper, we use δ to denote the gap between

the rate that the code is operating at and the list decoding

capacity, i.e., R “ C ´ δ.

Let τ denote the gap between the adversary’s power and the

list decoding radius 1 ´ 1{q, i.e., p “ 1 ´ 1{q ´ τ .

First note that expressing the rate as a function of the list

size is equivalent to expressing the list size as a function of

the gap to capacity. Lower (resp. upper) bounds on the rate

naturally translate to upper (resp. lower) bounds on the list size

and vice versa. Indeed, for any increasing function f , claiming

that a rate R ě C ´ 1
fpLq can be achieved by a pp, Lq-list

decodable code is equivalent to claiming the existence of a

rate R “ C ´ δ code whose list size is at most L ď f´1p1{δq
under an adversary with power budget p. We will state prior

results and our results only in the second form.

The aforementioned list decoding capacity theorem (The-

orem 3) is obtained via standard random coding argument.

Indeed, it is well-known and easy to show that the list size of

a random code (of which each codeword is sampled uniformly

and independently) of rate 1 ´ Hqppq ´ δ against a power-

p adversary is at most 1{δ with high probability (whp). It

also turns out [19], [20] that 1{δ is the correct scaling for

the list size of a random code. Namely, there is an essentially
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TABLE I: Upper and lower bounds on list sizes of codes and infinite constellations. All bounds hold for the corresponding

ensembles with high probability. The parameter δ denotes the gap-to-capacity, where the capacity equals 1
2
log P

N
in the power-

constrained case and 1
2
log 1

2πeN
in the power-unconstrained case.

Code/IC List size Reference

Uniform spherical code
L “ O

`
1
δ
log 1

δ

˘
Folklore [8, Appendix D]

L “ Ω
`
1
δ

˘
Proposition 18

Nested Construction-A lattice code L “ 2Op 1
δ
log2 1

δ q Theorem 21

Infinite nested Construction-A lattice L “ 2Op 1
δ
log2 1

δ q Theorem 27

pΛ0, q,Mq IC
L “ O

`
1
δ
log 1

δ

˘
Proposition 28

L “ Ω
`
1
δ

˘
Lemma 29

Haar lattice code
L “ O

`
1
δ
log 1

δ

˘
Lemma 39 under Heuristic 38

L “ O

´`
1
δ

˘1`1{c
¯

Lemma 40 under Conjecture 37

matching7 lower bound 1{δ via second moment method.

Note that 1´Hqppq is also equal to the Shannon’s channel

capacity of a Binary Symmetric Channel with crossover proba-

bility p (BSC(p)). However, as we will elaborate in subsequent

sections, this is not the case over the reals.

The above list decoding capacity theorem pinpointed the

information-theoretic limit of list decoding which is attained

by random codes. In computer science, researchers are gener-

ally interested in finding structured or even explicit ensembles

of objects with the same asymptotic behavior as the uniformly

random ensemble. In the setting of list decoding, given the

threshold up to which constant-in-n list size is possible, the

ultimate goal is to construct explicit8 codes with the same list

decoding performance as random codes. As an intermediate

step which is also interesting in its own right, people aim

to reduce the amount of randomness used in the construction

and shoot for more “structured” ensembles of codes. A natural

candidate is linear codes. However, sadly, even if we restrict

our attention to linear codes, its list decodability is still not

completely understood. Specifically, a random linear code over

Fq of rate R refers to a random subspace of F
n
q uniformly

sampled from all subspaces of a fixed dimension nR.

Conjecture 4. For any δ ą 0, prime power q and 0 ă p ă
1´ 1{q, a random linear code of rate 1´Hqppq ´ δ over Fq

is pp, 1{δq-list decodable whp.

The conjecture is known to be true over F2 [20].9 However,

it is open in other cases if we insist the universal constant in

the list size to be one. In particular, the conjecture becomes

more challenging when we work in the high-noise low-rate

regime and in large fields. For instance, consider the following

scenario, the adversary’s power p is so large that close to 1´
1{q, say p “ 1 ´ 1{q ´ τ for a very small τ ą 0 which

can even scale with δ. Then by the continuity of the entropy

function, the capacity is very low and in particular vanishes

7Actually, Li and Wootters [20] showed that for any constant γ ą 0, the

list size of a random code is bounded from below by 1´γ
δ

whp.
8Rigorously, there are two commonly used definitions of explicitness in the

literature. To give an explicit linear code, it suffices to

1) either construct its generator matrix in polypnq time deterministically;
2) or compute each entry of its generator matrix in poly logpnq time

deterministically.

9In fact, [20] proved that the list size is only Hppq{δ (roughly, ignoring
some technicalities concerning integrality).

as τ Ñ 0. In this case, many existing list decodability results

for random linear codes degenerate in the sense that the list

size blows up when τ Ñ 0. Another extreme case which is

tricky to handle is when the field size q is very large and is

potentially an increasing function of δ Ñ 0 and/or n Ñ 8. In

this case, many techniques in the literature also fail.

From now on, when we talk about large q (i.e., the large

field size regime), we refer to q which can scale with 1{δ or n;

when we talk about large p or small rate (i.e., the high-noise

low-rate regime), we refer to τ which can be a function of δ.

Now we survey a (potentially non-exhaustive) list of work

regarding the combinatorial list decoding performance of

random linear codes.

1) A classical work by Zyablov and Pinsker [18] showed

that a random linear code of rate 1 ´ Hqppq ´ δ is

pp, qOp1{δqq-list decodable whp. (See also, e.g., [21] for

a proof sketch.)

2) Guruswami, Håstad, Sudan and Zuckerman [22] showed

the existence of a binary linear code of rate 1´Hppq ´δ

which is pp, 1{δq-list decodable. To this end, they defined

a potential function as a witness of non-list decodability

and analyzed its evolving dynamics during the process of

sampling a basis of the random linear code.

3) Guruswami, Håstad and Kopparty [21] showed that a

random linear code of rate 1 ´Hqppq ´ δ is pp, Cp,q{δq-

list decodable whp. However Cp,q blows up when p gets

close to 1´1{q or q is large. They used Ramsey-theoretic

tools to control low-rank lists. As for high-rank lists,

naive bounds suffice.

4) Cheraghchi, Guruswami and Velingker [23] showed that

a random linear code of rate Ω
´

τ2

log3pq{τq log q

¯
is pp1 ´

1{qqp1´ τq,Op1{τ2qq-list decodable with constant prob-

ability. These parameters are optimal in the low-rate

regime up to polylog factors in 1{τ and q. In their paper,

ideas such as average-radius relaxation, connections to

restricted isometry property (RIP) and chaining method

were brought into view. These techniques were later

extensively explored and significantly developed.

5) Wootters [24] showed that a random linear code of rate

Ωpτ2{ log qq is pp1 ´ 1{qqp1 ´ τq,Op1{τ2qq-list decod-

able whp. This is an improvement on [23] via similar

techniques and also fills in the gap in [21] for large p.

6) Rudra and Wootters [25], [26], [27] employed the heavy

machinery of generic chaining to provide improved
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bounds when the field size is very large, say, scaling

with 1{δ and even n. The parameter regimes become

complicated in this situation and we do not copy their

results here.

7) Li and Wootters [20] showed that a random binary linear

code of rate 1´Hppq´δ is pp,Hppq{δ`2q-list decodable

whp for any p P p0, 1{2q and δ ą 0. They did so by lifting

the existential result in [22] to a high-probability one.

8) Most recently, there is an exciting line of work [28], [29],

[30] which makes significant progress on understanding

the list sizes of random linear codes. In particular, the

authors of these papers characterized the threshold rate

(which is difficult to evaluate) of list decodable ran-

dom linear codes. For binary random linear codes, they

showed that the list size is (essentially) exactly Hppq{δ.

One can find a summary of aforementioned results in

Table II.

Despite a long line of research regarding list decoding,

we are far from a complete understanding. Besides attempts

towards Conjecture 4, on the negative side, it turns out [19]

that there is a matching Ωp1{δq lower bound on the list size

of random linear codes. Namely, if we sample a linear code

uniformly at random, its list size is Ωp1{δq whp. Nonetheless,

in general, the best lower bound on list size for an arbitrary

code is still Ωplogp1{δqq [31], [32], [33], [34], [19]. There is

an exponential gap between the best upper and lower bounds

even over F2. Closing this gap is also a long standing open

problem. For arbitrarily list decodable codes with list size L,

Blinovsky’s bound was improved by Ashikhmin, Barg and

Litsyn [35] for the L “ 2 case and by Polyanskiy [36]

for the case where L ě 3 is odd. For general omniscient

adversarial channels beyond bitflip and erasure channels, the

critical L˚ at which the list-L capacity vanishes has recently

been determined by Zhang, Budkuley and Jaggi [37].

B. Prior work on erasure list decoding over finite fields

Similar questions were also posed and studied under the

erasure model. In this case, the adversary is allowed to replace

any np coordinates of the codeword with question marks.

Definition 6 (List decodability under erasures over Fq). A

code C Ď F
n
q is said to be pp, Lq-erasure list decodable if for

any T Ď rns of cardinality p1 ´ pqn and any y P F
p1´pqn
q ,ˇ̌ 

x P C : x|T “ y
(ˇ̌

ď L.

It is known that the erasure list decoding capacity is 1 ´ p,

coinciding with the capacity of a Binary Erasure Channel with

erasure probability p (BEC(p)).

Theorem 5 (List decoding capacity under erasures over

Fq , [5], Theorem 10.3, 10.8). For any small constant δ ą 0,

any 0 ă p ă 1 and any n large enough, there exists

a pp,Op1{δqq-erasure list decodable code C Ď F
n
q of rate

1´p´δ; on the other hand, any code C Ď F
n
q of rate 1´p`δ

is not pp, Lq-erasure list decodable unless L “ qΩpnδq.

The achievability part again follows from a random coding

argument and the scaling Θp1{δq of the list size of a random

code is tight whp via a second moment computation [19].

For general codes, it can be shown that the list size is at least

Ωplogp1{δqq using an erasure version of the punctured Plotkin-

type bound (see, e.g., [5], Theorem 10.8).

On the other hand, if we restrict our attention to linear

codes, the situation seems a little worse. The list size of

a random linear code turns out to be 2Θp1{δq whp (see,

e.g., [5], Theorem 10.6 for an upper bound and [19] for a

matching lower bound). Intuitively, for a linear code C, the

list
 
x P C : x|T “ y|T

(
corresponding to a received word

y P pFq Y t?uqn with p1 ´ pqn unerased locations in T Ď rns
forms an affine subspace. The list size is therefore exponential

in the rank of the list. For general linear codes, it can be

shown that the list size is at least Ωp1{δq using a connection

to generalized Hamming weights [38]. Although we do not

have a provable separation working uniformly in all parameter

regimes, it is believed that the list size of linear codes is

larger than that of nonlinear codes under erasure list decoding.

Narrowing down the exponential gap for either general codes

or linear codes seems to be a particularly tricky task.

Upper and lower bounds on list sizes of ensembles of

random codes and arbitrary codes are listed in Table III for

comparison.

It is worth mentioning that recently there are several break-

throughs towards explicit constructions of “good” codes in the

high-noise low-rate regime using tools from pseudorandom-

ness. Ta-Shma [39] constructed an explicit δ-balanced10 binary

linear code of rate Ωpδ2`γq where γ “ Θ

ˆ´
log log 1

δ

log 1
δ

¯1{3˙
“

op1q, almost matching the Gilbert–Varshamov bound in this

regime. Ta-Shma’s beautiful and ingenious construction is

done by casting the problem in the language of δ-balanced sets

and analyzing a long random walk on a carefully constructed

expander graph. His result is concerned with explicit codes

with good distances. A more relevant result to our topic is an

explicit construction of a near-optimal erasure list decodable

code [40]. The authors viewed the problem as constructing

explicit dispersers and managed to construct an explicit binary

nonlinear p1 ´ τ, poly log 1
τ

q-erasure list decodable code of

rate τ1`γ (where τ is inverse-polynomial in n and γ ą 0 is a

small constant), borrowing tools from the theory of extractors.

The list size and the rate they got are both near-optimal.

Going beyond combinatorial bounds and constructions,

there is also research regarding efficient list decoding algo-

rithms. For instance, recently Dinur et al. [41] showed how

double samplers give rise to a generic way of amplifying

distance so as to enable efficient list decoding algorithms.

Followup works by Alev et al. [42], Jeronimo et al. [43]

and Jeronimo et al. [44] equipped Ta-Shma’s codes (and their

variants) with efficient list decoding and unique decoding

algorithms using connections to high-dimensional expanders

and the Sum-of-Square hierarchy.

As we saw, the list size problem is not well understood

under the adversarial model. However, it is completely char-

acterized if we are willing to further relax the problem by

limiting the adversary to be oblivious. Specifically, we call

10A binary linear code is said to be δ-balanced if the weight of each
codeword is between 1´δ

2
n and 1`δ

2
n.
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TABLE II: A non-exhaustive list of results on list decodability of random linear codes.

Field size Noise level Rate List size whp / with constant

probability / existential

Reference

q ě 2 p P p0, 1 ´ 1{qq R “ 1 ´ Hqppq ´ δ L “ qOp1{δq whp [18]

q “ 2 p P p0, 1{2q R “ 1 ´ Hppq ´ δ L ď 1{δ existential [22]

q ě 2 p P p0, 1 ´ 1{qq R “ 1 ´ Hqppq ´ δ L ď Cp,q{δ whp [21]

q ě 2 p “ p1 ´ 1{qqp1 ´ τq R “ Ω
´

τ2

log3pq{τq log q

¯
L “ Op1{τ2q with constant probability [23]

q ě 2 p “ p1 ´ 1{qqp1 ´ τq R “ Ωpτ2{ log qq L “ Op1{τ2q whp [24]

q “ 2 p P p0, 1{2q R “ 1 ´ Hppq ´ δ L ď Hppq{δ ` 2 whp [20]

q “ 2 p P p0, 1{2q R “ 1 ´ Hppq ´ δ L ď tHppq{δu `1 whp [29]

TABLE III: Upper and lower bounds on list sizes of random codes and arbitrary codes.

Channel model Code List size Reference

Error
Random codes L ď 1{δ whp Folklore

Random binary codes L ě 1´2´Ωpp1{δq
δ

whp [20]

Random binary linear codes L ď Hppq{δ ` 2 whp [20]
Random binary linear codes L ď tHppq{δu ` 1 whp [29]
Random linear codes L “ Op,qp1{δq whp [21]
Random linear codes L ě tHqppq{δ ` 0.99u ´ 1 whp [29]
Arbitrary codes L “ Ωp,qplogp1{δqq [31], [32], [33], [34], [19]

Erasure

Random binary codes L ď 1´p`Hppq
δ

´ 1 whp [5], Theorem 10.9

Random codes L ě 1´p
2δ

whp [19]

Arbitrary binary codes L ě logp1 ` p{δq [5], Theorem 10.14

Random binary linear codes L ď 2Hppq{δ ´ 1 whp [5], Theorem 10.11

Random linear codes L ě 1
q
2

pp1´pq
16δ whp [19]

Arbitrary binary linear codes L ě 1 ` p{δ [38]

the adversary omniscient if the error pattern is a function of

the transmitted codeword, i.e., the adversary sees the codeword

before he designs the attack vector. Otherwise, an adversary

is said to be oblivious if the error pattern is independent of

the transmitted codewords, i.e., the adversary knows nothing

more than the codebook and has to design the attack vector

before the codeword is transmitted. The list size-vs.-rate

tradeoff is known to a fairly precise extent for general discrete

memoryless oblivious adversarial channels.

For a general oblivious discrete memoryless Arbitrar-

ily Varying Channel (AVC) W py|x, sq without constraints,

Hughes [45] completely characterized its list decoding capac-

ity under any L. Specifically, the list-L capacity CpLq equals

CpLq “ max
Px

min
Ps

Ipx;yq (1)

if L ą L˚, where

L˚ :“ max

#
ℓ P Zě0 :

DUps|x1, ¨ ¨ ¨ , xℓq,@x0, x1, ¨ ¨ ¨ , xℓ,@π P Sℓ`1,ř
s Ups|x1, ¨ ¨ ¨ , xℓqW py|x0, sq “ř

s Ups|xπp1q, ¨ ¨ ¨ , xπpℓqqW py|xπp0q, sq

+

(2)

and CpLq “ 0 otherwise. For oblivious AVCs under con-

straints, the critical list size L˚ is known [46] though the exact

capacity CpLq is open.

In this paper, we will focus on combinatorial/information-

theoretic limits of list decoding various ensembles of random

codes over R against omniscient adversaries.

C. Prior work on list decoding over the reals

In this section, we briefly recall what is known about list

decoding over the reals. As we will see, it is much less studied

and understood, which motivates this work.

1) Shlosman and Tsfasman [47] studied the sphere packing

density of a) a random lattice sampled from the Haar

distribution; b) a Poisson point process (PPP).

2) Blinvosky [48] later generalized their results on PPP to

list-L packing for any constant L P Zě 1. However,

the proof therein is problematic and is recently corrected

in [49] without affecting the result. PPPs are a natural

family of ICs. The heuristic results for Haar lattices in

Sec. X-A2 of this paper can be cast as (rigorous) list size

bounds for PPPs. The bounds in [48], [49] provide finite

list size bounds for PPPs which subsume our bounds in

Sec. X-A2. However, our proof for O
`
1
δ
log 1

δ

˘
list sizes

is much simpler.

3) Some bounds [50], [51] on the list-L capacity of arbitrary

spherical codes are also known. Note that the proof

in [50] is problematic and is recently corrected in [49]

without affecting the result.

4) In computer science, there have been results [52], [53]

on efficient list decoding algorithms for explicit lattices,

e.g., Barnes–Wall lattices, Barnes–Sloane lattices, etc.

However, these lattices have rate/NLD way below the

capacity.

5) Recently, the authors of the current paper systematically

revisited the list decoding problem over R with constant

list sizes. Various upper and lower bounds [49] were

derived for this problem.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3189542

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on July 25,2022 at 10:19:10 UTC from IEEE Xplore.  Restrictions apply. 



8

III. NOTATION AND PRELIMINARIES

A. Notation

General notation. We use standard Bachmann-Landau (Big-

Oh) notation for asymptotic functions.

For any q P Rą0, we write logqp¨q for the logarithm to the

base q. In particular, let logp¨q denote the logarithm to the base

two and let lnp¨q denote the logarithm to the base e.

Sets. For any two sets A and B with additive and multiplicative

structures, let A`B and A ¨B denote the Minkowski sum and

Minkowski product of them which are defined as

A`B :“ ta` b : a P A, b P Au , A¨B :“ ta ¨ b : a P A, b P Bu .

