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A B S T R A C T   

The paper evidence the link between two paradigms - Industry 4.0 and Green Supply Chain Management (GSCM) 
following an empirical study conducted in the automotive industry. 243 responses from the automotive supply 
chain professionals from Europe (including the UK) are used to test the developed hypotheses. An integrated, 
two-stage approach combining interpretive structural modelling and structural equation modelling develops a 
multi-level hierarchical structure for establishing the link between Industry 4.0 technologies, Green Supply Chain 
(GSC) practices and GSC performance. The study evidenced an indirect effect of Industry 4.0 technologies 
through GSC practices on GSC performance; and this link is found to be stronger than the direct effect of Industry 
4.0 and GSC practices in the automotive supply chains. Future supply chains should focus on driving and linking 
technologies such as the Internet of Things (IoT), Cyber-Physical Systems (CPS) and Blockchain for effective 
implementation of GSC practices. GSC practices, mainly reverse logistics and green purchasing, are highly 
influenced by disruptive technologies and are critical for leading improvement in GSC performance. Identifying 
and linking key Industry 4.0 technologies with GSC practices will benefit organizations in making evidence- 
informed decisions for improved sustainability performance.   

1. Introduction 

The main aim of Industry 4.0 is to make manufacturing operations/ 
systems efficient, autonomous, and sustainable (Koh et al., 2019). In-
dustry 4.0 is the latest industry transformation, attempting to build 
smart systems by integrating physical objects with digital technologies 
(Dalenogare et al., 2018; Fatorachian and Kazemi, 2021). Internet of 
Things (IoT), Cyber-Physical Systems (CPS), Big Data Analytics (BDA), 
Additive Manufacturing (AM) and Cloud Computing (CC) are some of 
the technologies of Industry 4.0. These Industry 4.0 capabilities provide 
higher productivity and flexibility, but they also help drive the organi-
sations’ sustainability goals (Schroeder et al., 2019; Felsberger et al., 
2020; Kamble et al., 2020). 

Regarding the economic dimension of sustainability, Industry 4.0 
technologies can reduce set-up times, lead times, labour and material 
cost, increase production and design flexibility, and enhance 

productivity and customization (Wang et al., 2017). In case of the 
environmental dimension, the reduced energy and resource consump-
tion leads to reduction of waste or Co2 emission across production and 
supply chain processes (Sarkis and Zhu, 2018). In case of the social 
dimension, smart factories and manufacturing support employee health 
and safety by improving working conditions, which results in higher 
employee satisfaction and motivation (Müller et al., 2018). These ben-
efits highlight growing relationships between Industry 4.0 technologies 
and sustainability (Liu et al., 2020). However, except a few sporadic 
studies (such as Li et al., 2020; Bai et al., 2020), this relationship is not 
well investigated due to the lack of robust evidence (Kamble et al., 2018; 
de Sousa Jabbour et al., 2018). 

Few scholars have looked at connected elements of sustainability, 
such as circular economy with Industry 4.0 in their studies (e.g., Tseng 
et al., 2018; Massaro et al., 2021). However, industry data-driven 
investigation is needed to establish the link between Industry 4.0 and 
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sustainability performance (Liu et al., 2020; Machado et al., 2020; Bel-
trami et al., 2021). Thus, this study attempts to close this research gap by 
empirically assessing the link between two paradigms. 

The automotive industry is arguably the largest and most dominant 
manufacturing sector worldwide (Zailani et al., 2015). This industry 
faces numerous environmental challenges including ineffective man-
agement of the end of life of vehicles, growing air pollution, adverse 
impact of climate change, and meeting strict government rules and 
regulations (Orsato and Wells, 2007). Moreover, consumer expectations 
are continuously changing due to rapid advancements in digital tech-
nology. In recent times, major automotive giants have introduced 
driverless cars, where several digital technologies like the Internet of 
Things (IoT), artificial intelligence and Cyber-Physical Systems (CPS) 
have been deployed. Furthermore, global automotive organizations and 
their supply chains are under constant pressure to maintain stringent 
environmental regulations (Russo-Spena et al., 2018) without compro-
mising innovation and technological advancements (Farahani et al., 
2017). Several Industry 4.0 technologies like 3D printing, robotics and 
artificial intelligence can improve product design, production and sup-
ply chain efficiency, respectively (Ghadge et al., 2020). Such technolo-
gies are bound to influence new paradigms, principles, and models in 
supply chain management (Ivanov et al., 2019). 

It may be well-argued that Industry 4.0 technologies can influence 
the implementation of Green supply chain (GSC) practices within 
automotive industry, with a likely indirect influence on the supply chain 
performance. However, to the best of the authors’ knowledge, such 
empirical study linking Industry 4.0, GSC and supply chain performance 
is missing in the extant literature. In line with the identified research 
gap, this paper investigates the following research question: What is the 
link between Industry 4.0 technologies, GSC practices and GSC per-
formance? An integrated, two-stage approach combining Interpretive 
Structural Modelling (ISM) and Structural Equation Modelling (SEM) is 
utilized to develop a multi-level hierarchical structure for investigating 
the link between Industry 4.0 technologies, Green Supply Chain (GSC) 
practices and GSC performance. 243 questionnaire survey responses 
from European automotive supply chain managers were used to test the 
developed hypotheses. This research study is expected to provide 
empirical evidence for the growing link between these two important 
paradigms-Industry 4.0 and Green Supply Chain Management (GSCM). 

The rest of the paper is organized as follows. Section 2 provides 
literature on Industry 4.0, GSC practices and GSC performance metrics. 
The research methodology, adopting an integrated ISM and SEM 
approach, is described in Section 3. Section 4 is devoted to conducting 
analysis and presenting the results. Section 5 provides critical insights 
into key findings. In the concluding section, contribution to research and 
practice and the recommendations for future research are provided. 