If A “ txu is a singleton set, we write x ` B and xB for

txu ` B and txu ¨ B. For any finite set X and any integer

0 ď k ď |X |, we use
`
X
k

˘
to denote the collection of all

subsets of X of size k, i.e.,
ˆ
X

k

˙
:“ tY Ď X : |Y| “ ku .

For M P Zą0, we let rM s denote the set of the first M

positive integers t1, 2, ¨ ¨ ¨ ,Mu.

For a subset T “ ti1, ¨ ¨ ¨ , itu Ď rns of t coordinates and a

vector x P Xn over some alphabet X , we use x|T to denote

the vector obtained by restricting x to the coordinates in T ,

i.e.,

x|T :“ rxi1 , ¨ ¨ ¨ , xitsJ.

Similar notation can be defined for a subset A of Xn

A|T :“ tx|T : x P Au .

For any A Ď X , the indicator function of A is defined as,

for any x P X ,

1Apxq “
#
1, x P A

0, x R A
.

At times, we will slightly abuse notation by saying that 1A is

1 when event A happens and zero otherwise.

Let } ¨ }2 denote the Euclidean/L2-norm. Specifically, for

any x P R
n,

}x}2 :“
˜

nÿ

i“1

x2i

¸1{2

.

For brevity, we also write } ¨ } for the L2-norm.

Let Volnp¨q denote the n-dimensional Lebesgue volume of

an Euclidean body. Specifically, for any Euclidean body A Ď
R

n,

VolnpAq “
ż

A

dx “
ż

Rn

1Apxqdx,

where dx denotes the differential of x with respect to (wrt) the

Lebesgue measure on R
n. When the dimension n is obvious

from the context, we will also use the shorthand notation

| ¨ | for Volnp¨q. If A Ď R
n is an n-dimensional body with

nonempty interior, we write VolpAq for VolnpAq; if A Ď R
n

is an pn´1q-dimensional hypersurface, we write AreapAq for

Voln´1pAq.

Sets are denoted by capital letters in calligraphic typeface,

e.g., C, I, etc. In particular, let Sn´1
2 denote the pn ´ 1q-

dimensional unit Euclidean sphere wrt L2-norm, i.e.,

Sn´1
2 :“

 
y P R

n : }y}2 “ 1
(
.

The area of this sphere is denoted An´1.

Let Bn
2 denote the n-dimensional unit Euclidean ball wrt

L2-norm, i.e.,

Bn
2 :“

 
y P R

n : }y}2 ď 1
(
.

We denote the volume of this ball, i.e., VolpBn
2 q, by Vn.

An pn ´ 1q-dimensional Euclidean sphere centered at x of

radius r is denoted by

Sn´1
2 px, rq “ x` rSn´1

2 “ ty P R
n : }y}2 “ ru.

An n-dimensional Euclidean ball centered at x of radius r is

denoted by

Bn
2 px, rq “ x` rBn

2 “ ty P R
n : }y}2 ď ru.

For any x P F
n
q , let wtH pxq denote the Hamming weight

of x, i.e., the number of nonzero entries of x:

wtH pxq :“ ti P rns : xi ‰ 0u .

For any x, y P F
n
q , let dHpx, yq denote the Hamming distance

between x and y, i.e., the number of locations where they

differ:

dHpx, yq :“ wtH
`
x´ y

˘
“
!
i P rns : xi ‰ y

i

)
.

We can define balls and spheres in F
n
q centered around some

point of certain radii wrt Hamming metric as well:

Sn
Hpx, rq :“

 
y P F

n
q : dHpx, yq “ r

(
,

Bn
Hpx, rq :“

 
y P F

n
q : dHpx, yq ď r

(
.

We will drop the subscript and superscript for the associated

metric and dimension when they are clear from the context.

Probability. Random variables are denoted by lower case

letters in boldface or capital letters in plain typeface,

e.g., m,x, s, U,W , etc. Their realizations are denoted by

corresponding lower case letters in plain typeface, e.g.,

m,x, s, u, w, etc. Vectors of length n, where n is the block-

length, are denoted by lower case letters with underlines, e.g.,

x, s, x, s, etc. The i-th entry of a vector is denoted by a

subscript i, e.g., xi, si, xi, si, etc. Matrices are denoted by

capital letters in boldface, e.g., I,Σ, etc. The pi, jq-th entry of

a matrix M is denoted by Mij .

The probability mass function (pmf) of a discrete random

variable x or a random vector x is denoted by px or px
respectively. Here with a slight abuse of notation, we use the

same to denote the probability density function (pdf) of x or

x if they are continuous. If every entry of x is independent

and identically distributed (iid) according to px, then we write

x „ pbn
x . In other words,

pxpxq “ pbn
x pxq :“

nź

i“1

pxpxiq.
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Let UpΩq denote the uniform distribution over some probabil-

ity space Ω. Let N pµ,Σq denote the n-dimensional Gaussian

distribution with mean vector µ and covariance matrix Σ.

We use Hp¨q to denote interchangeably Shannon entropy

and differential entropy; the exact meaning will usually be

clear from context. In particular, if px : R
n Ñ Rě0 is a pdf

of a random vector x in R
n , Hpxq denotes the differential

entropy of x „ px,

Hpxq “ ´
ż

Rn

pxpxq log pxpxqdx.

For any p P r0, 1s, Hppq denotes the binary entropy

Hppq “ p log
1

p
` p1 ´ pq log 1

1 ´ p
.

For any q P Zě2 and any p P r0, 1s, Hqppq denotes the q-ary

entropy

Hqppq “ p logqpq ´ 1q ` p logq
1

p
` p1 ´ pq logq

1

1 ´ p
.

Algebra. For any field F , we use SLpn, F q and GLpn, F q to

denote the special linear group and the general linear group

over F of degree n, i.e.,

SLpn, F q :“
 
M P Fnˆn : detpMq “ 1

(
,

GLpn, F q :“
 
M P Fnˆn : detpMq ‰ 0

(
.

For any vector space V of dimension n and any integer

0 ď k ď n, the Grassmannian Grpk, V q is the collection of

all k-dimensional subspaces of V , i.e.,

Grpk, V q :“ tU ď V subspace : dimF U “ ku .

B. Preliminaries

Probability. We will need the following form of Chernoff

bound.

Lemma 6. Let X1, ¨ ¨ ¨ , XN be independent Bernoulli random

variables and let X :“ řN
i“1Xi. Then for any 0 ď δ ď 1, we

have

Pr rX ě p1 ` δqE rXss ď exp

ˆ
´δ2

3
E rXs

˙
,

Pr rX ď p1 ´ δqE rXss ď exp

ˆ
´δ2

2
E rXs

˙
.

The following lemma is an easy corollary of Chebyshev

inequality.

Lemma 7. For any nonnegative random variable X ,

Pr rX “ 0s ď Var rXs {E rXs2.

Recall two facts about the moments of Gaussian and Poisson

random variables.

Fact 8. Let g „ N p0, 1q, then

E
“
gk

‰
“
#
0, k odd

pk ´ 1q!!, k even
,

where ℓ!! :“ ℓpℓ´2qpℓ´4q ¨ ¨ ¨ 3¨1 denotes the double factorial

of ℓ odd.

Fact 9. Let p „ Poispλq, then

E
“
pk

‰
“ e´λ

8ÿ

i“0

ik

i!
λi.

Poisson random variables are additive.

Fact 10. If p1 „ Poispλ1q and p2 „ Poispλ2q are indepen-

dent, then p1 ` p2 „ Poispλ1 ` λ2q.

We know the following tail bounds for Poisson random

variables.

Lemma 11. Let p „ Poispλq and ℓ ą λ,m ă λ, then

Pr rp ą ℓs ăe´λpeλqℓ
ℓℓ

, Pr rp ă ms ă e´λpeλqm
mm

.

Lemma 12 ([54]). Let p „ Poispλq and ∆ ą 0, then

Pr rp ´ λ ě ∆s ď e
∆2

2pλ`∆q ,

Pr rp ´ λ ď ´∆s ď e
∆2

2pλ`∆q ,

Pr r|p ´ λ| ě ∆s ď 2e
∆2

2pλ`∆q .

Geometry. It is well-known that Stirling’s approximation gives

an asymptotic expression for factorials.

Lemma 13. For any n P Zą0, n! “
?
2πnpn{eqnp1 ` op1qq.

We can use the above lemma to obtain the asymptotic

behaviour of binomial coefficients. At times, we also resort

to the following cheap yet convenient bounds.

Lemma 14. For any n P Zą0 and 0 ď k ď n, pn{kqk ď`
n
k

˘
ď pen{kqk.

Recall the formulas and asymptotics of the volume of a unit

Euclidean ball and the area of a unit Euclidean sphere.

Fact 15. Vn :“ VolpBn
2 q “ π

n
2

Γpn{2`1q “ 1?
πn

`
2πe
n

˘n{2 p1 `
op1qq.

Fact 16. An´1 :“ AreapSn´1
2 q “ nπ

n
2

Γpn{2`1q “
a

n
π

`
2πe
n

˘n{2 p1 ` op1qq.

IV. LIST DECODABILITY OF SPHERICAL CODES

We now investigate lower bounds on the list size L for codes

that operate at rate R “ CpP,Nq ´ δ.

A. A reduction from an arbitrary code to a spherical code

We first show that it suffices to prove a lower bound on list

size for spherical codes.

Lemma 17. Suppose there exists a pP,N,Lq-list decodable

code C Ă Bn
2 p0,

?
nP q of rate R. Then, there exists a`

P,N, P
4N
L
˘
-list decodable code C1 Ă Sn´1

2 p0,
?
nP q of

asymptotically the same rate.

Proof. Given any pP,N,Lq-list decodable (ball) code C in

Bn
2 p0,

?
nP q, we can construct a

`
P,N, P

4N
L
˘
-list decodable

spherical code C1 on Sn´1
2 p0,

?
nP q. Indeed, we just project
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Fig. 1: A covering of the cone using balls. This figure is

useful for understanding the reduction (Lemma 17) from the

list-decodability of ball codes to that of spherical codes. The

ball centered at O has radius
?
nP . We project radially all

codewords inside the ball onto the sphere. The number of

codewords (after reduction) on the spherical cap centered at O1

is the same as that (before reduction) in the cone with angular

radius =O1OQ. By list-decodability of the ball code, there are

at most L codewords in any ball of radius
?
nN . Therefore, to

bound the number of codewords in the cone, it suffices to cover

the cone using balls of radius
?
nN . By elementary geometry,

we need at most |OO1|{p2dq where |OO1| “
a
npP ´Nq

and 2d is the distance between the centers O1 and O2 of two

consecutive balls in the covering.

all codewords radially onto Sn´1
`
0,

?
nP

˘
. Then we know

that for any direction θ P Sn´1,

ˇ̌
ˇC1 X Capn´1pθ,

?
nNq

ˇ̌
ˇ ď |N |L, (3)

where Capn´1pθ,
?
nNq is a cap of radius

?
nN on the sphere

Sn´1p0,
?
nP q along direction θ,

Capn´1pθ,
?
nNq :“!

x P Sn´1p0,
?
nP q : xx, θy ě

a
npP ´Nq

)
; (4)

and N is a
?
nN -covering11 of the cone

Kpθq :“
!
λx : x P Capn´1pθ,

?
nNq, λ P r0, 1s

)

induced by the cap. Note that according to the definition

(Eqn. (4)), the center of the base of Capn´1pθ,
?
nNq is O1

and the radius of the base is
?
nN . Or equivalently, the angular

radius of Capn´1pθ,
?
nNq is =O1OQ.

To see why Eqn. (3) implies pP,N, |N |Lq-list decodability

of C1, i.e., |C1 X Bpy,
?
nNq| ď |N |L for any y P R

n, one

should note that piq Capn´1pθ,
?
nNq “ Sn´1

2 p0,
?
nP q X

Bn
2 py,

?
nNq for some y such that }y} “

a
npP ´Nq; piiq

y P Sn´1
2 p0,

a
npP ´Nqq maximizes the surface area of

the intersection between Bn
2 py,

?
nNq and Sn´1

2 p0,
?
nP q.

Therefore, if Eqn. (3) holds for any y “ θ
a
npP ´Nq (for

some θ P Sn´1), then the same must hold for any y P R
n.

We can upper bound |N | by

|N | ď
?
P ´N

2d
, (5)

where d is shown in Fig. 1 and will be computed momentarily.

This can be seen by staring at the geometry of a covering as

shown in Figure 1. One way to cover the cone Kpθq is to align

the centers of the balls Bp¨,
?
nNq on the ray rooted at the

center O of Sn´1p0,
?
nP q in the direction θ. We enumerate

such ball in ascending order from the surface to the center of

the sphere Sn´1p0,
?
nP q. That is, the ball whose center is

closest to the surface of Sn´1p0,
?
nP q is the 1-st one and the

ball whose center is closest to the center of Sn´1p0,
?
nP q is

the |N |-th one. Let 2di denote the distance between the centers

of the i-th and the pi`1q-st balls. Since all centers are on the

segment OO1 of length
a
npP ´Nq and we apparently have

d1 ă d2 ă ¨ ¨ ¨ ă d|N |´1, we can upper bound |N | by
?
P´N
2d

where d :“ d1.

We now compute d. By symmetry, the distance between the

centers O1 and O2 of the first two balls is equal to 2d where

d :“ SO1{?
n “ SO2{?

n. Since the triangles ∆OSQ1 and

∆OO1Q are similar, d is given by the following equation

|OS|
|OO1| “ |OQ1|

|OQ| ðñ
?
P ´N ´ d?
P ´N

“
?
P ´ d1
?
P

, (6)

where d1 :“ Q1Q{?
n. On the other hand, the triangle

∆O1Q
1Q is isosceles with side length O1Q

1 “ O1Q “
?
nN .

Let θ :“ =O1QQ
1. It is immediate that d1 “ 2

?
N cos θ “

2N{
?
P since cos θ “ QO1{QO “

a
N{P in ∆QO1O.

Plugging it into Eqn. (6) and solving d, we have d “
2N
P

?
P ´N . Hence by Eqn. (5), |N | ď P

4N
. Substituting it

to Eqn. (3) finishes the proof.

Remark 5. In fact, since we are covering a cone rather than a

cylinder, the most economical way of covering is not to align

the balls with consecutive distance 2d. Indeed, the optimal

covering N ˚ has strictly increasing distances 2d “ d1 ă d2 ă
¨ ¨ ¨ ă d|N˚|´1, where di is the half distance between the

11A ∆-covering (a.k.a. a ∆-net) N of a metric space pX , dq is a subset
N Ă X satisfying that for any x P X , there exists an x1 P N such that
dpx, x1q ď ∆.
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centers Oi and Oi`1 of the i-th and the pi ` 1q-st balls. One

can compute each di explicitly. Although our bound is crude, it

is still a valid and simple upper bound and is tight for covering

a cylinder.

B. List size lower bound for uniformly random spherical codes

Although we are not able to obtain a lower bound for

arbitrary spherical codes as in [50], [51], we can obtain a

lower bound for uniformly random spherical codes.

Proposition 18. Fix P ą N ą 0, and let C “ 1
2
log P

N
.

For every δ ą 0, if C is a random spherical code on

Sn´1p0,
?
nP q of rate C ´ δ, then

Pr

„
C is

ˆ
P,N,

c1

δ
´ 1

˙
-list decodable


ď 2´Θpnq,

for every c1ăC.

Proof. The proof follows a second-moment method as in

Guruswami and Narayanan [19] for binary codes.

Choose a
?
nε-net Y for Sn´1

´
0,
a
n pP ´Nq

¯
for some

constant ε ą 0. In other words, Y Ă Sn´1
´
0,
a
n pP ´Nq

¯

and for all y P Sn´1
´
0,
a
n pP ´Nq

¯
, we have minuPY }y´

u} ď ?
nǫ.

For any spherical code C, define

W :“ (7)
ÿ

yPY

ÿ

tm1,¨¨¨ ,mLuPpM

L q
1

!
ψ pm1q , ¨ ¨ ¨ , ψ pmLq P Bn

´
y,

?
nN

¯)

(8)

where M :“
 
0, 1, ¨ ¨ ¨ , 2nR ´ 1

(
is the set of messages

and ψ pmq denotes the codeword corresponding to m. Let

M :“ |M| “ 2nR. Clearly, W “ 0 if and only

if (iff) C is pP,N,L ´ 1q-list decodable. Letting A :“
Bn

`
0,

?
nP `

?
nN

˘
zBn

`
0,

?
nP ´

?
nN

˘
,

Pr rC is pP,N,L´ 1q-list decodables

“ Pr

»
–
č

yPA

!ˇ̌
ˇC X Bn

´
y,

?
nN

¯ˇ̌
ˇ ă L

)
fi
fl

ď Pr

»
–
č

yPY

!ˇ̌
ˇC X Bn

´
y,

?
nN

¯ˇ̌
ˇ ă L

)
fi
fl

“ Pr rW “ 0s
ď Var rW s {E rW s2 , (9)

where the last inequality (9) follows from Lemma 7. Let

µ :“ Area
`
Capn´1

`?
nN

˘˘

Area
`
Sn´1

`?
nP

˘˘ ,

ν :“

ˇ̌
ˇY X Capn´1p

a
nNpP ´Nq{P q

ˇ̌
ˇ

|Y| .

Then, we show that

ErW s ě pM{LqL |Y|µL, (10)

and

Var rW s ď |Y|2Lν2MLµL´1. (11)

See Appendix B-B and B-C for the details. Plugging these in

Eqn. (9), we get

Pr rC is pP,N,L´ 1q-list decodables ď L2L`1ν2µ´L´1M´L.

(12)

We need an upper bound on ν which is given by Eqn. (73).

Let c2 :“ 3
?
P

2p
?

NpP´Nq{P`3
?
ε{2q

. Eqn. (73) implies

ν ď c2

˜a
NpP ´Nq{P ` 3

?
ε{2?

P ´N

¸n

“ c22
n log

´?
N{P` 3

?
ε

2
?

P´N

¯

“ c22
´ n

2
log P

N
`n log

ˆ
1` 3

?
ε
?

P {N
2

?
P´N

˙

ď c22
´np 1

2
log P

N
´ε1q,

where the last inequality follows since logp1 ` xq ď 2x for

x ě 0 and ε1 :“ 3
b

Pε
NpP´Nq .

We also need a lower bound on µ:

µ ě Vol
`
Bn´1

`
0,

?
nN

˘˘

Area
`
Sn´1

`
0,

?
nP

˘˘

“ c32
´np 1

2
log P

N
`op1qq, (13)

for some constant c3 ą 0. The probability (12) we want to

upper bound is at most

Pr rC is pP,N,L´ 1q-list decodables
ď L2L`1c22c

´L´1
3 2´2np 1

2
log P

N
´ε1q2npL`1qp 1

2
log P

N
`op1qq´nRL

“ L2L`1c22c
´L´1
3 2npδL´ 1

2
log P

N
`2ε1`op1qq

“ L2L`1c22c
´L´1
3 2npδL´ 1

2
log P

N
`δ`op1qq.