2. Literature review 

2.1. Industry 4.0 

Industry 4.0 is characterized by the combination of smart products, 
smart factories, smart logistics and IoT to enable real-time information 
on multiple activities through the entirety of the supply chain (de Sousa 
Jabbour et al., 2017). Recently, scholars have attempted to identify 
Industry 4.0 readiness and their impact on supply chains (e.g., Stentoft 
et al., 2020; Fatorachian and Kazemi, 2021) on developing maturity 
models (Wagire et al., 2020) and on evaluating adoption patterns and 
critical factors for successful implementation (e.g., Frank et al., 2019; 
Calabrese et al., 2020; Sony and Naik, 2020; Queiroz et al., 2019). 
Furthermore, a few studies focus on implementing digital technologies 
in the supply chain (e.g., Ivanov et al., 2019; Hennelly et al., 2020). 
Interested readers can refer to the review articles on Industry 4.0 tech-
nologies provided by Liao et al. (2017), Oztemel and Gursev (2020), 
Pereira and Romero (2017), Sony and Naik (2018) and Zheng et al. 
(2020) for additional details. 

Within the automotive industry, Xu et al. (2018) believe organiza-
tions are incorporating Industry 4.0 technologies as part of their 
corporate strategy and vision. IoT devices capture a massive amount of 
data, which is later used for efficient and effective decision making (Ben- 
Daya et al., 2017). The use of big data analytics (BDA) may significantly 
improve forecast accuracy and demand planning in automotive supply 
chains (Farahani et al., 2017). Organizations will be enabled to enhance 
their capability and improve their business decisions through the 
continuous practice of business intelligence. The IoT, CPS, automation & 
robotics and AM are believed to bring significant benefits to 
manufacturing organizations. Table 1 illustrates key Industry 4.0 tech-
nologies identified from the literature that are likely to influence future 
supply chains. 

The IoT allows for interconnectivity between various electronic de-
vices, sensors, and machines through several identification codes, 
automatic identification, data collection and wireless sensor networks 
(Zhou et al., 2015; Farahani et al., 2017). With the assistance of cloud 
computing, this information may become available to all supply chain 
partners in real-time. 

A CPS may be considered an integrated system that aims to integrate 
the physical and virtual world together and enable the synchronization 
of information between the physical and a virtual environment (Akanmu 
and Anumba, 2015; Berger et al., 2016). Recently CPS are also called 
‘Digital Twins’’ (Jones et al., 2020). Furthermore, as market demand is 
becoming more volatile, practitioners have paid increasing attention to 

Table 1 
Emerging technologies within Industry 4.0.  

Construct 
Code 

Industry 4.0 
Technology 

Definition Sources 

T1 Cyber-Physical 
Systems (CPS) 

Systems that integrate the 
physical world with 
virtual computational 
space 

Akanmu and 
Anumba 
(2015) 

T2 Internet of Things 
(IoT) 

Interconnecting of small 
computing devices 
embedded in products 
and objects to the 
internet, enabling the 
ability to receive and 
send data 

Feldmann 
et al. (2010) 
and Zhou et al. 
(2015) 

T3 Automation and 
Robotics (A & RT) 

Automated technology 
able to design, construct 
and operate without 
human intervention 
during the process 

Tjahjono et al. 
(2017) 

T4 Additive 
Manufacturing/3D- 
Printing (AM/3DP) 

The official industry 
standard of utilizing 3D- 
printing to create 
components in 
production 

Tjahjono et al. 
(2017); 
Ghadge et al. 
(2018). 

T5 Cloud Computing 
(CC) 

Practice consisting of a 
network of remote servers 
that enable the storage, 
process and managing of 
data compared to a local 
server 

Hofmann and 
Rüsch (2017) 

T6 Big Data Analytics 
(BDA) 

Process of investigating 
large, varied data sets to 
discover useful 
information and patterns 
that may help the 
decision-making of 
organizations 

Farahani et al. 
(2017) and 
Zhong et al. 
(2016) 

T7 Miniaturization of 
Electronics (ME) 

Process of manufacturing 
ever smaller electrical, 
optical, and mechanical 
devices 

Feldmann 
et al. (2010) 

T8 Blockchain (BC) A distributed digital 
technology that ensures 
transparency, traceability 
and security 

Saberi et al. 
(2019)  
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implementing robotics and AM and enabling machine-to-machine 
(M2M) communication (Tjahjono et al., 2017). 

AM utilizes 3D-printing technology to produce on-demand compo-
nents under flexible geographic locations near to customer locations and 
circumstances that offers customized and low volume products (Rogers 
et al., 2016; Delic and Eyers, 2020). Blockchain (BC) supports vast 
amounts of product and supply chain information through data collec-
tion, storage and management (Kayikci et al., 2020). It helps to improve 
the economic (reduction of transaction cost and time), environmental 
(reduction of rework and recall due to accurate tracking) and social (fair 
and safe work practices) supply chain sustainability (Saberi et al., 2019, 
Wamba and Queiroz, 2020). 

2.2. Interface between Industry 4.0 and sustainability in SCs 

Liu et al. (2020) predict that the new era of intelligence 
manufacturing will be driven by sustainability principles. Industry 4.0 is 
a new business mindset along with its technologies to assist organiza-
tions in transitioning towards sustainable development. Industry 4.0 
capability driven smart systems contain several sustainability implica-
tions, such as optimized use of resources and technology (Quezada et al., 
2017; Felsberger et al., 2020). According to a UK Automotive Sustain-
ability report (2019), extensive efforts have been placed on digitalizing 
the automotive industry, where the next step in digitalizing automotive 
production resides in connecting manufacturers with wider supply chain 
operations. Though not explicitly stated, this emphasizes the importance 
of levitating the use of Industry 4.0 technologies to further improve the 
efficiency and effectiveness of automotive supply chains. 