In the last equation, we set ε1 “ δ{2, i.e., ε “ NpP´Nq
P

`
δ
6

˘2
.

The constant-in-n terms downstairs and the opnq term in the

exponent are not important. The probability that C is list

decodable vanishes in n when L ă
1
2
log P

N

δ
´1. That is to say,

for a uniformly random spherical code to be pP,N,L´ 1q-list

decodable with high probability, L has to be at least C{δ´ 1,

where C “ 1
2
log P

N
.

We would like to emphasize that the above result only

implies that a typical random code is not pP,N, c1{δ ´ 1q-

list decodable with high probability. This does not claim the

non-existence of pP,N, c1{δ ´ 1q-list decodable codes of rate

C ´ δ.

V. LIST DECODABILITY OF NESTED CONSTRUCTION-A

LATTICE CODES

A. Nested lattice codes

Recall that a lattice Λ is a discrete subgroup of Rn, and can

be written as GZ
n where G is called a generator matrix of Λ.

The following subsection summarizes some of the important

concepts on lattices and lattice codes. The concepts we use
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are quite standard in the literature on lattices [11], [55]. The

reader who is familiar with this line of work may skip the

following subsection.

B. A primer on lattices and nested lattice codes

For a tutorial introduction to lattices and their applications,

see the books by Zamir [55], Conway and Sloane [56], or

the notes by Barvinok [57]. Here, we summarize the essential

concepts required to develop our results.

If v1, . . . , vκ are linearly independent vectors in R
n, then

the set of all integer linear combinations of v1, . . . , vκ is called

the lattice generated by the vectors v1, . . . , vκ, i.e.,

Λ :“
#

κÿ

i“1

aivi : ai P Z

+
.

If G “ rv1 ¨ ¨ ¨ vκs, then we can write Λ “ GZ
κ. The matrix

G is called a generator matrix for Λ. The generator matrix of

a lattice is not unique. The integer κ is invariant for a lattice

and is called the rank of Λ. In this paper, we only consider

lattices in R
n having rank n. It is obvious that Λ is a discrete

subgroup of R
n under vector addition. It is also a fact that

every discrete subgroup of Rn is a lattice [57].

For any lattice Λ, it is natural to define the quantizer QΛ

which maps every point in R
n to the closest lattice point, i.e.,

for every x P R
n,

QΛpxq :“ argmin
yPΛ

}y ´ x}, (14)

where we assume that ties (in computing the closest lattice

point) are resolved according to some arbitrary but fixed rule.

Associated with the quantizer is the quantization error

rxs mod Λ :“ x´QΛpxq.

For every lattice Λ, we define the following parameters:

‚ The set

PpΛq :“ tGx : x P r0, 1qnu,

where G is a generator matrix of Λ, is called the

fundamental parallelepiped of Λ.

‚ The fundamental Voronoi region VpΛq is the set of all

points in R
n which are closest to the zero lattice point.

In other words,

VpΛq :“ tx P R
n : QΛpxq “ 0u.

Any set S Ă R
n such that the set of translates of S

by lattice points, i.e., tS ` x : x P Λu form a partition

of R
n, is called a fundamental region of Λ. It is a fact

that every fundamental region of Λ has the same volume

equal to detΛ :“ |detpGq|, where G is any generator

matrix of Λ. The quantity detΛ is called the determinant

or covolume of Λ.

‚ The covering radius rcovpΛq is the radius of the smallest

closed ball in R
n which contains VpΛq. It is also equal

to the length of the largest vector within VpΛq.

‚ The packing radius rpackpΛq is the radius of the largest

open ball which is contained within VpΛq. Equivalently, it

is half the minimum distance between two lattice points.

‚ The effective radius reffpΛq is equal to the radius of a

ball having volume equal to VolpVpΛqq.

Clearly, we have rpackpΛq ď reffpΛq ď rcovpΛq.

In the context of power-constrained communication over

Gaussian channels, a nested lattice code is typically the set

of all lattice points within a convex compact subset of R
n,

i.e., C “ Λ X B for some set B Ă R
n. Usually B is taken to

be Bp0,
?
nP q or VpΛ0q for some lattice Λ0 constructed so as

to satisfy the power constraint.

If Λ0,Λ are two lattices in R
n with the property that Λ0 Ĺ

Λ, then Λ0 is said to be nested within (or, a sublattice of) Λ.

We call Λ the fine lattice, and Λ0 the coarse lattice. A nested

lattice code with a fine lattice Λ and coarse lattice Λ0 Ĺ Λ is

the finite set Λ X VpΛ0q.

Lattices have been extensively used for problems of pack-

ing, covering and communication over Gaussian channels.

For many problems of interest, we want to construct high-

dimensional lattices Λ such that rpackpΛq{reffpΛq is as large as

possible, and rcovpΛq{reffpΛq is as small as possible. A class

of lattices that has these properties is the class of Construction-

A lattices, which we describe next.

Let q be a prime number, and Clin be an pn, κq linear

code over Fq . The Construction-A lattice obtained from Clin
is defined to be

ΛpClinq :“ tv P Z
n : rvs mod pqZnq P ΦpCqu,

where Φ denotes the natural embedding of F
n
q in R

n.12 An

equivalent definition is that ΛpClinq “ ΦpClinq`qZn. We make

use of the following result to choose our coarse lattices:

Theorem 19 ([11]). For every δ ą 0, there exist sequences of

prime numbers qn and positive integers κn such that if Clin is

a randomly chosen linear code13 over Fqn , then

Pr

„
rpackpΛpClinqq
reffpΛpClinqq ă 1

2
´ δ or

rcovpΛpClinqq
reffpΛpClinqq ą 1 ` δ


“ op1q.

C. List decodability of nested lattice code

Our goal is to construct good nested lattice pairs pΛ,Λ0q
with Λ0 Ă Λ, and our nested lattice code will be defined as

C :“ Λ X VpΛ0q. The nested lattice code satisfies the power

constraint if rcovpΛ0q ď
?
nP .

We now prove an upper bound on the list size for nested

lattice codes. Our goal is to show the following:

Theorem 20. Let 0 ă δ ă 0.9 and P ą N . There

exist nested lattice codebooks of rate 1
2
log2

P
N

´ δ that are

pP,N, 2Op 1
δ
log2

2
1
δ

qq-list decodable.

D. List size upper bound for nested Construction-A lattice

codes

We start with a (full rank) coarse lattice Λ0 that satisfies

rcovpΛ0q
reffpΛ0q ď 2δ{8 (15)

12Since q is a prime, the natural embedding simply maps a P Fq to a P R.
13The pn, κnq random code is obtained by choosing an n ˆ κn generator

matrix uniformly at random over Fq .
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and
rpackpΛ0q
reffpΛ0q ą 1

4
. (16)

Such lattices are guaranteed to exist (for sufficiently large n)

by [11] (See Section V-B). The lattice is suitably scaled so

that rcovpΛ0q “
?
nP and this will ensure that the codebook

satisfies the power constraint. Note that scaling the lattice by a

constant factor scales rpack, reff and rcov by the same amount,

and the ratios in Eqn. (15) and (16) remain unchanged. Let

GΛ0
be a generator matrix for Λ0, and q be the smallest prime

number that satisfies

1 `
?
P

q
?
N

ď 2δ{8. (17)

Note that q is independent of n and is of order q “ Ωp1{δq.

Bertrand’s postulate guarantees that for every positive integer

m, there exists a prime number between m and 2m. Therefore,
a
P {N

2δ{8 ´ 1
ď q ď 2

a
P {N

2δ{8 ´ 1
` 2. (18)

Let R “ 1
2
log2

P
N

´ δ, and κ be an integer such that14

κ

n
log2 q “ R. (19)

We define an ensemble of fine lattices as follows: Choose

an n ˆ κ generator matrix Glin uniformly over F
nˆκ
q . This

defines a linear code CpGlinq “ GlinF
κ
q where the arithmetics

are over Fq . Let Λ1 :“ 1
q
ΦpCpGlinqq ` Z

n, where Φ is the

natural embedding of Fn
q into R

n and the arithmetics are over

R. In other words, Φ operates componentwise on vectors, and

maps 0, 1, . . . , q ´ 1 P Fq to 0, 1, . . . , q ´ 1 P R. Note that

Z
n Ă Λ1 Ă q´1

Z
n. Our fine lattice is Λ :“ GΛ0

Λ1. It is

easy to verify that Λ0 is always a sublattice of Λ. In fact,

Λ0 Ă Λ Ă q´1Λ0 forms a chain of nested lattices. Our nested

lattice codebook is then C :“ Λ X VpΛ0q.

We will show the following result, which implies Theo-

rem 20.

Theorem 21. If P ą N , then

PrrΛ X VpΛ0q is not pP,N, 2Op 1
δ
log2

2
1
δ

qq-list decodables
2´Ωpnq.

Note that the only randomness involved is in the choice of

the generator matrix Glin that is used to construct the fine

lattice Λ.

We now discuss some intermediate lemmas which will be

used to prove Theorem 20. The formal proofs will be given

in Sec. V-E.

Fix any y P R
n. Fundamental to the proof is counting

the number of lattice points within a ball of radius r around

y. We will need bounds on
ˇ̌
ˇ 1qΛ0 X Bpy, rq

ˇ̌
ˇ. We can write

it as
ˇ̌
ˇ
!
x P Z

n :
›››y ´ 1

q
GΛ0

x
›››
2

ď r
)ˇ̌
ˇ. A simple argument

generalizing [58, Lemma 1] can be used to show that this

14More accurately, κ is the integer closest to nR{ log2 q. But we assume
that κ as defined above is an integer so that our proofs are cleaner.

is upper (resp. lower) bounded by the volume ratio between

the ball (whose radius is lengthened (resp. shortened) by the

covering radius of q´1Λ0) and the fundamental Voronoi region

of q´1Λ0. This can be formally stated as follows:

Lemma 22 (Generalization of [58, Lemma 1]). Let Vn denote

the volume of the unit ball in R
n, and Λ0 be a full-rank lattice

in R
n. Then, for any r ą rcovpΛ0q{q “ rcovpq´1Λ0q and

y P R
n, we have

qnVn

VolpVpΛ0qq

ˆ
r ´ rcovpΛ0q

q

˙n

ď
ˇ̌
ˇ̌1
q
Λ0 X Bpy, rq

ˇ̌
ˇ̌

ď qnVn

VolpVpΛ0qq

ˆ
r ` rcovpΛ0q

q

˙n

. (20)

Observe that there is a bijection between F
κ
q and ΛXVpΛ0q.

The encoder maps m P F
κ
q to a nested lattice codeword (with

slight abuse of notation15)

ψpmq :“
„
1

q
GΛ0

prGlinms mod pqZnqq

mod Λ0,

where all arithmetics are over R.

Lemma 23. Fix m P F
κ
q zt0u and y P R

n. We have

Prrψpmq P Bpy, rqs ď
˜

r?
nP

2δ{8
˜
1 `

?
nP

qr

¸¸n

. (21)

Proof. Since Glin P t0, 1, ¨ ¨ ¨ , q ´ 1unˆκ
is a uniformly

random matrix, rGlinms mod pqZnq is uniformly distributed

in t0, 1, ¨ ¨ ¨ , q ´ 1un. Consequently ψpmq is uniformly dis-

tributed in q´1Λ0 X VpΛ0q. Since the codeword ψpmq is

guaranteed to be in VpΛ0q, we have

Prrψpmq P Bpy, rqs ď Pr
“
ψpmq P rBpy, rqs mod Λ0

‰

“ 1

qn

ˇ̌
ˇ̌1
q
Λ0 X rBpy, rqs mod Λ0

ˇ̌
ˇ̌

ď 1

qn

ˇ̌
ˇ̌1
q
Λ0 X Bpy, rq

ˇ̌
ˇ̌

ď Vn

VolpVpΛ0qq

ˆ
r ` rcovpΛ0q

q

˙n

using Lemma 22. Simplifying this, we get

Prrψpmq P Bpy, rqs ď rn

preffpΛ0qqn
ˆ
1 ` rcovpΛ0q

qr

˙n

ď rn

prcovpΛ0qqn 2
nδ{8

ˆ
1 ` rcovpΛ0q

qr

˙n

“
˜

r?
nP

2δ{8
˜
1 `

?
nP

qr

¸¸n

,

where we have used Eqn. (15) in the second step.

15Here, we use the natural embedding of Fq in Z, Φ, to identify elements
in Glin with the corresponding values in Z. To be rigorous, we should have
written ΦpGlinq instead of Glin.
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E. Proof of Theorem 21

If m1, . . . ,mℓ are linearly independent vectors in F
κ
q and

Glin is uniform, then ψpm1q, . . . , ψpmℓq are statistically in-

dependent and hence,

Prrψpm1q, . . . , ψpmℓq P Bpy, rqs “
`
Prrψpmq P Bpy, rqs

˘ℓ
.

(22)

Every set of L`1 distinct vectors m1, . . .mL`1 in F
κ
q contains

a subset of ℓ :“ logqpL` 1q linearly independent vectors.

Prrψpm1q, . . . , ψpmL`1q P Bpy, rq for some distinct

m1, . . .mL`1s
ďPrrψpm1q, . . . , ψpmℓq P Bpy, rq for some linearly

independent m1, . . .mL`1s

ď
ˆ
2nR

ℓ

˙
Prrψpm1q, . . . , ψpmℓq P Bpy, rqs (23)

ď2nRℓ Prrψpm1q, . . . , ψpmℓq P Bpy, rqs,
where in Eqn. (23), m1, . . . ,mℓ is a fixed (but arbitrary) set of

linearly independent vectors in F
κ
q . Using Eqn. (21) and (22)

in the above, we get

Prrψpm1q, . . . , ψpmL`1q P Bpy, rq for some distinct

m1, . . .mL`1s

ď 2nRℓ

˜
r?
nP

2δ{8
˜
1 `

?
nP

qr

¸¸nℓ

,

and hence,

1

n
log2 Prrψpm1q, . . . , ψpmL`1q P Bpy, rq for some

distinct m1, . . .mL`1s

ď ℓ

˜
R ´ log2

˜?
nP

r

¸
` δ

8
` log2

˜
1 `

?
nP

qr

¸¸
.

(24)

This suggests that if R and r are not too large, then for any

fixed but arbitrary y, the probability that there are more than

L lattice points within distance r of y is small. We want to

show that this happens for every y P R
n. First, observe that

if y R VpΛ0q ` Bp0,
?
nNq, then all codewords are at least?

nN -away from y. Therefore, it is enough to consider only

those y in VpΛ0q ` Bp0,
?
nNq. A second observation is that

if (for a positive integer α) Qpyq denotes the closest point in
1
α
Λ0 to y, then

Prrψpm1q, . . . , ψpmL`1q P Bpy,
?
nNq for some distinct

m1, . . .mL`1s

ď Pr
”
ψpm1q, . . . , ψpmL`1q P B

ˆ
Qpyq,

?
nN ` rcovpΛ0q

α

˙

for some distinct m1, . . .mL`1

ı
.

The idea here is to quantize the y’s using 1
α
Λ0 and then use

a union bound. We want to make sure that α is sufficiently

large, but not too large. Specifically, α is the smallest integer

greater than
a
P {N{p2δ{8 ´ 1q. Therefore, α satisfies

1 ` 1

α

c
P

N
ă 2δ{8, (25)

and

α ă
a
P {N

p2δ{8 ´ 1q ` 2. (26)

Note that α “ Θp1{δq.

Letting r “
?
nN ` rcovpΛ0q

α
“

?
nN `

?
nP
α

, we have

Prrψpm1q, . . . , ψpmL`1q P Bpy,
?
nNq for some distinct

m1, . . .mL`1 and y P R
ns

“ Prrψpm1q, . . . , ψpmL`1q P Bpy,
?
nNq for some distinct

m1, . . .mL`1 and y P VpΛ0q ` Bp0,
?
nNqs

ď Pr
”
ψpm1q, . . . , ψpmL`1q P Bpy, rq for some distinct

m1, . . .mL`1 and y P 1

α
Λ0 X pVpΛ0q ` Bp0,

?
nNqq

ı
.

From Eqn. (15), (16) and the fact that P ą N , we have
?
nN ď

?
nP “ rcovpΛ0q

ď 2δ{8reffpΛ0q ď 4 ¨ 2δ{8rpackpΛ0q
ď 4 ¨ 20.9{8rpackpΛ0q ă 4.4rpackpΛ0q.

Therefore, Bp0,
?
nNq Ă 4.4Bp0, reffpΛ0qq Ă 4.4VpΛ0q. We

can therefore take a union bound over 1
α
Λ0 X p5.4VpΛ0qq

which gives us16

PrrΛ X VpΛ0q is not pP,N,Lq-list decodables
“Prrψpm1q, . . . , ψpmL`1q P Bpy,

?
nNq for some distinct

m1, . . .mL`1 and y P R
ns

ďPr
”
ψpm1q, . . . , ψpmL`1q P Bpy, rq for some distinct

m1, . . .mL`1 and y P 1

α
Λ0 X p5.4VpΛ0qq

ı
.

Using Eqn. (24) and applying the union bound over y’s, we

have

1

n
log2 PrrΛ X VpΛ0q is not pP,N,Lq-list decodables

ď 1

n
log2

ˇ̌
ˇ̌ 1
α
Λ0 X p5.4VpΛ0qq

ˇ̌
ˇ̌

` ℓ

˜
R ´ log2

˜?
nP

r

¸
` δ

8
` log2

˜
1 `

?
nP

qr

¸¸
.

Since
ˇ̌
1
α
Λ0 X p5.4VpΛ0qq

ˇ̌
ďp5.4αqn and r ě

?
nN , we get

1

n
log2 PrrΛ X VpΛ0q is not pP,N,Lq-list decodables

ď log2p5.4αq ` ℓ

˜
R ´ log2

˜ ?
nP?

nN `
?
nP {α

¸¸

` δ

8
` log2

˜
1 `

?
P

q
?
N

¸¸

ď log2p5.4αq ` ℓ

˜
R ´ 1

2
log2

ˆ
P

N

˙
` log2

˜
1 `

?
P

α
?
N

¸

16We would like to remark that we have not optimized these constants, and
the bounds obtained may be loose. However, this will not qualitatively change
the overall result.
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` δ

8
` log2

˜
1 `

?
P

q
?
N

¸¸

ď log2p5.4αq ` ℓ

˜
´ δ ` log2

ˆ
1 `

?
p

α
?
n

˙

` δ

8
` log2

˜
1 `

?
P

q
?
N

¸¸
.