Centobelli et al. (2020) discuss the misalignment problem between 
the industry 4.0 technologies and supply chain green practices imple-
mented. Yadav et al. (2020) identified 29 key Industry 4.0 technologies’ 

enablers to achieve sustainability. Few other researchers (e.g., Yang 
et al., 2013; Chin et al., 2015; Vanalle et al., 2017) have evaluated the 
broad impact of GSC practices on GSC performance; however, Industry 
4.0 dimension is missing in their studies. Thus, this study attempts to 
establish empirical evidence for establishing the link between Industry 
4.0 and GSCM in the automotive industry. 

2.3. GSC practices and performance 

A coordinated and proactive approach among supply chain man-
agers is essential to curb the environmental impact in manufacturing 
and supply chains (Tseng et al., 2019). Taking the case of the automotive 
industry of developing countries, Diabat et al. (2013) identified the most 
vital enablers such as eco-design, cooperation with customers and 
reverse logistics for improving sustainable performance. Similarly, 
Drohomeretski et al. (2014) and Khairani et al. (2017) considered the 
Brazilian and Malaysian automotive industries for analyzing the 
different green practices, respectively. Table 2 illustrates the most 
common green practices and performance indicators identified from the 
extant literature. 

Supplier-customer environmental cooperation (SCEC) may be un-
derstood as the collaborative efforts made between partners to enhance 
understanding and support towards improving environmental perfor-
mance through greener products and innovations (Diabat et al., 2013; 
Vanalle et al., 2017; Sauer and Seuring, 2018). Green manufacturing 
(GM) relates to sustaining waste, energy and resource management, 
optimal equipment utilization, eco-design and green packaging 
(Mathivathanan et al., 2018). Reverse logistics (RL) has been given 
significant attention in GSC practices in recent decades (Senthil et al., 
2018; Sharma et al., 2017). Within the automotive industry, the practice 
of Internal Environmental Management (IEM) is argued by Vanalle et al. 
(2017) to be the result of ISO 14001 being of possible mandatory 
practice. In addition to the aforementioned GSC practices, multiple 
factors such as industry characteristics, regulations, cultural orienta-
tions, and dynamic capabilities have seldom appeared in the research 

articles (e.g., Vijayvargy et al., 2017; Hong et al., 2018). However, these 
studies have overlooked the integration of Industry 4.0 with GSC prac-
tices and supply chain performance. 

Green supply chain performance may be characterized into two main 
performance metrics: economic and environmental (Lin, 2013). How-
ever, Sharma et al. (2017) and Vanalle et al. (2017) acknowledge the 
importance of operational aspects as these may obtain useful insights 
towards competitive priorities related to the organization’s operations. 
Performance may be measured using various indicators; therefore, this 
study has consolidated a total of three key performance indicators 
namely economic, environmental, and operational performance 
(Table 2). 

3. Research methodology 

The study followed an integrated, two-stage approach for data 
collection and analysis. In the first stage, following a critical literature 
review, key technologies were identified for Industry 4.0 along with 
practices for GSC, which were structured into different hierarchical 
levels following the ISM approach. Later A cross-impact matrix multi-
plication analysis (MICMAC) analysis was carried out to determine the 
independent and dependent variables. In the second stage, the hypoth-
eses were framed for investigating the link between two paradigms and 
data were collected through the questionnaire survey. Finally, the pro-
posed hypotheses were tested using the SEM method. The SEM approach 
helps to investigate causal relationships and correlations between vari-
ables. It ignores the information about the hierarchical structure as well 
as dependent and independent variables involved in the analysis 
(Sindhu and Arif, 2016; Nandal et al., 2019); and thus, is found to be 
suitable for this study. 

Multiple techniques such as Analytic Hierarchy Process (AHP), 
Graph theory, Decision Making Trial and Evaluation Laboratory 
(DEMATEL) and Analytic Network Process (ANP) exist in the literature 

Table 2 
Common green practices and performance indicators.    

Construct 
Code 

Green Practice Source   

GP Green purchasing Khairani et al. (2017); 
de Sousa Jabbour et al. 
(2017); Vanalle et al. 
(2017) and Zhu et al. 
(2013)   

SCEC Supplier/ 
customer 
environmental 
cooperation 

Sharma et al. (2017); 
Vanalle et al. (2017); 
Diabat et al. (2013) 
and Agyemang et al. 
(2018)  

Green 
practices 

GM Green 
manufacturing 

Scur and Barbosa 
(2017); Mathivathanan 
et al. (2018) and 
Khairani et al. (2017)   

RL Reverse logistics Sharma et al. (2017); 
Khairani et al. (2017); 
Drohomeretski (2014) 
and Mathivathanan 
et al. (2018)   

IEM Internal 
environmental 
management 

Wu et al. (2015); Scur 
and Barbosa (2017); 
Vanalle et al. (2017) 
and Diabat et al. 
(2013)   

EconP Economic 
performance 

Wu et al. (2015) and 
Vanalle et al. (2017)  

Performance 
indicators 

EnvP Environmental 
performance 

Sharma et al. (2017), 
Wu et al. (2015) and 
Vanalle et al. (2017)   

OP Operational 
performance 

Sharma et al. (2017), 
Vanalle et al. (2017) 
and Zhu et al. (2013)  
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to analyze the interdependencies among the variables and develop their 
structural hierarchy (Luthra et al., 2020). The advantage of the ISM- 
MICMAC approach over the other aforementioned methods is evident 
in the supply chain literature (Lahane et al., 2020). The ISM allows the 
experts to clarify the interpretative logic behind each paired relationship 
through the interpretative matrix and structural model (Shukla and 
Shankar, 2022). The commonly used Analytic Hierarchy Process (AHP) 
prioritizes different factors, whereas ISM evaluates the interrelations 
among these factors. The ISM provides a multi-level hierarchal structure 
comprising of all factors; however, it does not produce any insights into 
the importance of each factor. Thus, MICMAC analysis is employed to 
identify the key dependent and independent factors (Khaba and Bhar, 
2018; Swarnakar et al., 2020). This overall research methodology, 
consisting of two stages, is described in flowchart form in Fig. 1. 

3.1. Stage I 

Interpretive structural modelling (ISM) 
Several scholars in the literature have delineated clear and 

straightforward procedures for developing a model using an ISM method 
(e.g., Diabat and Govindan, 2011; Mathiyazhagan et al., 2013; Rajput 
and Singh, 2018; Kamble et al., 2018). Therefore, the generalized 
explanation about the ISM method is not incorporated in this study. In 
brief, the different steps of ISM modelling include identification of 
variables from extant literature, establishment of contextual relation-
ships among identified variables, formation of a Structural self- 
interaction matrix (SSIM), initial reachability matrix, final reachability 

matrix, level partitioning, creation of a diagraph and final ISM model. 
The ISM model depicts the influential level of all factors which help 

to achieve the main objective (here to improve GSC performance) in the 
form of a structural hierarchy. However, the classification of several 
variables and indirect relationship among them is not realized from the 
ISM model (Thirupathi and Vinodh, 2016; Khaba and Bhar, 2018). To 
gain some practical insights from the relational links, the study per-
formed MICMAC analysis. 

MICMAC analysis 
MICMAC analysis is utilized to identify key Industry 4.0 technologies 

and GSC practices that affect GSC performance based on their driving 
and dependence power. The variables are classified into four categories 
(Kannan and Haq, 2007): (1) autonomous variable (Cluster I, low 
driving and dependence power), (2) dependent variables (Cluster II, 
strong dependence and weak driving power), (3) linkage variable 
(Cluster III, strong driving and dependence power) and (4) independent 
variables (Cluster IV, strong driving and weak dependence power). 

3.2. Stage II 

Development of hypotheses 
Different hypotheses were created to empirically establish the link 

between two paradigms after identifying key variables for Industry 4.0 
and GSC practices from the literature, translating into a multi-level hi-
erarchical structure and classifying them into driving and dependent 
variables (following ISM and MICMAC approach respectively). To test 
the hypothesized link between Industry 4.0 and GSC practices, data was 

Fig. 1. Research methodology.  
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collected through a questionnaire survey. 
Industry 4.0 will provide positive support for implementing GSC practices 

and will collectively help in improving GSC performance in automotive supply 
chains. 

Following this primary hypothesis, we break this into three hy-
potheses for testing. 

H1: Industry 4.0 technologies will positively correlate with GSC practices. 
H2: Industry 4.0 technologies will positively correlate with GSC 

performance. 
H3: GSC practices will, as a result of Industry 4.0, positively impact GSC 

performance. 
Fig. 2 provides a conceptual framework, where these three hypoth-

eses have been developed to answer the research question. 
Questionnaire survey data 
Boyer and Swink (2008) discuss the advantages of surveys, such as 

having a highly economical and non-invasive approach, and that stan-
dardized data are obtained that directly reflect an individual related to 
the area of interest. Hence, data was collected from automotive supply 
chain managers across Europe (including the UK) following a ques-
tionnaire survey. The Qualtrics-built questionnaire was distributed 
through personal email and professional social networks (like LinkedIn 
and Twitter) to collect structured data over nine months (from May 2019 
to January 2020). The executives from the industry, who employed In-
dustry 4.0 technologies and experts from the academia who work in the 
sustainability and Industry 4.0 domain verified and validated the initial 
draft of the questionnaire by rephrasing several questions, question 
sequencing and wordings to make the questionnaire clearer and more 
suitable for respondents to understand. In the next stage, doubts/queries 
from several respondents were clarified by providing suitable responses. 
In this way, each respondent participated in the survey following the 
complete delineation of the questionnaire. 

To further ensure a reliable and effective response rate, the 

questionnaire was simplistically and efficiently designed using mainly 
closed-ended questions. Structured questions exploiting the Likert scale 
(0–5) method determine the extent to which each respondent agrees or 
values the variables (Saunders et al., 2015). The Likert scale was 
adopted from Dubey et al. (2018). This approach helps to limit the 
choice of answers and minimize the time required to complete the sur-
vey, thus increasing the chance of reliable and valid responses. The 
survey was sent to over 900 contacts; however, only 288 respondents 
responded to multiple reminders and requests. After removing biased 
and incomplete surveys, 243 responses were deemed useful for subse-
quent analysis. Appendix A shows a developed questionnaire survey. 
The overall response rate was 27%. 

Structural equation modelling (SEM). 
SEM is a method to portray, stipulate, estimate and analyze models 

with linear relationships among the several observed (measured) vari-
ables in the form of a usually smaller number of unobserved (latent) 
variables (Shah and Goldstein, 2006). The measurement model depicts 
the relationship between the latent or hypothetical construct and in-
dicators (observed variables). It delineates the measurement properties 
encompassing reliabilities and validities of the indicators. The concep-
tual ISM model is verified using PLS-SEM path modelling to achieve 
useful results. 

4. Results and analysis 

4.1. ISM model for GSCM performance variables 

The use of experts’ opinions, including academia and industry, is 
recommended while developing the contextual relationship among the 
variables in the ISM model. Expert opinions regarding Industry 4.0 and 
GSC practices were collected between the years 2017–19. The re-
spondents were automotive supply chain professionals along with 

Fig. 2. Conceptual framework/hypothesis model.  
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several senior professors from renowned institutions with a strong 
research background in GSCM and Industry 4.0 technologies. The SSIM 
was developed following expert views about two eminent fields 
(Table 3). While evaluating the contextual link between two factors, 
each expert was asked the following three questions: (1) will factor 1 
help factor 2; (2) will factor 2 help factor 1; (3) will both factors help 
each other or not? Later, the specific relationship between each of the 
two factors, based on the maximum number of respondents’ answers to 
each question was established. 