Using Eqn. (25) and (17),

1

n
log2 PrrΛ X VpΛ0q is not pP,N,Lq-list decodables

ď log2p5.4αq ` ℓ

ˆ
´δ ` δ

8
` δ

8
` δ

8

˙

“ log2p5.4αq ´ 5ℓ
δ

8
. (27)

From Eqn. (27), we can say that if ℓ ą c1 log2pαq{δ, the

probability that a random lattice code is not list decodable

goes to zero exponentially in n. For 0 ă δ ă 0.9, there exist

positive constants c2, c3 (that could depend on P,N but not on

δ) so that c2δ ă 2δ{8 ´ 1 ă c3δ and using Eqn. (26), we can

see that log2pαq ď c4 log2
1
δ

for some positive c4. Likewise,

using Eqn. (18), we can show that there exist c5, c6 such that

c5 log2
1
δ

ď log2 q ď c6 log2
1
δ

for δ P p0, 0.9q. This implies

that we can choose L “ qℓ ´ 1 “ 2ℓ log2 q ´ 1 to be less

than 2
c
δ
log2

2
1
δ for a sufficiently large constant c, so that the

probability that a random nested lattice code is not pP,N,Lq-

list decodable goes to zero as 2´Ωpnq. This concludes the proof

of Theorem 21.

VI. LIST DECODABILITY OF INFINITE LATTICES

We now direct our attention to infinite constellations. Recall

that an infinite constellation C is a countably infinite subset of

R
n, and every lattice is an infinite constellation.

A. List decoding capacity theorem for infinite constellations

In subsequent sections (see Proposition 28), we show that

there exist random ICs with NLD 1
2
log 1

2πeN
´ δ which are`

N,O
`
1
δ
log 1

δ

˘˘
-list decodable. We also show that there exist

Construction-A lattices with NLD 1
2
log 1

2πeN
´ δ which are´

N, 2Op 1
δ
log2 1

δ q
¯

-list decodable.

In Appendix D, we also give a converse argument showing

that no IC of NLD 1
2
log 1

2πeN
` δ can be

`
N, 2Opδnq˘-list

decodable. Therefore, combining Proposition 28 and Proposi-

tion 44, we get the following list decoding capacity theorem

for ICs.

Theorem 24. For any N ą 0, CpNq “ 1
2
log 1

2πeN
.

B. List size upper bound for infinite lattices

We claim that list decodability of nested Construction-

A lattice codes implies a list decoding result for infinite

Construction-A lattices.

Definition 7 (modΛ0 list decodability). Let pΛ0,Λq be

a nested lattice pair with Λ Ă Λ0. The nested lattice

code Λ X VpΛ0q is said to be pP,N,Lq-list decodable

modΛ0 if rcovpΛ0q ď
?
nP and for every y P R

n,ˇ̌
Λ X VpΛ0q X

`
rBpy,

?
nNqs mod Λ0

˘ˇ̌
ď L.

We observe that if rpackpΛ0q ą
?
nN , the ball Bpy,

?
nNq

centered at any point y P R
n will have no overlap after the

mod Λ0 operation. That is, the following lemma holds.

Lemma 25. Let Λ0 Ă R
n be a lattice of packing radius

rpackpΛ0q ą
?
nN (28)

for some constant N ą 0. Then for any y P R
n and r ď

?
nN ,

we have
ˇ̌
rBpy, rqs mod Λ0

ˇ̌
“
ˇ̌
Bpy, rq

ˇ̌
.

Proof. Fix an arbitrary y P R
n and r ď

?
nN . To show that

the modΛ0 operation does not create overlap, it suffices to

show that no two distinct points in Bpy, rq will be mapped

to the same point. The proof is by contradiction. Suppose

there are two distinct points x1 ‰ x2 P Bpy, rq such that

rx1s mod Λ0 “ rx2s mod Λ0. One can decompose x1 and

x2 as x1 “ rx1 ` rx1s mod Λ0 and x2 “ rx2 ` rx2s mod Λ0

for unique rx1, rx2 P Λ0, respectively. Therefore, }x1 ´ x2}2 “
}rx1 ´ rx2}2, by rx1s mod Λ0 “ rx1s mod Λ0. On one hand,

since both x1 and x2 are in Bpy, rq, }x1 ´ x2}2 ď 2r ď
2
?
nN . On the other hand, since both rx1 and rx2 are in

Λ0, }rx1 ´ rx2}2 ě 2rpackpΛ0q ą 2
?
nN . This leads to a

contradiction and the proof is finished.

Lemma 26. Let pΛ0,Λq be a pair of nested lattices with Λ0 Ă
Λ and rpackpΛ0q ą

?
nN . Suppose that the nested lattice

code Λ X VpΛ0q is pP,N,Lq-list decodable modΛ0. Then,

the infinite lattice Λ is pN,Lq-list decodable.

Proof. The infinite lattice Λ is pN,Lq-list decodable if for

every y P R
n, we have

ˇ̌
Λ X Bpy,

?
nNq

ˇ̌
ď L. Due to the

periodic structure of Λ, we have the property that tx`VpΛq :
x P Λu forms a partition of Rn. Therefore, it suffices to show

that
ˇ̌
Λ X Bpy,

?
nNq

ˇ̌
ď L for all y P VpΛq in order to prove

pN,Lq-list decodability of Λ.

But we already have this from the mod Λ0 list decodabil-

ity of Λ X VpΛ0q. Specifically, since rpackpΛ0q ą
?
nN ,

by Lemma 25 ,
ˇ̌
Λ X VpΛ0q X

`
rBpy,

?
nNqs mod Λ0

˘ˇ̌
“ˇ̌

Λ X Bpy,
?
nNq

ˇ̌
ď L. Since VpΛq Ă VpΛ0q, modΛ0

pP,N,Lq-list decodability of Λ X VpΛ0q implies pN,Lq-list

decodability of Λ.

A careful inspection of the proof (in particular, the proof

of Lemma 23) shows that Theorem 20 actually holds under

the notion of modΛ0 list decodability (as per Definition 7).

Using Lemma 26 and Theorem 20, we have

Theorem 27. For any constant 0 ă δ ă 0.9, let Λ be

a random Construction-A lattice drawn from the ensemble

of Sec. V-D with Λ0 having covering radius 2
?
nN and

rcovpΛ0q, rpackpΛ0q, q, κ satisfying (15), (16), (17), (19), (28),

respectively. Then,

1) the normalized logarithmic density of Λ is RpΛq ě
1
2
log 1

2πeN
´ δ;

2) there exists a constant c ą 0 independent of n, δ such

that

PrrΛ is not pN, 2c 1
δ
log2 1

δ q-list decodables “ op1q.
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Proof. Fix P “ 4N . Since Λ0 is good for covering, we

have reffpΛ0q ě rcovpΛ0q2´δ{8 “ 21´δ{8?
nN . We know

that with high probability Λ X VpΛ0q is pP,N, 2Op 1
δ
log2 1

δ
qq-

list decodable, where the implied constant can only depend on

N . From Lemma 26, we know that Λ is also pN, 2Op 1
δ
log2 1

δ
qq-

list decodable with high probability. To complete the proof, it

suffices to compute the NLD of Λ.

The rate of the nested lattice code

RpΛ X VpΛ0qq “1

2
log

P

N
´ δ “ 1

2
log

4N

N
´ δ “ 1 ´ δ.

The NLD of the infinite lattice can hence be bounded as

follows,

RpΛq “ 1

n
log

2nR

|VpΛ0q|

“ 1

n
log

2np1´δq

|Bn p0, reffpΛ0qq|

“ log
21´δ

V
1{n
n reffpΛ0q

— log
21´δ

?
πn

´1{na
2πe{nreffpΛ0q

ě log
21´δ

a
2πe{n

?
4nN

` op1q

“1

2
log

1

2πeN
´ δ ` op1q.

This completes the proof.

C. Remark

We proved the above theorem for the random infinite lattice

GΛ0
Λ1pClinq, where Λ1pClinq “ ΦpClinq`qZn is the “standard”

Construction-A lattice obtained from a random linear code

Clin, and GΛ0
is a generator matrix of the coarse lattice. We

could have instead proved a similar list decoding result for

Λ1pClinq by following the same approach as in Sec. V, but

instead taking a union bound on y’s within r0, qqn. Doing so

would also give a list size of 2Op 1
δ
log2 1

δ
q for all NLD satisfying

RpΛ1pClinqq ď 1
2
log 1

2πeN
´ δ.

Similarly, for lattice codes, via essentially the same argu-

ments, it can be shown that nested random Construction-A

lattice codes 1
α
Λ1pClinq X Λ1pClinq and random Construction-

A lattices with ball shaping 1
α
Λ1pClinqXBp0,

?
nP q for proper

scaling 1{α so as to achieve rate 1
2
log P

N
´ δ are also

pP,N, 2Op 1
δ
log2 1

δ qq-list decodable whp.

VII. LIST DECODABILITY OF REGULAR INFINITE

CONSTELLATIONS

Having established a list decoding result for infinite lattices,

we now turn to the problem of determining optimal list sizes

for infinite constellations. Do there exist ICs C for which the

list size is at most Oppolyp1{δqq for all RpCq ď 1
2
log 1

2πeN
´

δ?

To study this, we define an ensemble of periodic infinite

constellations. We call this a pΛ0, q,Mq infinite constellation

(IC) which is defined as follows. Let Λ0 be a (full rank)

Fig. 2: Illustration of the class of infinite constellations studied

in Sec. VII. The finite set C1 is tessellated using Λ0 to obtain

C “ C1 ` Λ0

lattice satisfying Eqn. (15) and (16). Let q be a prime. A

pΛ0, q,Mq random IC C is obtained by selecting M points

C1 “ tx1, . . . ,xMu independently and uniformly at random

from VpΛ0q X 1
q
Λ0 and then tiling. Therefore, C “ C1 ` Λ0.

See Fig. 2 for a pictorial illustration of the construction of

such an IC ensemble.

The reason why we introduce this new class of ICs is be-

cause it is very simple to work with. We can very easily prove

several nice properties that would be otherwise complicated for

random lattices. We feel that this is a natural counterpart of

uniformly random codes over finite fields. Moreover, we can

obtain a code for the power-constrained channel by taking the

intersection of the IC with Bp0,
?
nP q.

Remark 6. In fact, one can define a hierarchy of more and

more “uniform” ICs in a similar manner. Under the same

construction C “ C1 ` Λ0 as above, we can choose C1 such

that

1) each point in C1 is independent and uniformly distributed

in VpΛ0q;

2) each point in C1 is independent and uniformly distributed

in VpΛ0q X 1
q
Λ0; (This choice is the same as that in the

above paragraph.)

3) C1 is a random subset of VpΛ0qX 1
q
Λ0 that forms a group

under addition modulo Λ0.

The above three constructions are decreasingly “uniform”. In

particular, the last construction of C forms a lattice.

We will study the list decodability property of the second

construction. The same quantitative results in this section hold

for the first construction as well since the latter is more

uniform. In Appendix C, we study other goodness properties

of the first construction. Properties are easiest to prove under

this construction.

Before presenting our formal results, we need one more

definition. The effective radius of an infinite constellation is

defined as the radius of the n-dimensional ball having volume

equal to 1{∆pCq, i.e.,

reffpCq :“
ˆ

1

Vn∆pCq

˙1{n
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where Vn denotes the volume of a unit n-ball.

A. List size upper bound

We now study list decodability properties of pΛ0, q,Mq
random ICs.

An infinite constellation C is pN,Lq-list decodable if for

every y P R
n, we have |C X Bpy,

?
nNq| ď L.

Proposition 28. Fix a small δ ą 0. Let C :“ 1
2
log 1

2πeN
. For

any N ą 0, the ensemble of random pΛ0, q,Mq IC C defined

at the beginning of this section with M “ 2npC´δq|VpΛ0q|
chosen so as to satisfy RpCq “ C ´ δ is pN,Op 1

δ
log 1

δ
qq-list

decodable with probability at least 1 ´ 2´Θpnq.

Proof. We choose Λ0 such that rpackpΛ0q “ 2
?
nN . Let q be

the smallest integer such that

log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙
ă 2δ{8. (29)

This implies the following lower and upper bounds on q:

q ě rcovpΛ0q{
?
nN

2δ{8 ´ 1
ě rpackpΛ0q{

?
nN

2δ{8 ´ 1

“ 2

2δ{8 ´ 1
; (30)

q ď rcovpΛ0q{
?
nN

2δ{8 ´ 1
` 2

ď 2δ{8 ¨ reffpΛ0q{
?
nN

2δ{8 ´ 1
` 2

ď 2δ{8 ¨ 4 ¨ rpackpΛ0q{
?
nN

2δ{8 ´ 1
` 2

“ 23`δ{8

2δ{8 ´ 1
` 2. (31)

Using the elementary inequality

11

δ
ă 1

2δ{8 ´ 1
ă 12

δ
for 0 ă δ ď 1, (32)

we get the following looser bounds:

q ě 22

δ
, q ď 24`1{8 ¨ 12

δ
` 2

δ
ď 107

δ
. (33)

Fix a δ ą 0, and choose M such that RpCq “ C ´ δ. We will

show that such random pΛ0, q,Mq ICs are list decodable with

constant list sizes. The proof is quite standard so we only

give a brief outline. Using q, we define a net for VpΛ0q `
Bp0,

?
nNq as follows: Y :“ 1

q
Λ0 X pVpΛ0q ` Bp0,

?
nNqq.

By the same argument as in the proof of Theorem 21, we have

Y Ă 1

q
Λ0 X p5.4VpΛ0qq,

and |Y| ď p5.4qqn. Let r :“
?
nN ` q´1rcovpΛ0q. For a set

A Ă R
n, define the shorthand notation A˚ :“ rAs mod Λ0.

For any x P C1, by Lemma 22,

Pr
“
x P B˚py, rq

‰
ď
ˆ

r

rcovpΛ0q2
δ{8

ˆ
1 ` rcovpΛ0q

qr

˙˙n

.

For any y, since each point in C1 is independent, for any 1 ď
i1 ă ¨ ¨ ¨ ă iL`1 ď M ,

Pr
”
@j P rL` 1s, xij

P B˚py, rq
ı

“
ź

jPrLs
Pr

”
xij

P B˚py, rq
ı

ď
ˆ

r

rcovpΛ0q2
δ{8

ˆ
1 ` rcovpΛ0q

qr

˙˙npL`1q
.

By union bound,

Pr
“
DL` 1 codewords in B˚py, rq

‰

ď
ˆ

M

L` 1

˙ˆ
r

rcovpΛ0q2
δ{8

ˆ
1 ` rcovpΛ0q

qr

˙˙npL`1q
.

Finally,

Pr rThe IC is not pN,Lq list decodables
ď PrrDy P VpΛ0q ` Bp0,

?
nNq, DL` 1 distinct codewords

in Bpy,
?
nNqs

ď PrrDy P Y, DL` 1 distinct codewords in

Bpy,
?
nN ` rcovpq´1Λ0qqs

ď
ÿ

yPY
Pr

”
DL` 1 codewords in B˚py,

?
nN ` q´1rcovpΛ0qq

ı

ď |Y|
ˆ

M

L` 1

˙ˆ
r

rcovpΛ0q2
δ{8

ˆ
1 ` rcovpΛ0q

qr

˙˙npL`1q
.

We then work with the exponent.

1

n
log Pr rThe IC is not pN,Lq list decodables

ď logp5.4qq ` pL` 1q
«
R ` 1

n
log pVnreffpΛ0qnq

` log
r

rcovpΛ0q ` δ

8
` log

ˆ
1 ` rcovpΛ0q

qr

˙ff
.

We note that

1

n
log pVnreffpΛ0qnq

ď 1

n
log pVnrcovpΛ0qnq

“ 1

n
log Vn ` log rcovpΛ0q

nÑ8— 1

n
log

«
1?
πn

ˆ
2πe

n

˙n{2ff
` log rcovpΛ0q

nÑ8— 1

2
log

2πe

n
` log rcovpΛ0q

“ 1

2
log

ˆ
2πe

n
rcovpΛ0q2

˙
.

Therefore

1

n
log Pr rThe IC is not pN,Lq list decodables

ď logp5.4qq ` pL` 1q
«
R ` 1

2
log

ˆ
2πe

n
rcovpΛ0q2

˙

` log
r

rcovpΛ0q ` δ

8
` log

ˆ
1 ` rcovpΛ0q

qr

˙ff
`op1q
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“ logp5.4qq ` pL` 1q
«
R ` 1

2
log

ˆ
2πer2

n

˙

` δ

8
` log

ˆ
1 ` rcovpΛ0q

qr

˙ff
`op1q.

By the choice of r, we know

r2

n
“ 1

n

ˆ?
nN ` rcovpΛ0q

q

˙2

“ N

ˆ
1 ` rcovpΛ0q

q
?
nN

˙2

.

The exponent can be simplified to

logp5.4qq ` pL` 1q
«
R ` 1

2
logp2πeNq

` log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙
` δ

8
` log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙ff

ď logp5.4qq ` pL` 1q
ˆ

´δ ` δ

8
` δ

8
` δ

8

˙

“ logp5.4qq ´ 5

8
δpL` 1q.

Observe that the above exponent is negative if L ą c1
δ
log q

for some constant c1 ą 0. Using the condition on q (Eqn. (33))

and following similar calculations that appear at the end of the

proof of Theorem 21, we conclude that there exists a constant

c ą 0 such that the probability that a random IC is not list

decodable is exponentially small in n if L ą c 1
δ
log 1

δ
. This

completes the proof.

B. List size lower bound

Lemma 29. Let C be an pα,Mq random IC chosen so as to

satisfy α “ 4
?
nN and RpCq “ C´δ where C “ 1

2
log 1

2πeN
.

Then,

Pr

„
C is

ˆ
N,O

ˆ
1

δ

˙˙
-list decodable


“ op1q.

Proof. The proof is almost identical to that of Proposition 18.

We only highlight the main differences here.

Let q be the smallest integer satisfying Eqn. (29) (recall that

this implies Eqn. (30) and (31), or more loosely, Eqn. (33)).

Define C :“ C1 ` 1
q
Λ0, where Λ0 is simultaneously good for

covering and packing, i.e., it satisfies both Eqn. (15) and (16);

C1 Ď 1
q
Λ0 X VpΛ0q is a set of M uniformly random and

independent points x1, ¨ ¨ ¨ ,xM in 1
q
Λ0 X VpΛ0q. Scale Λ0

such that rpackpΛ0q “ 2
?
nN . Let M “ 2npC´δq|VpΛ0q| for

some 0 ă δ ă 0.9.

Let M :“ rM s and Y :“ 1
q
Λ0 X pVpΛ0q ` Bp0,

?
nNqq.

Define the random variable

W :“
ÿ

yPY

ÿ

tm1,¨¨¨ ,mLuPpM

L q
1

!
xm1

, ¨ ¨ ¨ ,xmL
P B˚py,

?
nNq

)
,

(34)

where we use the following notation A˚ :“ rAs mod Λ0 for

any A Ă R
n.

We will upper bound

Pr rC is pN,Lq-list decodables

“ Pr

»
–

č

yPRn

!ˇ̌
ˇC X B

´
y,

?
nN

¯ˇ̌
ˇ ď L

)
fi
fl

ď Pr

»
–
č

yPY

!ˇ̌
ˇC1 X B˚

´
y,

?
nN

¯ˇ̌
ˇ ď L

)
fi
fl ,

ď Var rW s {E rW s2 .
1) Lower bounding E rW s: It turns out that the expectation

E rW s “
ÿ

yPY

ÿ

LPpM

L q
Pr

”
xL Ă B˚

´
y,

?
nN

¯ı
, (35)

where xL :“ txm : m P Lu, can be computed precisely.

The probability in the summand of the right-hand side

(RHS) of Eqn. (35) is

µL :“

¨
˝

ˇ̌
ˇ 1qΛ0 X B˚py,

?
nNq

ˇ̌
ˇ

ˇ̌
ˇ 1qΛ0 X VpΛ0q

ˇ̌
ˇ

˛
‚
L

.

Overall the expectation in Eqn. (35) equals

E rW s “ |Y|
ˆ
M

L

˙L

µL.

2) Upper bounding Var rW s: As in the proof of Proposi-

tion 18, E1, E2 and E3 are similarly defined and their proba-

bilities are similarly bounded.

Pr rE1s “

¨
˝

ˇ̌
ˇB

`?
nN

˘
X 1

q
Λ0

ˇ̌
ˇ

|Y|

˛
‚
2

“: η2,

Pr rE2 X E3|E1s ď µL´1µL´ℓ “ µ2L´ℓ´1.

Overall we have

Var rW s ď |Y|2
Lÿ

ℓ“1

M2L´ℓη2µ2L´ℓ´1 ď |Y|2LMLη2µL´1.

3) Wrapping things up: The probability that a random

infinite constellation is list decodable is at most

Var rW s
E rW s2

ď |Y|2 LMLη2µL´1

|Y|2 pM{Lq2Lµ2L
“ L2L`1M´Lη2µ´L´1.

We shall upper bound η and lower bound µ.

For η, we have

η “

ˇ̌
ˇBp

?
nNq X 1

q
Λ0

ˇ̌
ˇ

|Y| ď

ˇ̌
ˇBp

?
nNq X 1

q
Λ0

ˇ̌
ˇ

qn

ď
« ?

nN

rcovpΛ0q2
δ{8

ˆ
1 ` rcovpΛ0q

q
?
nN

˙ffn

,

where the first inequality is because

Y Ą 1

q
Λ0 X VpΛ0q ùñ |Y| ě qn.

For µ, we have

µ “

ˇ̌
ˇ 1qΛ0 X B˚py,

?
nNq

ˇ̌
ˇ

ˇ̌
ˇ 1qΛ0 X VpΛ0q

ˇ̌
ˇ

“

ˇ̌
ˇ 1qΛ0 X Bpy,

?
nNq

ˇ̌
ˇ

qn
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ě
« ?

nN

rcovpΛ0q2
δ{8

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙ffn

.

Therefore,

1

n
log

Var rW s
pE rW sq2

ď ´L
„
R ` 1

2
log

ˆ
2πe

n
rcovpΛ0q2

˙

` 2

«
log

?
nN

rcovpΛ0q ` δ

8
` log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙ff

´ pL` 1q
«
log

?
nN

rcovpΛ0q ` δ

8
` log

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙ff

“ ´L
«
R ` 1

2
log

ˆ
2πe

n
rcovpΛ0q2

˙
` log

?
nN

rcovpΛ0q

` δ

8
` log

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙ff

` 2

«
log

?
nN

rcovpΛ0q ` δ

8
` log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙ff

´
«
log

?
nN

rcovpΛ0q ` δ

8
` log

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙ff

“ ´L
„
R ` 1

2
logp2πeNq ` δ

8
` log

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙

` log

?
nN

rcovpΛ0q ` δ

8
` 2 log

ˆ
1 ` rcovpΛ0q

q
?
nN

˙

´ log

ˆ
1 ´ rcovpΛ0q

q
?
nN

˙
.

Recall that q satisfies Eqn. (29) which implies

log

˜
1 ´ rcovpΛ0q{

?
nN

q

¸

ą log

«
1 ´ rcovpΛ0q{

?
nN

prcovpΛ0q{
?
nNq{p2δ{8 ´ 1q

ff

“ logp2 ´ 2δ{8q ě ´δ

7
,

where the last inequality is true for any δ P p0, 1q. Using the

bounds on q, we get

1

n
log

Var rW s
pE rW sq2

ď ´L
ˆ

´δ ` δ

8
´ δ

7

˙
` log

?
nN

rcovpΛ0q

` δ

8
` δ

4
` δ

7
.

Recall the relation rcovpΛ0q ě rpackpΛ0q “ 2
?
nN . Then

1

n
log

Var rW s
pE rW sq2

ď 57

56
δL´ 1 ` 29

56
δ.

This exponent is negative if L ă 1´ 29
56

δ
57
56

δ
, or more loosely,

L ă 9
19δ

.

C. Other goodness properties

The random ICs defined in this section have other interesting

geometric properties which are much harder to prove for

lattices [11], for instance, packing goodness, AWGN goodness

and covering goodness. See Appendix C for statements and

proofs.

VIII. HAAR MEASURE ON Ln

Let us first ask ourselves: how do we define a random

lattice? To sample a random lattice from a certain ensemble,

we need to define a distribution on the set of all lattices. As

we know, a lattice is specified by its generator matrix and

thus it suffices to define a distribution over matrices.17 There

are several ensembles of matrices that are extensively studied

in the literature of random matrix theory. Such ensembles,

including the Gaussian ensemble, the Bernoulli ensemble,

etc., [59] are mostly defined by sampling entries iid from

simple distributions. However, we believe that such ensembles

will not give rise to interesting lattices, in the sense that the

resulting lattices are not likely to have nontrivial packing and

covering efficiencies simultaneously.

We give a heuristic argument to justify the above statement.

Suppose that we sample an n by n random matrix G over R by

sampling each entry iid according to N p0, σ2q for some fixed

constant deviation σ ą 0. By the high-dimensional geometry

of Gaussian random vectors, each column of G has L2-

norm highly concentrated around
?
nσ2 and is approximately

orthogonal to other columns. That is to say, the columns

tg
1
, ¨ ¨ ¨ ,g

n
u of G are basically a mildly perturbed version

of the standard orthonormal basis te1, ¨ ¨ ¨ , enu scaled by?
nσ2 (and potentially also rotated, which does not affect

most goodness properties of the resulting lattices we are

interested in). The lattice GZ
n cannot be good for packing

whp since Z
n (and also its scaling and rotation) has vanishing

packing efficiency —
a

πe
2n

as the dimension n tends to infinity.

Indeed, there is not much study on lattices resulting from

those canonical matrix ensembles. One can find related results

along this direction in [60]. Not surprisingly, it boils down to

understanding the singular value spectrum of G.

In the case of finite fields, it is known that a uniformly

random linear code has good list decoding properties. It would

therefore be a natural choice to study a random lattice drawn

uniformly over the set of all lattices of a fixed determinant.

Unfortunately, the space of such lattices is unbounded18 and

17Strictly speaking, each lattice is non-uniquely identified with a generator
matrix. Those matrices giving rise to the same lattice should be quotiented out
when one wants to define a distribution on lattices by defining it on matrices.
See Sec. IX for more formalisms.

18The unboundedness (wrt L2-distance) of the set of determinant-
1 lattices can be seen from the following example. The matrix»
————–

K
´ 1

n´1

. . .

K
´ 1

n´1

K

fi
ffiffiffiffifl

nˆn

generates a determinant-1 lattice for

every value of K ě 0. However, the L2-norm of (the vectorization of) the

matrix is

c´
K

´ 1
n´1

¯2
pn ´ 1q ` K2 Ñ 8 as K approaches infinity.
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hence it does not make sense to talk about uniform distribution

on it.

In the following section, we introduce the Haar distribution

over lattices, and survey some of the important results pertain-

ing to our discussions. For small enough subsets B of Rn, we

conjecture that the distribution of the number of lattice points

(which is a random variable if the lattice is drawn according

to the Haar distribution) in B looks like a Poisson distribution.

Expressions for the first opnq moments of the number of lattice

points have been derived in the literature. Encouraged by these

results, we make a conjecture about the first Opnq moments.

We then show that if this conjecture is true, then Haar lattices

achieve polyp1{δq list sizes.

IX. PRIOR WORK ON HAAR LATTICES

Let us first introduce the Haar distribution on the set of all

lattices. A more detailed exposition can be found in the thesis

of Kim [61].

For the convenience of illustration, let us collect all rank-n

lattices Λ Ă R
n with covolume one19 into a set Ln:

Ln :“ tΛ ď R
n lattice : detpΛq “ 1u .

A lattice in Ln is specified by its generator matrix G P
SLpn,Rq. However, one lattice Λ can have multiple different

generator matrices. Indeed, two matrices G and rG give rise

to the same lattice (i.e., GZ
n “ rGZ

n) iff they differ by an

SLpn,Zq matrix, i.e., GG1 “ rG where G1 P SLpn,Zq. Hence

Ln can be identified with the quotient space

Ln “ SLpn,Rq{SLpn,Zq.
Crucial to us is Haar’s seminal result on the existence of Haar

measure on any locally compact topological group. Specialized

to our setting, it was shown by Siegel [62] the existence and

finiteness of a certain nicely-behaved distribution on Ln.

Theorem 30 ([62]). There is a unique (up to a multiplicative

constant factor) measure µ (called the Haar measure or

the Haar–Siegel measure) on SLpn,Rq which satisfies the

following properties:

1) µ is left-SLpn,Rq-invariant, i.e., for any Borel subset

K Ď SLpn,Rq and any G P SLpn,Rq, µpKq “ µpGKq;

2) µ is finite, i.e., for any compact subset K Ď SLpn,Rq,

µpKq ă 8.

Note that we can normalize the Haar measure µ to make it a

probability distribution, i.e., µpSLpn,Rqq “ 1. In this paper we

always refer to the normalized version when talking about µ or

Haar measure. The Haar distribution on Ln naturally inherits

that on SLpn,Rq. We do not specify measure-theoretic details

which can be found in, e.g., [63]. With abuse of notation, we

use the same notation µ for the Haar measure on SLpn,Rq
and the induced Haar measure on Ln. Most of the time we

refer to the former one which will be clear from the context.

The above result only provides the existence and properties

of the Haar measure but does not provide an explicit form

of this measure. What does the Haar measure µ on SLpn,Rq
19This is without loss of generality since normalization does not affect

goodness properties.

look like? It can be checked that the Lebesgue measure on

R
n2

satisfies the properties 1 and 2 required in Theorem 30,

and hence is the Haar measure. Given any measure, besides

that we can use it to measure a compact subset of the space,

we can also integrate functions on the same space against this

measure. Since Haar measure is unique, we know that for

G P SLpn,Rq,

dµpGq “ dvec pGq ,

where vec pGq P R
n2

denotes the vectorization of G. Namely,

the Haar measure of a (measurable) set of matrices in SLpn,Rq
is equal to the Lebesgue measure of it when viewed as a set

of vectors in R
n2

.

As a byproduct of the above reasoning, we also know

that the Haar measure on GL pn,Rq is just the normalized

Lebesgue measure on R
n2

. For G P GL pn,Rq,

dµ pGq “ dvec pGq
det pGq1{n .

It is a valid definition since

det

ˆ
G

detpGq1{n

˙
“
ˆ

1

detpGq1{n

˙n

detpGq “ 1,

and the definition is reduced to the one on SLpn,Rq. Here

again with abuse of notation, we use the same notation for

Haar measure on SLpn,Rq and GLpn,Rq.

One may resort to Iwasawa (KAN) decomposition [63] for

a more explicit characterization of the Haar measure.

A. Siegel’s and Rogers’s averaging formulas

Let us first recall two fundamental averaging formulas

which are heavily used in the literature for understanding the

distribution of short vectors of a random lattice drawn from

the Haar distribution.

In the same seminal paper [62] in which Siegel showed the

existence and uniqueness of Haar distribution on the space of

unit-covolume lattices, he also proved the following averaging

formula.

Theorem 31 ([62]). Let ρ : R
n Ñ R be a bounded,

measurable, compactly supported function. Then

E
Λ„µ

»
–

ÿ

xPΛzt0u
ρpxq

fi
fl “

ż

Ln

ÿ

xPΛzt0u
ρpxqdµpΛq “

ż

Rn

ρpxqdx.

(36)

Remark 7. The requirement that we are allowed to evaluate the

function ρ only at nonzero lattice points could be potentially

inconvenient in applications. One can drop this condition by

paying an extra term, i.e., the value of ρ at the origin, on the

RHS of Eqn. (36) and the formula becomes

E
Λ„µ

«
ÿ

xPΛ
ρpxq

ff
“
ż

Ln

ÿ

xPΛ
ρpxqdµpΛq “ ρp0q `

ż

Rn

ρpxqdx.

(37)

These two forms are completely equivalent and we will state

only one of them but potentially use any of them without

further explanation depending on whichever is convenient.
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The identity holds in large generality for any reasonably nice

function ρ. Perhaps the most important consequence of this

formula is that it gives a way to estimate the number of lattice

points in a measurable set, which is in turn an ubiquitous

primitive in applications. Specifically, for our list decoding

purposes, essentially the only thing we need to control is the

number of lattice points in a ball. If we take

ρpxq :“ 1
 
x P Bpy, rq

(

to be the indicator function of an Euclidean ball centered at y

of radius r (which obviously satisfies the conditions required

by Theorem 31), then the left-hand side (LHS) of (36) is

nothing but the expected number of nonzero Haar lattice points

in the ball. Siegel’s formula tells us that this is equal to the

RHS of (36) which is actually the volume of the ball. This

matches our intuition that the number of lattice points in

any measurable set B should be roughly the ratio between

the volume of B and the volume of a Voronoi cell of the

lattice, i.e., |Λ X B| « VolpBq{detpΛq “ VolpBq since we

consider normalized lattices. Siegel’s formula indicates that

the Haar distribution on Ln behaves typically in a sense that

such intuition is indeed true in expectation.

One simple application of Theorem 31 is that it allows us to

control the rate of a Haar lattice code. For a lattice Λ „ Ln,

if we define the lattice code C to be Λ X Bp0,
?
nP q, then

Theorem 31 lets us conclude that

1

n
logEΛ r|C|s “ 1

2
logP ` op1q.

It turns out there is a higher-order generalization of Siegel’s

formula due to Rogers [64] which we introduce below.

Theorem 32 ([64], Theorem 4). Let k ă n be a positive

integer. Let

ρ : pRnqk Ñ R

be a bounded Borel measurable function with compact sup-

port. Then

E
Λ„µ

»
–

ÿ

x1,¨¨¨ ,xkPΛ
ρpx1, ¨ ¨ ¨ , xkq

fi
fl

“
ż

Ln

ÿ

x1,¨¨¨ ,xkPΛ
ρ px1, ¨ ¨ ¨ , xkqdµ pΛq (38)

“ ρ p0, ¨ ¨ ¨ , 0q `
ż

Rn

¨ ¨ ¨
ż

Rn

ρ px1, ¨ ¨ ¨ , xkqdx1 ¨ ¨ ¨ dxk ` E ,

where E is an error term defined as follows:

E :“
ÿ

p~α,~βq

8ÿ

ℓ“1

ÿ

D

«´e1
ℓ

¨ ¨ ¨ em
ℓ

¯n

ˆ

ż

Rn

¨ ¨ ¨
ż

Rn

ρ

˜
mÿ

i“1

Di1

ℓ
xi, ¨ ¨ ¨ ,

mÿ

i“1

Dik

ℓ
xi

¸
dx1 ¨ ¨ ¨ dxm

ff
.

Here the first sum is over all divisions p~α, ~βq “
pα1, ¨ ¨ ¨ , αm;β1, ¨ ¨ ¨ , βk´mq of the numbers 1, ¨ ¨ ¨ , k into two

sequences 1 ď α1 ă ¨ ¨ ¨ ă αm ď k and 1 ď β1 ă ¨ ¨ ¨ ă
βk´m ď k with 1 ď m ď k´ 1 and αi ‰ βj for any i, j. The

third sum is taken over all integral mˆk matrices D P Z
mˆk

such that

1) no column of D vanishes;

2) the greatest common divisor of all entries is 1;

3) for all i P rms, s P rms, t P rk ´ ms, Diαs
“ ℓ1ti “ su

and Diβt
“ 0 if βt ă αi.

Finally, ei “ pγi, ℓq, where γ1, ¨ ¨ ¨ , γm are the elementary

divisors (cf. [65]) of D.

If we take

ρ px1, ¨ ¨ ¨ , xkq :“ 1tx1 P Bu ¨ ¨ ¨1txk P Bu,

where B :“ Bpy, rq is a ball, then Rogers’s formula is precisely

computing

E
Λ„µ

”
|Λ X B|k

ı

for 1 ď k ď n´ 1.

The proof of Rogers’s averaging formula is highly nontrivial

and can be divided into three steps. Since the proof contains

several ingenious ideas and can be instructive for other pur-

poses, we sketch it below.

Step I. Consider any real-valued bounded Borel measurable

function of bounded support on unit-covolume lattices,

f : Ln Ñ R.

We will interchangeably think of f as a function on SL pn,Rq,

f : SL pn,Rq Ñ R

by interchangeably thinking of Λ as a lattice or its genera-

tor matrix. The function f can be naturally extended from

SL pn,Rq to GL pn,Rq by defining, for Λ P GL pn,Rq,

f pΛq :“ f |SLpn,Rq
´
det pΛq´1{n

Λ
¯
. (39)

Note that det pΛq´1{n
Λ always has determinant one.

Fix ω P Rą0. Let Θ “ Θ pθ1, ¨ ¨ ¨ , θn´1, ωq P R
nˆn be

drawn from the following ensemble
»
—————–

ω

ω
. . .

ω

ω´pn´1qθ1 ω´pn´1qθ2 ¨ ¨ ¨ ω´pn´1qθn´1 ω´pn´1q

fi
ffiffiffiffiffifl
,

(40)

where each θi „ U pr0, 1sq. Note that any matrix of the above

form has determinant one.

Remark 8. The reason behind the choice of this ensemble has

connections to number theory. This is well beyond the scope

of this paper and we refer interested readers to [66], [67] for

relevant background.

Let ~θ :“ pθ1, ¨ ¨ ¨ , θn´1q. The average of f wrt such an

ensemble can be written as

E
θ„Upr0,1sq

”
f
´
Θp~θ, ωqZn

¯ı

“
ż 1

0

¨ ¨ ¨
ż 1

0

f
´
Θp~θ, ωqZn

¯
dθ1 ¨ ¨ ¨ dθn´1.
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Let

M pfq :“ lim
ωÑ0` E

θ„Upr0,1sq

”
f
´
Θp~θ, ωqZn

¯ı
.