The following four symbols are used to indicate the direction of the 
relationship between two factors. 

V - If factor ‘i’will support/help to achieve ‘j’. 
A - If factor ‘j’ will support/help to achieve ‘i’. 
X - If factor ‘i’ and ‘j’ will support/help each other. 
O – If factor ‘i’ and ‘j’ are not related. 
The initial reachability matrix (binary matrix) is formed from SSIM 

by replacing the V, A, X and O with binary variables as illustrated in 
Table 4. The following rules are used for the transformation of SSIM to 
RM. 

If the (i, j) entry of the cell in SSIM is V, then replace it with 1 and (j, i) 
entry to 0 in initial RM. 
If the (i, j) entry of the cell in SSIM is A, then replace it with 0 and (j, i) 
entry to 1 in initial RM. 
If the (i, j) entry of the cell in SSIM is X, then replace both (i, j) and (j, i) 
by 1 in initial RM. 
If the (i, j) entry of the cell in SSIM is O, then replace both (i, j) and (j, i) 
with 0 in initial RM. 

The final reachability matrix was obtained by incorporating the 
transitivity rule in the RM as shown in Table 4. This table also illustrates 
the driving and dependence power of factors which are obtained by 
summing up the rows and column entries. 

The reachability, antecedent and intersection set are determined 
corresponding to each factor from the final RM for level partitioning. 
Following ten iterations (until each factor obtains its level) levels are 
established as shown in Table 5. 

The ISM-based model for Industry 4.0 technologies and GSC prac-
tices that improve the GSC performance is constructed from the final RM 
and partitions level as shown in Fig. 3. The developed ISM model 
evaluates the ten-level structural relationship among the key Industry 
4.0 technologies and GSC practices to improve GSC performance. This 
model reveals that the IoT is the most significant factor, followed by 
CPS, compared with other factors of Industry 4.0. The IoT and CPS 
directly or indirectly drive GSC practices. Additionally, CPS is the sec-
ond most significant factor which confirms the Zhou et al. (2015) 
outcome that the IoT is closely linked to CPS, as it provides inter-
connectivity between various sensors, machines and electronic devices. 

4.2. Classification of factors using MICMAC analysis 

A cross-impact matrix multiplication analysis (MICMAC) is mainly 
used for evaluating the driving and dependence power of factors (Shukla 
and Shankar, 2022). Three groups of factors are found after the imple-
mentation of the MICMAC method and insights about these factors are 
described considering their driving and dependence power as shown in 
Fig. 4. Autonomous factors are not present in the analysis, which denotes 
that all the considered Industry 4.0 and GSC practices are significant. 
Industry 4.0 technologies like IoT, CPS and A&RT come under the 
category of independent factors on which the performance of GSCM 
depends, as they are root causes behind the dependent factors. Among 
the various driving/independent factors, IoT is a key factor, which has 
the highest driving power of 13 and dependence power of 4 (Table 6). 
Therefore, it is placed in the cluster IV with a given dependence and 
driving power. Blockchain (BC), cloud computing (CC) and ME are 
found as linkage variables, which can affect other factors in the system 
as well as receiving the reaction effect. These factors consist of strong 
driving and dependence power. Blockchain has the highest driving 
power of 13 and dependence power of 10 and is positioned in cluster III. 
ME is interlinked with most independent and dependent factors, since it 
consists of smaller mechanical, optical and electronic devices that are 
manufactured through Industry 4.0 technologies (Feldmann et al., 
2010). 

The BC is highly applicable in the optimization of logistics due to the 
ability to track products in real-time, enabling the ability to collect vast 
amounts of data (Saberi et al., 2019; Kamble et al., 2021). With the help 
of BDA, ME and CC, this may then be utilized to optimize vehicle routing 
and reduce emissions. Dependent variables observed include, Reverse 
Logistics (RL), Supplier and Customer Environmental Collaboration 
(SCEC), Green Purchasing and Manufacturing, and Internal Environ-
mental Management (IEM). All these dependent variables are the 
practices of GSCM. Thus, it can be interpreted from this analysis that to 
implement GSC practices within automotive supply chains, Industry 4.0 
technologies are essential. The variables classified in dependent and 
independent categories required extensive research due to their strategic 
significance for improvement in the GSC performance. 

4.3. Model analysis by SEM 

SEM comprises multiple regression and factor analysis and is mainly 
used to test/verify several relationships simultaneously among the 
different variables in a single model (Bamgbade et al., 2018). There are 
several applications of SEM, which include path analysis, regression 
models, confirmatory factor analysis, covariance, and correlation 
structure models. The structural model shown in Fig. 2 is evaluated 
using Smart-PLS software to capture the impact of the observed vari-
ables and their latent constructs on GSC performance. 

Reliability tests are required in order to safeguard that variance of 
responses across periods remain at a minimum in order that a mea-
surement recorded at any point in time is reliable (Sardana et al., 2016). 

Table 3 
Structural self-interaction matrix (SSIM).  

Factors IEM RL GM SCEC GP BC ME BDA CC AM/3DP A&RT IOT 
CPS V V V V V V V A A V V A 
IOT V V V V V X A V V V V  
A&RT V O V V O O V A X V   
AM/3DP V O V X A A V O A    
CC V O O X O X V V     
BDA V X V V V V A      
ME X V X V O O       
BC V V O V V        
GP X X V X         
SCEC X A V          
GM V A           
RL V             
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A single observed reliability test evaluates the standardized outer 
loadings of the indicators to delineate the variance of an individual in-
dicator against the unobserved variables (Zhao et al., 2019). Indicators 
with a loading value of 0.4 or greater are highly acceptable, and in-
dicators with loadings below 0.4 are removed from the model (Hair 
et al., 2012). All indicators considered in the current study obtained a 
loading of more than 0.4, which confirms the single observed reliability 
test (Table 6). 