Rogers [64] showed the following (perhaps surprising)

identity.

Theorem 33 ([64], Theorem 1). Let ρ : Ln Ñ R be a

bounded, measurable, compactly supported function. Suppose

that the limit M pfq exists. Then

E
Λ„µ

rfpΛqs “
ż

Ln

f pΛqdµ pΛq “ M pfq .

A similar averaging result holds for Construction-A lattices.

See [68].

Step II. Equipped with the powerful Theorem 33, computation

regarding expectations wrt Haar distribution can be turned into

computation wrt the concrete ensemble defined in Eqn. (40).

Rogers then gave a formula for the expectation of functions

of a particular form by computing Mp¨q. It can be shown that

Eqn. (38) holds exactly true without the error term if we only

sum over linearly independent/full-rank k-tuples.

Theorem 34 ([64], Theorem 2, Lemma 1 and Theorem 3).

Let k and ρ be as in the setting of Theorem 32. Let

f 1pΛq :“
ÿ

x1,¨¨¨ ,xkPΛ
rktx1,¨¨¨ ,xku“k

ρpx1, ¨ ¨ ¨ , xkq.

Then

Mpf 1q “ρ p0, ¨ ¨ ¨ , 0q `
ż

Rn

¨ ¨ ¨
ż

Rn

ρ px1, ¨ ¨ ¨ , xkqdx1 ¨ ¨ ¨ dxk.
(41)

Step III. Rogers finally completed the proof of Theorem 32

by dropping the linear independence condition and lifting

Theorem 34 from f 1 to

fpΛq :“
ÿ

x1,¨¨¨ ,xkPΛ
ρpx1, ¨ ¨ ¨ , xkq

as promised in Theorem 32 at the cost of an extremely

complicated error term E .

B. Improvement on Rogers’s formula

Although we have Rogers’s higher-order averaging formula,

it turns out that the error term E is very tricky to control even if

we just plug in simple product functions. In the original paper

by Rogers [69], [70], he was only able to show convergence

of the first few moments of number of random lattice points

in a symmetric set of fixed volume. Nevertheless, an intriguing

Poisson behaviour was discovered and has been pushed to a

greater generality in recent years.20 We state below, as far as

we know, the strongest results along this direction.

20Actually, Rogers showed that, asymptotically in the number of dimensions
n, the first Op?

nq moments of the number of random lattices points in a set
S which is centrally symmetric wrt the origin exhibit the same behaviour as
a Poisson moment of the same degree with mean V {2, where V :“ VolpSq
is a constant independent of n. As we will see later, this is too weak for our
purpose of list decoding. However, it is the earliest result which kicks off a
fantastic adventure towards understanding the statistics of random lattices.

Let Y „ PoispV {2q be a Poisson random variable of mean

V {2 for some V to be specified later.

Kim showed the following improvement upon Rogers re-

sults.

Theorem 35 (Proposition 3.3 of [71]). Let B be a centrally

symmetric set in R
n of volume V . There exists constants

C, c ą 0 such that, if n is sufficiently large and V, k ď Cn,

then

Pr rY ě ks ´ e´cn ď Pr

„
1

2
|pΛzt0uq X B| ě k



ď Pr rY ě ks ` e´cn.

Note that the number of pairs of lattice points is considered

since if x P Λ then so is ´x. That is why there is a

normalization factor 1{2 in front of the number of nonzero

lattice points in B.

Strömbergsson and Södergren provided another improve-

ment on the distribution of short vectors in a random lattice.

Theorem 36 (Theorem 1.2 of [65]). Let B be an n-

dimensional Euclidean ball centered at the origin of volume

V . For any ε ą 0,

Pr

„
1

2
|pΛzt0uq X B| ď k


´ Pr rY ď ks nÑ8Ñ 0,

uniformly wrt all k, V ě 0 satisfying mintk, V u ď Oεpeεnq.

We remark that though both results by Kim and

Strömbergsson–Södergren are great extensions of Rogers’s

results to higher-order averaging formulas, they are not di-

rectly comparable. In Kim’s Theorem 35, the set B can

be any symmetric body, not necessarily convex. This is a

good news since in list decoding we care about the number

of lattice points in Bpy, rq for any possible received vector

y P Bp0,
?
nP `

?
nNqzBp0,

?
nP ´

?
nNq. Kim’s result

allows us to control that by taking B “ Bpy, rq \ Bp´y, rq
(assuming Bpy, rq X Bp´y, rq “ H). Obviously the configu-

ration of lattice points are symmetric in Bpy, rq and Bp´y, rq.

Hence |Λ X B| “ 2|Λ X Bpy, rq|. Also, Kim’s result holds for

k “ Opnq which is also sufficient in our application, as we

will see. Kim also quantified an exponential convergence rate.

Unfortunately, his result requires V to be Opnq, which is not

enough for us. On the other hand, Strömbergsson–Södergren’s

result pushed the volume V to exponentially large in n but

insists on B being a ball centered at the origin.

It should be intuitively clear that the Poissonianity behaviour

of the moments will not hold for arbitrarily large degrees and

for sets of arbitrarily large volume. The dimension that the

lattice is living in is only n. If we compute the moments

of very high degrees, we should expect to encounter some

nontrivial correlation which makes the moments tricky to

understand. Moreover, if we compute the moments of the

number of lattice points in a very large set, it should not be

surprising that at some point linearity of the lattices will kick

in and dominate the behaviour of the moments.

X. LIST DECODABILITY OF HAAR LATTICES

Given the state of the art of bounds on moments of the

number of Haar lattice points, we pose the following conjec-
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ture and use it to show conditional results on list decodability

of Haar lattices in the next section. The known properties of

the Haar distribution that we have outlined previously should

hopefully provide reasonable justification for why we believe

that our conjectures are true.

Conjecture 37 (Poisson moment assumption). Let B be any

symmetric set in R
n. Then there exist constants 0 ă c ă 1 and

C ą 0 large, such that if n is sufficiently large, |B| “ V ď 2Cn

and 0 ď k ď cn, the following holds

E
Y „PoispV {2q

“
Y k

‰
´ en ď E

Λ„µ

«ˆ |Λ X B|
2

˙k
ff

ď E
Y „PoispV {2q

“
Y k

‰
` En,

for some en, En ą 0 such that en, En
nÑ8ÝÝÝÑ 0. Recall that

the k-th moment of a Poisson random variable (Fact 9) is

E
Y „PoispV {2q

“
Y k

‰
“ e´V {2

8ÿ

i“0

ik

i!
pV {2qi.

Note that results/conjectures phrased using tail bounds or

moment bounds are essentially equivalent since one can be

converted to another using the well-known relation between

tails and moments. For any (continuous) random variable X

with known tails, we can estimate its moment via

E
“
|X|k

‰
“
ż 8

0

ktk´1 Pr r|X| ą ts dt.

For any (continuous) random variable X with known mo-

ments, we can bound its tail via the Chernoff-type inequality,

Pr r|X| ą ts ď E
“
|X|k

‰

tk
.

Previously, we showed that lattices and nested lattice codes

can achieve 2Op 1
δ
log2 1

δ
q list sizes whereas random spheri-

cal codes and periodic ICs achieve list sizes that grow as

Op 1
δ
log 1

δ
q. This leads to the natural question: Do there exist

lattices/nested lattice codes that achieve Oppolyp1{δqq list

sizes? Are the exponential growth of the list sizes a conse-

quence of structural regularity (i.e., linearity of the lattices)

or is it an artifact of our proof? We conjecture that lattices

can indeed achieve Oppolyp1{δqq although we are unable

to supply a complete proof at present. However, based on

some heuristic assumptions, we can “prove” that a different

ensemble of lattice codes (based on Haar lattices) achieve

Oppolyp1{δqq list sizes.

A. Conditional list decodability of Haar lattices

1) Codebook construction: Let R “ 1
2
log P

N
´ δ for

some small constant δ ą 0. Sample a lattice Λ from the

Haar distribution on Ln. The lattice codebook is nothing but

C :“ αΛ X Bp0,
?
nP q where α is defined below. Note that

|C| “
ˇ̌
ˇαΛ X Bp0,

?
nP q

ˇ̌
ˇ “

ˇ̌
ˇΛ X α´1Bp0,

?
nP q

ˇ̌
ˇ .

By Siegel’s formula (Theorem 31), the expected number of

codewords in the codebook is

E r|C|s “Vol
`
Bn

`
0,

?
nP

˘˘

αn
“

?
nP

n
Vn

αn
.

Setting this equal to 2nR, we have

α “
?
nPV

1{n
n

2R
—

?
2πeP

2R
.

This coupled with the proceeding computation will provide the

(conditional) existence of a pP,N, polyp1{δqq-list decodable

lattice code.

2) Under distribution assumption: Heuristically and unre-

alistically, we first assume that the number of lattice points

follows exactly a Poisson distribution, i.e., every moment of

it is Poissonian.

Heuristic 38 (Poisson distribution assumption). Let Λ be a

random lattice drawn from the Haar distribution on Ln. If

B is any centrally symmetric measurable set with nonempty

interior, then |Λ X B|{2 „ PoispVolpBq{2q.

This assumption is not believed to be true. As we mentioned

before, at some point the linearity of the lattice should kick

in and the moments are expected to diverge from Poissons as

the order of the moments grows. Nevertheless, in this section

we still conduct computation under this assumption that seems

too good to be true. The result sets the bar for the “best” list

decoding performance one can hope for, though it may never

be reached in reality.

Another motivation for doing these calculations is that

the same quantitative results under the the distributional as-

sumption can be viewed as rigorous results for another code

ensemble, that is, a Poisson point process (PPP) restricted to

a ball. A homogeneous PPP has the property that the number

of points in any compact set B with nonempty interior is

distributed according to PoispVolpBqq. One subtle difference

between this and the distribution assumption is that for lattices

we need to normalize the number of lattice points in B by 1{2.

This is due to the linear structure of Λ – if x P Λ, then ´x P Λ

with probability 1. Therefore, for any conjecture of this kind

to make sense, the normalization factor 1{2 is necessary.

Under the construction in Sec. X-A1, invoking Heuristic 38,

we can get a high-probability guarantee on the size of the

codebook. First note that

Vol
´
α´1B

´
0,

?
nP

¯¯
“E r|C|s “ 2nR.

By the Poisson tail bound (Lemma 12),

Pr

„ˇ̌
ˇ̌ |C|
2

´ 2nR
ˇ̌
ˇ̌ ě 1

2
2nR


ď 2 exp

ˆ
´ p0.5 ¨ 2nRq2
2 ¨ p2nR ` 0.5 ¨ 2nRq

˙

“ 2 exp

ˆ
´2nR

24

˙
.

That is to say, with probability at least 1´e´Ωp2nRq, 0.5¨2nR ă
|C|{2 ă 1.5 ¨ 2nR, i.e., 2nR ă |C| ă 3 ¨ 2nR. Therefore, the

rate RpCq of the code is 1
2
log P

N
´ δ ` op1q.

We then upper bound the following probability of failure of

list decoding:

Pr
”
Dy P Bn

´
0,

?
nP `

?
nN

¯
,
ˇ̌
ˇαΛ X Bn

´
y,

?
nN

¯ˇ̌
ˇ ą L

ı
.

(42)
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Take an optimal
?
nε-covering Y of Bn

`
0,

?
nP `

?
nN

˘
. It

can be achieved that

|Y| “
˜
Vol

`
Bn

`
0,

?
nP `

?
nN ` ?

nε
˘˘

Vol pBn p0,?nεqq

¸1`op1q

“
˜?

P `
?
N ` ?

ε?
ε

¸p1`op1qqn

ď
´c2
δ

¯n

,

where in the last step we set ε :“ c1δ
2. Then the probabil-

ity (42) is upper bounded by

Pr
”
Dy P Y,

ˇ̌
ˇαΛ X Bn

´
y,

?
nN `

?
nε

¯ˇ̌
ˇ ą L

ı

ď
ÿ

yPY
Pr

”ˇ̌
ˇαΛ X Bn

´
y,

?
nN `

?
nε

¯ˇ̌
ˇ ą L

ı
. (43)

Let

B1 :“ 1

α
Bn

´
y,

?
nN `

?
nε

¯
Y 1

α
Bn

´
´y,

?
nN `

?
nε

¯
,

B2 :“ 1

α
Bn

´
y,

?
nN `

?
nε

¯
X 1

α
Bn

´
´y,

?
nN `

?
nε

¯
.

Note that

VolpB1q ` VolpB2q “ 2Vol

ˆ
1

α
Bn

´?
nN `

?
nε

¯˙
. (44)

By our assumption (Heuristic 38) in this section,

1

2

ˇ̌
ˇΛ X α´1Bn

´
y,

?
nN `

?
nε

¯ˇ̌
ˇ

ď 1

2
|Λ X B1|

„ PoispVolpB1q{2q
ď PoispVolpB1q{2q ` PoispVolpB2q{2q

“ Pois

ˆ
VolpB1q ` VolpB2q

2

˙
(45)

“ Pois
´
Vol

´
α´1Bn

´?
nN `

?
nε

¯¯¯
. (46)

Eqn. (45) and (46) follow from Fact 10 and Eqn. (44), respec-

tively. Plugging the parameters into the bound in Lemma 11,

we can upper bound the probability in Eqn. (43) by

Pr

«ˇ̌
ˇ̌
ˇΛ X Bn

˜
α´1y,

?
nN ` ?

nε

α

¸ˇ̌
ˇ̌
ˇ ą L

ff

ă e´V peV qL{2

pL{2qL{2 , (47)

where

V :“ Vol

˜
Bn

˜?
nN ` ?

nε

α

¸¸
“
˜?

nN ` ?
nε

α

¸n

Vn

— 2
n
´
R´ 1

2
log P

N`2
?

Nε`ε

¯

« 2´c3n
?
ε ă L. (48)

In the last step of the above chain of equalities, we set c3 «
1{?

c1 ´ plog eq{
?
N and use that R “ 1

2
log P

N
´ δ, ε “ c1δ

2

and logp1 ` xq « plog eqx. Hence the RHS of the tail (47) is

exp
´

´2´c3n
?
ε
¯´

e2´c3n
?
ε
¯L{2

{pL{2qL{2

—
ˆ

e

L{2

˙L{2
2´c3n

?
εL{2. (49)

Taking a union bound over Y , the overall probability of failure

of list decoding (Eqn. (42)) is at most

ˆ
e

L{2

˙L{2
2´c3n

?
εL{2

´c2
δ

¯n

“
ˆ

e

L{2

˙L{2
2´npc3?

c1δL{2´log
c2
δ q.

The multiplicative factor
´

e
L{2

¯L{2
is going to be negligible

once n is sent to infinity. The exponent is negative if we set

L to be c1 1
δ
log 1

δ
for some appropriate constant c1.

The above calculations indicate that, under the Poisson

distributional assumption of the number of lattice points in

a set, a random lattice (appropriately scaled) drawn from the

Haar measure performs as well as uniformly random spherical

codes. We therefore have the following result:

Lemma 39. If Heuristic 38 is true, then there exists a lattice

Λ such that Λ X Bp0,
?
nP q has rate CpP,Nq ´ δ and is`

P,N,Op 1
δ
log 1

δ
q
˘
-list decodable.

3) Under moment assumption: Now instead of assuming

that the number of lattice points in any symmetric body has

Poisson distribution, we only assume that its first k moments

match Poisson moments.

First note that the rate of the code is still well concentrated:

Pr

„ˇ̌
ˇ̌ |C|
2

´ 2nR
ˇ̌
ˇ̌ ě 2npR`δ{2q


ď Var r|C|{2s

`
2npR`δ{2q

˘2

ď 2nR

2np2R`δq

“ 2´npR`δq.

The second inequality follows since the first and second mo-

ments of |C|{2 are the same as those of Poisp2nRq. Therefore

RpCq “ R ` δ{2 ` op1q “ 1
2
log P

N
´ δ{2 ` op1q.

Let

X “ 1

2

ˇ̌
ˇ̌
ˇΛ X Bn

˜?
nN ` ?

nε

α

¸ˇ̌
ˇ̌
ˇ . (50)

By Conjecture 37 and Fact 9, for any 0 ď m ď k,

E rXms — E rY ms “ e´λ
8ÿ

j“0

λjjm

j!
,

where Y „ Pois pλq, λ “ V {2 and V is given by formula (48).

Indeed,

λ « 1

2
¨ 2´c3n

?
ε nÑ8Ñ 0. (51)

Then the probability in Eqn. (43) can be upper bounded by

Pr
“
Xk ą pL{2qk

‰
ă E

“
Xk

‰
{pL{2qk “ E

“
Xk

‰
e´k lnpL{2q.

Let k “: cn where 0 ă c ă 1 is a constant. If E
“
Xk

‰
ď e´nD

for some D ą 0, then after taking a union bound over y P Y ,

we are in good shape if

e´npD`c ln L
2

´ln
c2
δ q nÑ8Ñ 0. (52)
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Now let us compute the k-th moment.

E
“
Xk

‰
“e´λ

8ÿ

j“0

λjjk

j!

—
ÿ

jě0

λjjk
?
2πj pj{eqj

(53)

“
ÿ

jě0

exp

ˆ
j lnλ` k ln j ´ j ln j ` j ´ 1

2
ln p2πjq

˙
,

where in Eqn. (53) we use Stirling’s approximation

(Lemma 13). As we know, a sum of exponentials is dominated

by the largest term. Let us compute the largest one. Define

function

f pjq :“ ´j ln j ` plnλ` 1q j ` pk ´ 1{2q ln j ´ 1

2
ln p2πq .

Its first derivative is given by

df

dj
“ lnλ` k ´ 1{2

j
´ ln j.

Setting it equal to zero and solving the equation, we get the

critical point

j˚ :“ k ´ 1{2
W

´
k´1{2

λ

¯ ,

where W p¨q is the Lambert W function which is the inverse

of gpxq “ xex. The function W p¨q satisfies the following

estimate for sufficiently large x,

W pxq “ lnx´ ln lnx` op1q.

Note that, by Eqn. (51),

k ´ 1{2
λ

“ pcn´ 1{2q ¨ 2 ¨ 2c3n
?
ε nÑ8Ñ 8.

Hence

W

ˆ
k ´ 1{2

λ

˙
— ln ppcn´ 1{2q ¨ 2q ` c3n

?
ε ln 2

` ln
`
ln ppcn´ 1{2q ¨ 2q ` c3n

?
ε ln 2

˘

“ ln 2 ¨ c3
?
ε ¨ np1 ` op1qq.

We thus have

j˚ — c

ln 2 ¨ c3
?
ε
. (54)

Furthermore,

d2f

dj2
“ ´1

j
´ k ´ 1{2

j2
ă 0

since k “ cn ą 1{2 (where c ą 0 is a constant) for sufficiently

large n. Therefore, f is concave and attains its maximum at

j˚. Plug j˚ (Eqn. (54)) into f ,

fpj˚q “ ´ j˚ ln j˚ ` plnλ` 1q j˚ ` pcn´ 1{2q ln j˚

´ 1

2
ln p2πq

“ ´ c

ln 2 ¨ c3
?
ε
ln

ˆ
c

ln 2 ¨ c3
?
ε

˙

`
`
´ ln 2 ¨ c3

?
ε ¨ n` 1

˘ c

ln 2 ¨ c3
?
ε

` pcn´ 1{2q ln
ˆ

c

ln 2 ¨ c3
?
ε

˙
´ 1

2
ln p2πq

“ ´n p1 ` op1qq
ˆ
c´ c ln

c

ln 2 ¨ c3
?
ε

˙
.

Finally, the exponent of expression (52) is

D ` c ln
L

2
´ ln

c2

δ

« c´ c ln
c

ln 2 ¨ c3
?
ε

` c ln
L

2
´ ln

c2

δ

“ c lnL´ pc` 1q ln 1

δ
` c´ c ln

2c

ln 2 ¨ c3
?
c1

´ ln c2.

In order for it to be positive as δ Ñ 0, we had better set

L “ p1{δqa, where ac ą c ` 1, i.e., a ą 1 ` 1{c. If we only

assume the first k “ cn ă n moments are Poissonian for some

c “ 1
1`γ

ă 1 where γ ą 0 is a some small positive constant,

then we need to take a ą 2 ` γ.

Therefore, we have proved the following lemma.

Lemma 40. If Conjecture 37 is true, then there exists a lattice

Λ such that Λ X Bp0,
?
nP q has rate CpP,Nq ´ δ and is`

P,N,Op1{δ1`1{cq
˘
-list decodable where 0 ă c ă 1 is given

in Conjecture 37.

B. Remark

Careful readers might have observed that in order to prove

Lemma 40, we do not really need the first cn moments to

be Poisson. It suffices to show that the first cn moments

are bounded from above by a quantity that is subexponential

in n. However, we are optimistic that a result similar to

Conjecture 37 can indeed be proved for the Haar distribution

on Ln.

XI. CONCLUDING REMARKS AND OPEN PROBLEMS

In this paper we initiate a systematic study of the list size

problem for codes over R. In particular, upper bounds on

list sizes of nested Construction-A lattice codes and infinite

Construction-A lattices are exhibited. Similar upper bounds are

also obtained for an ensemble of regular infinite constellations.

Matching lower bounds for such an ensemble are provided.

Other coding-theoretic properties are studied by the way. Our

lower bound for random spherical codes also matches the

upper bound in previous work. A caveat is that all of our

bounds are concerned with typical scaling of the list sizes of

random codes sampled from the ensembles of interest. The

extremal list sizes may be smaller than our lower bounds. We

conclude the paper with several open questions.

1) Careful readers might have already noted that a missing

piece in this work is a list size lower bound for random

Construction-A lattice codes. We had trouble replicating

the arguments in [19]. We leave it as an open question

to get a polyp1{δq list size lower bound.

2) Can one sample efficiently from the Haar distribution on

the spaces of our interest? In particular, can one sample

efficiently a generator matrix G from the Haar distribu-

tion µ on SLpn,Rq? Can one sample eficiently a lattice Λ

from the Haar distribution µ on SLpn,Rq{SLpn,Zq? To
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this end, we can think of SLpn,Rq as a codimensional-

one hypersurface in R
n2

cut off by the equation

detpGq “ 1. Readers from the Monte Carlo Markov

Chain (MCMC) community may be interested in such

problems.

3) A very intriguing question which we are unable to resolve

in this work is to bring down the exponential list size of

random Construction-A lattice codes. We do not believe

that our upper bound is tight. A starting step towards this

goal is probably to obtain an averaging formula custom

tailored for Construction-A lattices. Indeed, Loeliger [68]

has proved a first-order averaging formula for (appro-

priately scaled) Construction-A lattices as an analog of

Siegel’s formula for Haar lattices. Specifically, consider

an ensemble of Construction-A-type lattices Λ :“ 1
α

pC `
qZnq where C „ Grpκ,Fn

q q is a uniformly random

κ-dimensional subspace of F
n
q . Then for any bounded

measurable compactly supported function ρ : Rn Ñ R, it

holds that

E
C„Cn,κ

»
–

ÿ

xPΛzt0u
ρpxq

fi
fl

“ 1

|Cn,κ|
ÿ

CPCn,κ

ÿ

xPΛzt0u
ρpxq

αÑ8,q{αÑ8ÝÝÝÝÝÝÝÝÝÑ detpΛq´1

ż

Rn

ρpxqdx,

where Cn,κ :“ Grpκ,Fn
q q and the covolume

detpΛq “
ˆ
1

α

˙n

rZn : pC ` qZnqs

“ |Zn{pC ` qZnq| {αn “ qn´κ{αn,

is kept fixed. Can one lift Loeliger’s formula to k-variate

functions ρ : pRnqk Ñ R and get a higher-order averag-

ing formula for Construction-A lattices as an analog of

Rogers’s formula for Haar lattices?

4) Can one compute similar moments for random

Construction-A lattices? Given a random Construction-A

lattice Λ “ q´1C ` Z
n where C is a κ-dimensional

random linear code in F
n
q , compute the k-th moment

E

”ˇ̌
Λ X Bn

2 py,
?
nNq

ˇ̌kı
for any y P R

n and for k as

large as possible. For random binary linear code over

F
n
2 of rate 1 ´ Hppq ` δ,21 Linial and Mosheiff [72]

recently managed to characterize the first Opn{ log nq
moments of the number of codewords in a Hamming

sphere of radius np. It turns out that the normalized

centered moment

E
“
p|C X SHp0, npq| ´ E r|C X SHp0, npq|sqk

‰

Var r|C X SHp0, npq|sk{2

behaves like the moment of a Gaussian (recall Fact 8)

up to some threshold k ă k0, where k0 is 3 or 4 for δ

21Note that such a code operates at a rate above capacity and the corre-
sponding moments they are interested in are exponentially large. Indeed, they
instead consider centered moments E

“
pX ´ E rXsqk

‰
.

not too small. From k0 on, linearity quickly kicks in and

dominates the behaviour of the moments.

5) We showed that Haar lattices of rate 1
2
log P

N
´ δ

are pP,N, polyp1{δqq-list decodable whp conditioned on

Conjecture 37. Can one show other coding-theoretic

goodness properties under the conjecture? It is known

that Haar lattices are good for packing [47]. Are they

also good for covering, AWGN, quantization, etc.?

6) In this paper, the list decodability of two ensembles

(Construction-A and Haar) of lattices are considered. The

ultimate goal is to find an explicit pP,N, polyp1{δqq-list

decodable lattice code of rate 1
2
log P

N
´δ. Recently Kauf-

man and Mass [73] constructed explicit lattices of good

distance from high dimensional expanders. However,

there is no explicit bound on the covolume of the lattice.

Therefore, it is unclear whether their construction is good

for packing. Moreover, their results are conditioned on

the conjecture that the cohomology group of Ramanujan

complexes with integer coefficients is large.

7) Our lower bounds on list sizes only indicate typical

behaviours of ensembles of random lattices. This does

not exclude the existence of codes with smaller list

sizes. Can one prove a lower bound on list sizes of

general codes over reals? Namely, for any 2nR points

on Sn´1
`
0,

?
nP

˘
, how large can L be such that one

can always find a position y to which there are at least

L points that are
?
nN -close?
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APPENDIX A

TABLE OF NOTATION

Symbol Section Description Definition/Value/Range

An´1 Throughout the paper Area of an pn´1q-dimensioinal

unit sphere

An´1 :“ AreapSn´1
2 q

A Sec. VI, VII Cube of side length α A :“ r´α{2, α{2qn

C
Sec. II

List decoding capacity C :“ 1 ´Hqppq P r0, 1s
List decoding capacity C :“ 1 ´ p P r0, 1s

Throughout the paper List decoding capacity C :“ 1
2
log P

N
P Rě0

C

Sec. II Code C P
`
F
n
q

qnR

˘

Throughout the paper Code C Ă R
n of size 2nR

Sec. I-A, VI, VII IC C Ă R
n

CpLq Sec. II List-L capacity See Eqn. (1)

CrandpWq Sec. II Random code capacity CrandpWq :“ maxP minPxsy“PxPsWy|xs : Px“P Ipx;yq
G

Throughout the

paper

Generator matrix of a linear

code

G P F
nˆκ
q

Generator matrix of a lattice G P R
nˆκ

k
Sec. IX, X Degree of moments k “ cn

Sec. XI Degree of moments k “ Opn{ log nq
ℓ Sec. V Log of list size ℓ :“ logqpL` 1q
L Throughout the paper List size L P rqnRs
L Throughout the paper List L P

`
C

ďL

˘

Ln Sec. IX, X Space of determinant-1 lattices Ln :“ tΛ ď R
n lattice : detpΛq “ 1u

m Sec. IV, V Message m P rqnRs
M

Sec. IV, V Number of messages/size of

codebook

M :“ |M| “ qnR

Sec. II Symmetrizability See Eqn. (2)

M Sec. IV, V Set of messages M :“
 
0, 1, ¨ ¨ ¨ , 2nR ´ 1

(

n Throughout the paper Blocklength n P Zą0

N Throughout the paper Adversary’s power constraint N P Rą0

p Sec. II Adversary’s power constraint p P r0, 1s
P Throughout the paper Transmit power constraint P P Rą0

PpΛq Sec. V Fundamental parallelepiped PpΛq :“ tGx : x P r0, 1qnu
q Throughout the paper Characteristic of finite field Prime number

QΛp¨q Sec. V Lattice quantizer See Eqn. (14)

rcov Sec. V Covering radius of a lattice See Appendix V-B

reff
Sec. V Effective radius of a lattice See Appendix V-B

Sec. I-A, VI, VII Effective radius of an infinite

constellation

See Def. 3

rpack Sec. V Packing radius of a lattice See Appendix V-B

R Throughout the paper Rate of a code
log |C|

n
P Rą0

s Throughout the paper Jamming vector s P Bp0,
?
nNq

V pCq Sec. I-A, VI, VII Effective volume of an IC V pCq “ 1{∆pCq
Vn Throughout the paper Volume of an n-dimensioinal

unit ball

Vn :“ VolpBn
2 q

VpΛq Sec. V, VI Fundamental Voronoi region VpΛq :“ tx P R
n : QΛpxq “ 0u

W Sec. IV, VII Witness of list decodability See Eqn. (8), (34)

W p¨|¨, ¨q Sec. II Transition probability of an

AVC

W : Y ˆ X ˆ S Ñ r0, 1s

W Sec. II AVC W :“ tW p¨|¨, sq, s P Su
x Throughout the paper Transmitted codeword x P C

X Sec. X Number of lattice points in a

ball

See Eqn. (50)

y Throughout the paper Received word y “ x`s P Bp0,
?
nP `

?
nNqzBp0,

?
nP ´

?
nNq
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Y Sec. IX, X Poisson random variable Y „ PoispV {2q
Y Throughout the paper Net for y’s See specific definitions

z Sec. VII AWGN R
n Q z „ N p0, σ2Iq

α Throughout the paper Side length of A α P Rą0

δ
Throughout the paper Gap to capacity δ :“ C ´R P Rą0

Sec. I-A, VI, VII Gap between reffpCq and
?
nN δ :“ log

reff pCq?
nN

∆pCq Sec. I-A, VI, VII Density of an IC ∆pCq :“ lim supaÑ8
|CXr0,asn|

an

ε Throughout the paper Parameter of a net See specific definitions

Θ Sec. IX Rogers’s ensemble Θ “ Θpθ1, ¨ ¨ ¨ , θn´1, ωq (Eqn. (40))

κ Throughout the paper Dimension of a linear code or a

lattice

κ P t0, 1, ¨ ¨ ¨ , nu

Λ Throughout the paper Lattice Λ ď R
n

µ Sec. IX, X Haar measure on SLpn,Rq, Ln

or GLpn,Rq
See Theorem 30

τ Sec. II Gap to list decoding radius τ :“ 1 ´ 1{q ´ p P Rą0

Φ Sec. V Natural embedding Φ: Fq Ñ Z

ψ Sec. IV, V, VII Encoding function ψ : M Ñ C

r¨s mod A Sec. VI, VII Quantization error wrt αZn r¨s mod A :“ ¨ mod αZn

r¨s mod Λ Sec. V Lattice quantization error r¨s mod Λ :“ ¨ ´QΛp¨q
p¨q˚ Sec. VI, VII Set modulo αZn p¨q˚ :“ ¨ mod A
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APPENDIX B

PROOF OF EQN. (10) AND (11)

A. A covering lemma

Before proving Eqn. (10) and (11), we need the following

lemma. It guarantees the existence of a covering of a sphere

which is sufficiently spread out in the sense that the fraction

of points in any spherical cap does not deviate much from the

corresponding volume ratio.

Lemma 41. Let r ą 0 and ε ą 0 sufficiently small. There

exists a subset Y of the sphere Sn´1p0,?nrq such that

1) for every y P Sn´1p0,?nrq, there exists y1 P Y with

}y ´ y1} ď ?
nε;

2) |Y| “ pc{?
εqnp1`op1qq for some c ą 0 that is independent

of n and ε but depends on r;

3) for every y P Sn´1p0,?nrq and every 0 ă ρ ă r,

ˇ̌
Y X Capn´1py,?nρq

ˇ̌

|Y|

ě 1

2

Area
`
Capn´1pz,?np?

ρ´ ?
εℓqq

˘

Area pSn´1p?
nrqq ,

ˇ̌
Y X Capn´1py,?nρq

ˇ̌

|Y|

ď 3

2

Area
`
Capn´1pz,?np?

ρ` ?
εuqq

˘

Area pSn´1p?
nrqq ,

where

εℓ :“
ˆ

1

4
?
r

` 3

2

˙2

ε, εu :“ 9

4
ε.

Proof. Let Y be a set of M “ p1 ` op1qq
?
2πn

`
4
a

r
ε

˘n´1

points y
1
, ¨ ¨ ¨ ,y

M
each independent and uniformly dis-

tributed on Sn´1p0,?nrq. Note that M “ pc{?
εqn`opnq for

some c independent of n and ε (but dependent on r), which

satisfies property 2. We will show that such a Y satisfies all

properties in Lemma 41 with high probability.

By a standard volume argument, there exists a
?
nε1-net

Z of Sn´1p0,?nε1q satisfying properties 1 and 2 with ε

replaced with ε1 “ ε{4 (and the constant c needs to be

adjusted accordingly).

Pr
”
Dy P Sn´1p0,

?
nrq, @i P rM s, }y ´ y

i
} ą

?
nε

ı

ď Pr
”
Dz P Z, @i P rM s, }z ´ y

i
} ą

?
nε´ ?

nε1

ı

ď
ÿ

zPZ

ź

iPrMs
Pr

”
}z ´ y

i
} ą

a
nε{4

ı

ď
ˆ

c?
ε1

˙n`opnq
¨
˝1 ´

Area
´
Capn´1p

a
nε{8q

¯

Area pSn´1p?
nrqq

˛
‚
M

(55)

ď
ˆ

c?
ε1

˙n`opnq
¨
˝1 ´

Vol
´
Bn´1p

a
nε{8q

¯

Area pSn´1p?
nrqq

˛
‚
M

(56)

“
ˆ

c?
ε1

˙n`opnq ˜
1 ´ Vn´1

An´1

c
ε

8r

n´1
¸M

“
ˆ

c?
ε1

˙n`opnq ˜
1 ´ 1 ` op1q?

2πn

c
ε

8r

n´1
¸M

(57)

“
ˆ

c?
ε1

˙n`opnq
ˆ

˜
1 ´ 1 ` op1q?

2πn

c
ε

8r

n´1
¸p1`op1qq

?
2πn

?
8r
ε

n´1?
2
n´1

(58)

ď
ˆ

c?
ε1

˙n`opnq
e´

?
2
n´1

. (59)

Eqn. (55) follows since the set!
y P Sn´1p?

nrq : }z ´ y} ď
a
nε{4

)
forms a cap of

radius
?
nε1 where ε1 can be determined by inspecting the

geometry. Specifically,
?
ε1 “ ?

r sin θ, where θ satisfies

cos θ “ r ` r ´ ε{4
2r

“ 1 ´ ε

8r
.

Therefore,

ε1 “
?
r

c
1 ´

´
1 ´ ε

8r

¯2

ě
?
r

c
ε

8r
“
a
ε{8,

where the inequality follows since 1 ´ p1 ´ xq2 ě x for any

0 ď x ď 1. Eqn. (56) follows since Area
`
Capn´1pγq

˘
ě

Vol
`
Bn´1pγq

˘
for any γ ą 0. In Eqn. (57), the ratio

Vn´1{An´1 is given by

Vn´1

An´1

“
1?

πpn´1q

´
2πe
n´1

¯n´1
2

a
n
π

`
2πe
n

˘n
2

p1 ` op1qq

“ 1?
2πen

ˆ
n

n´ 1

˙n{2
p1 ` op1qq

Ñ 1?
2πn

p1 ` op1qq.

Eqn. (58) is by the choice of M . Eqn. (59) follows from the

inequality p1 ´ 1{xqx ď 1{e for x ě 1. Therefore, property 1

holds with probability at least 1 ´ e´eΩpnq
.

To show property 3, we quantize the interval r0, rs using an

ε2-net t0, ε2, 2ε2, ¨ ¨ ¨ , tr{ε2u ε2u. Such a net satisfies that for

any ρ P r0, rs, there exists τ P I with |τ ´ ρ| ď ε2. Let

γℓ :“
Area

`
Capn´1p?

np?
ρ´ ?

εℓqq
˘

Area pSn´1p?
nrqq ,

γu :“ Area
`
Capn´1p?

np?
ρ` ?

εuqq
˘

Area pSn´1p?
nrqq .

We then bound the probability that property 3 is violated.

Pr

«
Dy P Sn´1p0,

?
nrq, Dρ P r0, rs,

ˇ̌
Y X Capn´1py,?nρq

ˇ̌

M
R
„
1

2
γℓ,

3

2
γu

ff
(60)

ď Pr

«
Dz P Z, Dτ P I, }z ´ y} ď ?

nε1, |τ ´ ρ| ď ε2,
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ˇ̌
Y X Capn´1pz,?nτq

ˇ̌

M
R
„
1

2
γℓ,

3

2
γu

ff

ď
ÿ

zPZ

ÿ

τPI

˜
Pr

« ˇ̌
Y X Capn´1pz,?nτℓq

ˇ̌

M
ă 1

2
γℓ

ff

` Pr

« ˇ̌
Y X Capn´1pz,?nτuq

ˇ̌

M
ą 3

2
γu

ff¸
. (61)

We choose radii τℓ and τu such that

Capn´1pz,?nτℓq Ă Capn´1py,?nρq Ă Capn´1pz,?nτuq.
In what follows, we derive lower and upper bounds on τℓ and

τu, respectively. The geometry is depicted in Fig. 3.