The structural validity of the factor analysis was examined by 
following four major tests, i.e., Cronbach Alpha, Kaiser-Meyer-Olkin 
(KMO), Bartlett’s test of Sphericity and Composite Reliability. The 
Cronbach’s Alpha scores were all above 0.752, where the recommended 
threshold is 0.7 (Draper and Smith, 1998). The KMO measure of sam-
pling adequacy achieved scores above 0.656, which is well above the 0.6 
level considered as a requirement for conducting factor analysis 
(Guimarães et al., 2016). In addition, Bartlett’s test of sphericity was 
also utilized to assess the feasibility of EFA and found to be significant as 
the Sig. value from Table 6 demonstrates statistical significance. 

Finally, the composite reliability tests had the lowest recorded value 
of 0.807 for GSC performance variable which is, again, above the rec-
ommended threshold of 0.6 for conducting a factor analysis. The results 
of the test mentioned above are reported in Table 6. The approach 
suggested by Armstrong and Overton (1977) was used to verify the non- 
response bias. The study found no statistically significant differences in 
the responses that indicate the absence of non-response bias. Further, 
the common method bias was verified after the successful scrutiny of 
Harmon’s single factor test. As per this test, a single factor should not 
show the most variance (50%) when all items were loaded into one 
common factor (Podsakoff et al., 2003). The current model shows 34% 
total variance, which is lower than the threshold (Queiroz et al., 2020). 

Furthermore, all the tests imply that the constructs within each 
concentrated variable remain consistent in measuring the latent 

variable. Despite the GSC performance variable achieving a relatively 
low Cronbach’s Alpha score, the variable was still deemed reliable. All 
other concentrated variables were both very reliable and highly reliable 
(see Table 6) and are, therefore, valid latent variables for CFA. The 
average variance extracted (AVE) of each latent construct was deter-
mined to confirm the convergent validity of the variables. The latent 
construct takes 50% of the variance from indicators; thus, the AVE of all 
constructs remains above 0.5. Following above tests, internal consis-
tency and convergent validity were confirmed for the study. Fornell and 
Larcker (1981) suggest that the comparison between the AVE and cor-
responding inter-construct squared correlation approximations ap-
proves the discriminant validity. As the AVE values for Industry 4.0 
technologies, GSC practices and GSC performance are greater than the 
squared inter-construct correlations, they prove the discriminant val-
idity criteria of the constructs. 

After confirmation of the measurement model, we must measure the 
outcome of the inner structural model by investigating the model’s 
predictive relevancy and the relationship between the constructs. The 
inner path model illustrates 0.784 as a coefficient of determination for 
the GSC performance-dependent latent construct which means that In-
dustry 4.0 technologies and GSC practices are responsible for the 78.4% 
improvement of GSC performance. According to Hair et al. (2013), a 
coefficient of determination value of 0.26 is considered as weak, 0.5 as 
moderate and 0.75 as significant. Therefore, the obtained coefficient of 
determination value in this study is substantial. Furthermore, the study 
used Stone-Geisser’s Q2 test for endogenous constructs to evaluate the 
predictive power of the model (Stone, 1974; Hair et al., 2017; Sreedevi 
and Saranga, 2017). The Q2 value above 0 is sufficient to depict the 
power of the predictive model (Hair et al., 2013; Wamba et al., 2020). 
This study obtained the Q2 values (GSC practices = 0.273 and GSC 
performance = 0.432) higher than 0, showing the acceptable predictive 
power of the model. 

Table 4 
Final reachability matrix with driving and dependence power.    

1 2 3 4 5 6 7 8 9 10 11 12 13 Driving Power  
Factors CPS IOT A&RT AM/3DP CC BDA ME BC GP SCEC GM RL IEM 

1 CPS 1 0 1 1 1 1 1 1 1 1 1 1 1 12 
2 IOT 1 1 1 1 1 1 1 1 1 1 1 1 1 13 
3 A&RT 0 0 1 1 1 0 1 1 1 1 1 1 1 10 
4 AM/3DP 0 0 0 1 1 0 1 1 1 0 1 1 1 8 
5 CC 1 0 1 1 1 1 1 1 1 1 1 1 1 12 
6 BDA 1 0 1 0 1 1 1 1 0 1 1 1 1 10 
7 ME 0 1 0 0 1 1 1 1 1 1 1 1 1 10 
8 BC 1 1 1 1 1 1 1 1 1 1 1 1 1 13 
9 GP 0 0 0 0 1 0 0 0 1 1 1 1 1 6 
10 SCEC 0 0 0 1 1 0 0 1 1 1 0 0 1 6 
11 GM 0 0 0 0 0 0 1 0 0 0 1 0 1 3 
12 RL 0 1 0 0 0 1 0 0 1 1 1 1 1 7 
13 IEM 0 0 0 0 0 0 1 1 1 1 1 0 1 6  

Dep. Power 5 4 6 7 10 7 10 10 11 11 12 10 13   

Table 5 
Level partition iterations.  

F. n Factors Reachability set Antecedent set Intersection set Level 
13 IEM 7,9,10,13 1,2,3,4,5,6,7,8,9,10,11,12,13 7,9,10,13 I 
11 GM 7,11,13 1,2,3,4,5,6,7,8,9,10,11,12 7,11 II 
9 GP 4,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,12,13 4,9,10,12,13 III 
10 SCEC 4,5,9,10,11,13 1,2,3,4,5,6,7,8,9,10,12,13 4,5,9,10,13 III 
12 RL 6,9,10,11,12,13 1,2,3,4,5,6,7,8,9,12 6,9,12 IV 
5 CC 1,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,10 1,3,4,5,6,7,8,10 V 
7 ME 2,5,6,7,9,10,11,12,13 1,2,3,4,5,6,7,11,13 2,5,6,7,11,13 V 
8 BC 2,4,5,8,9,10,11,12,13 1,2,3,4,5,6,8 2,4,5,8 V 
6 BDA 1,3,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,12 1,3,5,6,7,12 VI 
4 AM/3DP 4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,8,9,10 4,5,8,9,10 VII 
3 A&RT 3,4,5,6,7,8,9,10,11,12,13 1,2,3,5,6 3,5,6 VIII 
1 CPS 1,3,4,5,6,7,8,9,10,11,12,13 1,2,5,6 1,5,6 IX 
2 IOT 1,2,3,4,5,6,7,8,9,10,11,12,13 2,7,8 2,7,8 X  
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The path coefficient in the PLS is similar to the standardized β co-
efficient in the regression analysis. The β value for each path in the 
hypothesized model was determined, and its impact on the endogenous 
latent construct was also evaluated. A T-statistics test is used to verify 

the significance level of β value. The significance of the hypothesis is 
evaluated by means of bootstrapping procedure in PLS. The path coef-
ficient and T-statistics are tested through the bootstring procedure using 
5000 subsamples with non-sign changes. 

Fig. 3. ISM depicting the levels of Industry 4.0 technologies and GSC practices for the improvement of GSC performance.  
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5. Findings 

Following the analysis above, this section presents key findings. In 
H1, we anticipated that Industry 4.0 technologies would positively 
correlate with GSC practices in automotive supply chains. Table 7 
confirmed empirically that the Industry 4.0 technologies are signifi-
cantly correlated with GSC practices. Thus, H1 is fully satisfied, which 
confirms the significant positive relationship between the extent of In-
dustry 4.0 implementation and the perceived impact on the imple-
mentation of GSC practices. It is evident that, as the organizations within 
the automotive sector increase their implementation of Industry 4.0 
technologies, there is a higher perceived impact these technologies have 
on implementing GSC practices. This result confirms the multi-level 
hierarchy obtained through the ISM method, indicating that Industry 
4.0 technologies drive GSC practices. This provides the first empirical 
evidence and supports the notion that Industry 4.0 technologies will improve the implementation of GSC initiatives leading to a more 

Fig. 4. Results of MICMAC analysis.  

Table 6 
Reliability tests of construct groupings to variables.  

Variable Indicators Loadings Cronbach’s 
Alpha 

KMO Measure of 
Sampling 

Bartlett’s Test of 
Sphericity 

Composite 
Reliability  AVE 

Evaluation 

Approx. Chi- 
Square 

Sig. 

Industry 4.0 
Technologies 

CPS  0.676 0.818 0.683 123.623 0.000 0.823 0.58 Very Reliable 
IoT  0.728 
A&RT  0.680 
AM/3DP  0.686 
CC  0.732 
BDA  0.725 
ME  0.555 
BC  0.550 

GSC Practices GP  0.727 0.898 0.779 151.024 0.000 0.912 0.72 Highly 
Reliable SCEC  0.930 

GM  0.917 
RL  0.809 
IEM  0.844 

GSC Performance EconP  0.802 0.752 0.677 28.107 0.000 0.807 0.67 Reliable 
EnvP  0.857 
OprP  0.797  

Table 7 
Path co-efficient and T-statistics.  

H. 
No. 

Hypothesis Stand 
Beta 

T- 
statistics 

p values Evaluation 

H1 Industry 4.0 → GSC 
Practices  

0.351  2.912 0.006 
(Sig. 0.01 
level) 

Satisfied 

H2 Industry 4.0 → GSC 
Performance  

0.254  2.056 0.046 
(Sig. at 
0.05 
level) 

Satisfied 

H3 GSC Practices → 

GSC Performance  
0.720  6.937 0.000 

(Sig. 0.01 
level) 

Satisfied  
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efficient and competitive supply chain. 
Similarly, findings from Table 7 illustrate a slight positive correlation 

between Industry 4.0 implementation and the perceived impact it will 
impose on GSC performance. Thus, as the implementation of Industry 
4.0 increases, the expected/perceived impact on GSC performance 
metrics will increase. The results support the argument that the ability of 
smart products, factories and logistics in collaboration with the IoT and 
CC will enable monitoring of real-time information on production, ma-
chines and flow of components throughout the supply chain resulting in 
improved managerial decision-making and monitoring of performance. 

There is a powerful positive relationship between the perceived 
impacts the GSC practices will impose on GSC performance because of 
Industry 4.0 technologies. The mediating variable in the model (i.e., GSC 
practices) helps to establish the link between independent (i.e., Industry 
4.0) and dependent (i.e., GSC performance) variables. This strong rela-
tionship can be interpreted from Table 7. Therefore, it is evident that 
GSC performance will be highly impacted as a result of increased 
implementation of GSC practices due to Industry 4.0 technologies. The 
extent of the relationship may be seen from the strong linear relationship 
between the two concentrated variables. However, the extent of this 
relationship was expected to be highly positive as GSC practices are 
initiatives conducted by organizations to improve their GSC perfor-
mance (Diabat et al., 2013). Nevertheless, these results yield empirical 
evidence that the influence of enhancing GSC practices as a result of 
Industry 4.0 will improve the green performance of automotive SCs. 
Finally, all three hypotheses are presented in Fig. 5. 