For notational convenience, let ρℓ :“ ρ´ε2 and ρu :“ ρ`ε2.

Let αℓ, αu, β be defined as:

sinαℓ “
c
ρℓ

r
,

sinαu “
c
ρu

r
,

cosβ “ r ` r ´ ε1

2r
“ 1 ´ ε1

2r
.

For τℓ, we have
?
τℓ “

?
r sinpαℓ ´ βq

“
?
rpsinαℓ cosβ ´ cosαℓ sinβq

“
?
r

˜c
ρℓ

r

´
1 ´ ε1

2r

¯
´
c
1 ´ ρℓ

r

c
1 ´

´
1 ´ ε1

2r

¯2

¸

ě ?
ρℓ

´
1 ´ ε1

2r

¯
´ ?

r ´ ρℓ

c
ε1

r
(62)

ě ?
ρ´ ε2

´
1 ´ ε1

2r

¯
´ ?

ε1 (63)

ě p?
ρ´ ?

ε2q
´
1 ´ ε1

2r

¯
´ ?

ε1 (64)

ě ?
ρ´

?
ρε1

2r
´ ?

ε2 ´ ?
ε1 (65)

ě ?
ρ´

ˆ
1

2
?
r

` 1

˙?
ε1 ´ ?

ε2. (66)

Eqn. (62) follows from the elementary inequality: 1 ´ p1 ´
xq2 ď 2x for any x ě 0. Eqn. (63) is by the assumption

ρ ă r. Eqn. (64) follows from the fact that
?
x´ y ě ?

x´?
y

for any x ě y ě 0. In Eqn. (65), we drop the term
?
ε2ε1
2r

.

Eqn. (66) follows since ρ ă r and ε1 ď ?
ε1 for 0 ď ε1 ď 1.

For τu, we have
?
τu “

?
r sinpαu ` βq

“
?
rpsinαu cosβ ` cosαu sinβq

“
?
r

˜c
ρu

r

´
1 ´ ε1

2r

¯
`
c
1 ´ ρu

r

c
1 ´

´
1 ´ ε1

2r

¯2

¸

ď ?
ρu `

?
r

c
ε1

r

“ ?
ρ` ε2 ` ?

ε1

ď ?
ρ` ?

ε2 ` ?
ε1. (67)

Eqn. (67) follows from the elementary inequality:
?
x` y ď?

x` ?
y for any x, y ě 0.

Set ε2 “ ε and

?
εℓ :“

ˆ
1

2
?
r

` 1

˙?
ε1 ` ?

ε2

“
ˆ

1

2
?
r

` 1

˙a
ε{2 `

?
ε

“
ˆ

1

4
?
r

` 3

2

˙?
ε,

?
εu :“ ?

ε1 ` ?
ε2 “

a
ε{4 `

?
ε “ 3

2

?
ε.

Then the first term of the summand in Eqn. (61) is at most

Pr

« ˇ̌
Y X Capn´1pz,?nτℓq

ˇ̌

M
ă 1

2
γℓ

ff

ď Pr

„ˇ̌
Y X Capn´1pz,

?
np?

ρ´ ?
εℓqq

ˇ̌
ă 1

2
γℓM


.

Note that

E
“ˇ̌
Y X Capn´1pz,

?
np?

ρ´ ?
εℓqq

ˇ̌‰

“ Area
`
Capn´1p?

np?
ρ´ ?

εℓqq
˘

Area pSn´1p?
nrqq M

“ γℓM.

Hence by the Chernoff bound, the above probability is at most

exp

ˆ
´p1{2q2

3
γℓM

˙
“ e´eΩpnq

.

By similar reasoning, the second term of the summand in

Eqn. (61) is at most exp
´

´ p1{2q2
3

γuM
¯

“ e´eΩpnq
. Since

the concentration bounds are doubly exponentially small, the

probability in Eqn. (60) is still e´eΩpnq
once we take union

bounds over z P Z and τ P I which are (singly) exponential

in total.

Finally, a union bound shows that with probability doubly

exponentially close to 1, Y of size M “ pc{?
εqn´opnq satisfies

properties 1 and 3 simultaneously. This completes the proof.

B. Proof of Eqn. (10)

E rW s “
ÿ

LPpM

L q

ÿ

yPY
Pr

”
ψ pLq Ă Bn

´
y,

?
nN

¯ı
(68)

“
ˆ
M

L

˙
|Y|µL (69)

ě pM{LqL |Y|µL,

where in Eqn. (68) we use the shorthand notation

ψpLq :“ tψpmq : m P Lu ,

and in Eqn. (69), µ is defined as follows,

µ :“ Area
`
Capn´1

`?
nN

˘˘

Area
`
Sn´1

`?
nP

˘˘ .
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(a) (b)

Fig. 3: We consider a cap of radius
?
nρ centered at y on the sphere Sn´1p?

nrq. Due to quantization error, the center of

the cap is distorted to z which is at most
?
nε1 from y and the radius of the cap is distorted by ε2. Let ρℓ :“ ρ ´ ε1 and

ρu :“ ρ ` ε2. The radii τℓ and τu are such that the original cap is sandwiched between two tilted caps: Capn´1pz,?nτℓq Ă
Capn´1py,?nρq Ă Capn´1pz,?nτuq.

C. Proof of Eqn. (11)

For L “ tm1, ¨ ¨ ¨ ,mLu and y P Y , define

I
`
y,L

˘
:“ 1

!
ψ pLq Ă Bn

´
y,

?
nN

¯)
.

Now the variance of W can be bounded from above as

follows,

Var rW s “E
“
W 2

‰
´ E rW s2

“
ÿ

y
1
,y

2
PY

ÿ

L1,L2PpM

L q

˜
E

”
I

´
y
1
,L1

¯
I

´
y
2
,L2

¯ı

´ E

”
I

´
y
1
,L1

¯ı
E

”
I

´
y
2
,L2

¯ı¸

ď
ÿ

L1,L2PpM

L q
LXL2‰H

ÿ

y
1
,y

2
PY

E

”
I

´
y
1
,L1

¯
I

´
y
2
,L2

¯ı

(70)

“ |Y|2
Lÿ

ℓ“1

ÿ

L1,L2PpM

L q
|L1XL2|“ℓ

Pr
y
1
,y

2
,C

”
EpL1,L2,y1

,y
2
q
ı
,

(71)

where

1) Eqn. (70) follows since for disjoint L1 and L2, I py1,L1q
and I py2,L2q are independent and hence the correspond-

ing summand vanishes; we upper bound the variance by

dropping the negative term;

2) in Eqn. (71) the probability is taken over the code

construction and the pair y
1
,y

2
sampled independently

and uniformly from Y; the event EpL1,L2q is defined as

EpL1,L2q :“
#
ψ pL1q Ă Bn

´
y
1
,
?
nN

¯
,

ψ pL2q Ă Bn
´
y
2
,
?
nN

¯+
.

It is easy to verify that for any m P L1 X L2,

EpL1,L2q Ă E1pm,L1,L2q X E2pm,L1,L2q X E3pL1,L2q,

where

E1pm,L1,L2q :“
!
y
1

P Bn
´
ψ pmq ,

?
nN

¯
,

y
2

P Bn
´
ψ pmq ,

?
nN

¯)
,

E2pm,L1,L2q :“
!

@m1 P L1z tmu , ψ pm1q P Bn
´
y
1
,
?
nN

¯)
,

E3pL1,L2q :“
!

@m2 P L2zL1, ψ pm2q P Bn
´
y
2
,
?
nN

¯)
.

Note that conditioned on E1, E2 and E3 are independent, and

Pr rE1s “
˜ˇ̌

Y X Capn´1
`?
nρ

˘ˇ̌

|Y|

¸2

“: ν2,

Pr rE2 X E3|E1s “ Pr rE2|E1sPr rE3|E1s
“ µL´1µL´ℓ “ µ2L´ℓ´1,

where ρ :“ N pP ´Nq {P as shown in Fig. 4.

Let us upper bound ν and µ. For µ, we have

µ ď Area
`
Sn´1

`?
nN

˘˘

Area
`
Sn´1

`?
nP

˘˘ “ c12
´n 1

2
log P

N , (72)

where c1 :“
a
P {N .

For ν, we choose Y to be a
?
nε-covering of Sn´1p

?
nP q

for some ε ą 0 to be determined as given by Lemma 41 (with

the choice r “ P ´N ). Then

ν ď 3

2

Area
`
Capn´1p?

np?
ρ` 3

?
ε{2qq

˘

Area
´
Sn´1p

a
npP ´Nqq

¯

ď 3

2

Area
`
Sn´1p?

np?
ρ` 3

?
ε{2qq

˘

Area
´
Sn´1p

a
npP ´Nqq

¯

“ c2

ˆ?
ρ` 3

?
ε{2?

P ´N

˙n

, (73)
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Fig. 4: If ψpmq is a codeword on Sn´1p
?
nP q, then a

ball of radius
?
nN around ψpmq induces a cap of ra-

dius
a
nNpP ´Nq{P on the sphere Sn´1p

a
npP ´Nqq on

which Y lives.

where c2 :“ 3
?
P

2p?
ρ`3

?
ε{2q .

Note that the number of pairs pL1,L2q with intersection

size ℓ is

Kℓ :“
ˆ
M

ℓ

˙ˆ
M ´ ℓ

L´ ℓ

˙ˆ
M ´ L

L´ ℓ

˙
ď M2L´ℓ.

Hence overall we have

Var rW s ď |Y|2
Lÿ

ℓ“1

Kℓν
2µ2L´ℓ´1

ď |Y|2 ν2µ´1
Lÿ

ℓ“1

pMµq2L´ℓ

ď |Y|2 ν2µ´1L pMµqL (74)

“|Y|2Lν2MLµL´1,

where Eqn. (74) is obtained by noting that Mµ ď
2nRc12

´n 1
2
log P

N “ c12
´δn and taking the dominating term

corresponding to ℓ “ L.

APPENDIX C

OTHER “GOODNESS” PROPERTIES OF REGULAR INFINITE

CONSTELLATIONS

In Sec. VII, for technical reasons22, we require the lattice

Λ0 to be simultaneously good for packing and covering. The

existence of such lattices was established in [11]. We now

give simpler proofs of the existence of (nonlattice) infinite

constellations that satisfy these properties.

Let α ą 0. We allow α to be a function of n. Define A :“
r´α{2, α{2qn. We will study infinite constellations of the form

C “ C1 ` αZn for finite sets C1 Ă A. We assume that each

point in C1 is independent and uniformly distributed in A. In

other words, C is obtained by tiling a finite subset of random

points from within a cube. See Fig. 5 for a pictorial illustration

of the construction of such an IC ensemble. Since the IC is

22Specifically, in the proof, we need to take a union bound over centers in
a Voronoi region.

Fig. 5: Illustration of the class of infinite constellations studied

in Appendix C.

a tiling, it suffices to study finite sets of points in the space

R
n mod A. 23

Note that if C1 forms a group with respect to addition

modulo A, then the resulting IC is a lattice. Construction-A

lattices are essentially obtained by taking C1 as an embedding

of a linear code over a finite field into A.

The density, NLD, effective volume and effective radius of

an pα,Mq IC are given by

∆pCq “ M{αn,

RpCq “ 1

n
log

M

αn
,

V pCq “ n

logM{αn
,

reffpCq “
ˆ

αn

VnM

˙1{n
. (75)

respectively.

For any set D Ă R
n, define D˚ :“ D mod A.

A. Packing goodness

The packing radius of an IC rpackpCq is defined to be half

the minimum distance between two points. We say that an

infinite constellation is good for packing if rpackpCq{reffpCq ě
0.5 ´ op1q.

We give a greedy construction of ICs which is good for

packing.

Choose α to be some constant larger than 4. We will

construct an infinite constellation with packing radius at least

1.

The IC is constructed iteratively as follows: Start with

an arbitrary point x1. At the i-th step, choose xi to be an

arbitrary point from AzYi´1
j“1B

˚pxj , 2q. We repeat this till the

B˚pxj , 2q’s cover A. Suppose that the algorithm terminates at

the M -th step.

The construction ensures that the packing radius is at least

1. Moreover,

M ě αn

VolpBp0, 2qq .

23Since αZn is a lattice, we slightly abuse notation and define r¨s mod
A :“ r¨s mod αZn.
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However, αn{M “ Vnr
n
eff . Using this in the above gives

rpack{reff ě 0.5.

B. AWGN goodness

We say that an pα,Mq infinite constellation C is good

for AWGN (Additive White Gaussian Noise) [11] if for

z „ N p0, σ2Iq and x „ UpC X Aq, we have

Prr}z} ą }x ` z ´ xj} for some xj P Cs “ 2´Θpnq

where the probability is over the random choice of the code-

word x and the noise z. This is equal to the probability that

a codeword different from the transmitted one is closer to

the received vector when a random codeword is transmitted

through an AWGN channel.

The following proposition recovers the achievability part of

Poltyrev’s [10] result:

Proposition 42. Fix δ ą 0 and N ą 0. A random

p4
?
nσ2,Mq constellation with M chosen so as to satisfy

reff{
?
nσ2 ą 2δ is good for AWGN with probability 1 ´

2´Θpnq.

Proof. Since codewords are chosen uniformly, it suffices to

assume that the first codeword is transmitted.

EC Prr}z} ą }x ` z ´ xj} for some xj P Cs
ď Prr}z}2 ą 2δnσ2s

` Prrxj P B˚px1 ` z,
?
nσ22δ{2q for some j ‰ 1s

ď Prr}z}2 ą 2δnσ2s `
Mÿ

j“2

Prrxj P B˚px1 ` z,
?
nσ22δ{2qs

ď 2´Θpnq `M
VolpBp0,

?
nσ22nδ{2qq
αn

“ 2´Θpnq ` VolpBp0,
?
nσ22nδ{2qq

VolpBp0, reffqq
“ 2´Θpnq.

C. Covering goodness

We say that an infinite constellation C is a β-covering if for

every y P R
n,

min
xPC

}x´ y} ď β.

The covering radius of an infinite constellation C, denoted

rcovpCq, is the smallest β ą 0 such that C is a β covering.

We say that a sequence of pα,Mq ICs C is p1 ` δq-good

for covering if

lim sup
nÑ8

rcovpCq
reffpCq ď 1 ` δ.

Proposition 43. Fix any N ą 0, and define C – 1
2
log2

1
2πeN

.

Also choose α “ 2
?
nN , ǫn “ 1

logn
, and M “ 2nCp1`ǫnqαn.

Then, a random pα,Mq IC is p1 ` ǫnq2ǫnC-good for

covering24 with probability 1 ´ 2´2Θpn{ log nq
.

24Essentially, p1 ` op1qq-good for covering.

Proof. Define Q “ ǫn
?
N

4
Z
n. We can conclude that C is a?

nNp1 ` ǫn{4q covering if for all y P Q, we have

min
xPC

}x´ y} ď
?
nN.

Since

reffpCq “
ˆ
Γpn{2 ` 1q

πn{2 ˆ αn

M

˙1{n

“
ˆ?

n2´R

?
2πe

˙
p1 ` op1qq

“
?
nN ˆ 2´ǫnC ,

this ensures that

rcovpCq
reffpCq ď p1 ` ǫnq2ǫnC .

It is therefore sufficient to show that

Pr

„
max
yPQ

min
xPC

}x´ y} ą
?
nN


“ 2´2Θpnq

.

To prove the rest, we simply find the probability that there

is no point that is
?
nN -close to y P Q, and then take a union

bound over y. To compute the aforementioned probability, we

use a Chernoff bound.

Fix any y P Q. Suppose that C “ tx1,x2, . . . ,xMu,

where each xi is is independent of the others and uniformly

distributed over r0, αsn. Define ξipyq to be the indicator

random variable which is 1 if }xi ´ y} ď
?
nN , and zero

otherwise.

We then have

µ – E

«
Mÿ

i“1

ξipyq
ff

“ M ˆ
VolpBpy,

?
nNqq

αn

“ 2nR VolpBpy,
?
nNqq

“ 2nCǫnp1`op1qq.

This implies, by the Chernoff bound, that

Pr

«
Mÿ

i“1

ξipyq “ 0

ff
ď Pr

«
Mÿ

i“1

ξipyq ď µ{2
ff

ď e´µ{12 “ 2´2Θpn{ log nq
.

Therefore, the probability that random IC is not a
?
nNp1`

ǫ{4q-covering is upper bounded by

Pr

„
max
yPQ

min
xPC

}x´ y} ą
?
nN


ď
ˆ
4α

ǫn

˙n

2´2Θpn{ log nq

“ 2Opn lognq2´2Θpn{ log nq

“ 2´2Θpn{ log nq
.

This completes the proof.
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APPENDIX D

CONVERSE OF LIST DECODING CAPACITY THEOREM FOR

INFINITE CONSTELLATIONS

Proposition 44. For any N ą 0 and δ ą 0, let C be an

arbitrary pN,Lq-list decodable IC of NLD 1
2
log 1

2πeN
` δ.

Then L ě 2Ωpδnq.

Proof. Let C Ă R
n be an arbitrary infinite constellation of

NLD 1
2
log 1

2πeN
` δ for some constant δ ą 0. Then there

must exist a sufficiently large P such that

1

n
log

ˇ̌
C X Bn

`
0,

?
nP

˘ˇ̌

Vol
`
Bn

`
0,

?
nP

˘˘ ě 1

2
log

1

2πeN
` δ

2
.

Therefore,

1

n
log

ˇ̌
ˇC X Bn

´
0,

?
nP

¯ˇ̌
ˇ

ě 1

2
log

1

2πeN
` 1

n
log Vol

´
Bn

´
0,

?
nP

¯¯
` δ

2

“ 1

2
log

1

2πeN
` 1

n
log

´
Vn

?
nP

n
¯

` δ

2

— 1

2
log

1

2πeN
` 1

2
logp2πeP q ` δ

2

“ 1

2
log

P

N
` δ

2
.

By the list decoding converse for codes with power constraints

[8, Lemma 33], since the code C X Bn
`
0,

?
nP

˘
has rate

larger than the list decoding capacity 1
2
log P

N
, it must have

exponential list sizes. That is, there must exist y P R
n such thatˇ̌

C X Bn
`
0,

?
nN

˘
X Bn

`
y,

?
nN

˘ˇ̌
ě 2Ωpδnq. This implies

the existence of y P R
n such that

ˇ̌
C X Bn

`
y,

?
nN

˘ˇ̌
ě

2Ωpδnq, which completes the proof.
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