The conceptual model presented in Fig. 5 is based on tested hy-
potheses. The arrows interlinking the concentrated variables have been 
coloured to demonstrate the strength of the relationship. Green signifies 

a strong, statistically significant positive relationship. Orange reflects a 
moderate positive relationship, which is statistically significant. The 
effect of exogenous construct on the endogenous construct depends on 
the β coefficient, which implies that the greater the β coefficient, the 
stronger the effect. It can be noticed that GSC practices, as a result of 
Industry 4.0 technologies, has the highest path coefficient β = 0.720 
compared with the remaining β values in the model. This indicates a 
larger variance and significant effect of GSC practices through Industry 
4.0 technologies on the improvement of GSC performance. On the other 
hand, Industry 4.0 technologies have the least direct impact on GSC 
performance with β = 0.254. This means that the indirect effect of In-
dustry 4.0 technologies through GSC practices on GSC performance is 
higher than the direct effect of Industry 4.0 and GSC practices. Here, 
Industry 4.0 technologies play a moderating variable role between GSC 
practices and GSC performance. 

The correlation coefficient of the latent variable is provided in 
Table 8. The strong correlation between the latent exogenous constructs 
and latent endogenous construct is observed from this table. The mea-
surement and structural models are confirmed through the compre-
hensive analysis. The three hypotheses are statistically significant and 
accepted, thus, yielding empirical insight into the relationships of 

Fig. 5. Conceptual framework and model tested.  

Table 8 
Latent variable correlation.   

Industry 4.0 GSC practices GSC performance 
Industry 4.0 1   
GSC practices 0.414 1  
GSC performance 0.306 0.735 1  
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Industry 4.0 and GSCM implementation. 

6. Conclusion and implications 

6.1. Discussion 

The paper aimed to assess and evidence the link between Industry 
4.0 and GSC practices and how they influence GSC performance in the 
automotive supply chain following an empirical study. The scarce 
literature surrounding the relationship between two paradigms - In-
dustry 4.0 and GSCM was the motivation for study. While attempting to 
address the defined research question, the study found that the imple-
mentation of Industry 4.0 technologies will positively impact the 
implementation of GSC practices in automotive supply chains. 
Furthermore, Industry 4.0 technologies will also positively improve GSC 
performance metrics and, therefore, provide evidence that the tech-
nologies of Industry 4.0 will assist organizations in transitioning towards 
sustainable development (Bonilla et al., 2018; Stock et al., 2018). 
Moreover, it is also apparent that the impact of Industry 4.0 on GSC 
practices will indirectly lead to an improvement in the green perfor-
mance of automotive supply chains, which supports the findings made 
by Kamble et al. (2020). 

The study employed an integrated, two-stage approach by combining 
ISM and SEM methods to provide multiple findings. First, following the 
ISM method, a multi-level structural relationship among the key In-
dustry 4.0 technologies and GSC practices for improving GSC perfor-
mance was built. The ten-level hierarchical structure revealed that IoT 
and CPS are the most significant factors compared to other Industry 4.0 
technologies influencing GSC practices. Later, MICMAC analysis sup-
ported in developing a driving and dependence power matrix. Within 
GSC practices, it was found that RL carried the highest driving power, 
strongly influencing GP and SCEC (Cluster II in Fig. 4). In linking factors, 
although CC, ME and BC carry the same level of dependence power on 
other high-level Industry 4.0 technologies, BC carries the highest driving 
power for linking Industry 4.0 technologies with GSC practices and 
other SC processes (Cluster III in Fig. 4). 

Building on these insights, the SEM method was employed to test/ 
verify the developed hypothesis models simultaneously. Following 
multiple reliability and statistical tests, the measurement and structural 
models were evaluated. All hypotheses (H1, H2, H3) were satisfied and 
accepted, reflecting the strong influential relationship between Industry 
4.0 technologies, GSC practices and GSC performance. The β coefficient, 
representing the strength of the effect, was found to be strongest be-
tween GSC practices and GSC performance. This was a predictable result 
as GSC practices will invariably help in driving GSC performance (Chin 
et al., 2015; Vanalle et al., 2017). However, similar, strong (but with 
lower strength) relationships between Industry 4.0 & GSC practices and 
Industry 4.0 & GSC performance were observed. More importantly, the 
indirect effect of Industry 4.0 technologies through GSC practices on SC 
performance was found to be higher compared to the direct effect of 
Industry 4.0 and GSC practices. The establishment of this relationship 
overcomes the limitation identified by Centobelli et al. (2020) con-
cerning the two paradigms. 

6.2. Theoretical implications 

The research conducted in this study presents multiple theoretical 
contributions to the paradigms between Industry 4.0 and GSCM. Firstly, 
this research provides robust empirical evidence into how the integra-
tion of Industry 4.0 technologies in automotive supply chains will 
corroborate the initiation of GSC practices and their impact on 
improving GSC performance concerning economic, environmental, and 
operational dimensions (Liu et al., 2020; Kamble et al., 2020). Past 
studies mainly discuss the implications and benefits of Industry 4.0 in 
the manufacturing, automotive and service sectors (e.g., Quezada et al., 
2017; Fatorachian and Kazemi, 2018; Rahman et al., 2020) and identify 

the drivers and barriers for GSCM implementation (e.g. de Sousa Jab-
bour et al., 2018; Kaur et al., 2018). Furthermore, there are limited 
theoretical approaches in the literature that focus on the integration of 
Industry 4.0 technologies and their significance towards greening supply 
chains (Beier et al., 2020; Centobelli et al., 2020). This first empirical 
study in the automotive supply chains, sheds light on the unique re-
lationships between Industry 4.0 and GSCM. 

Secondly, the power matrix provides novel insights into key driving 
and linking disruptive technologies from Industry 4.0 and how they 
influence measuring and implementing core aspects of GSCM. Depen-
dent factors from GSC practices will play critical roles in improving the 
overall environmental performance of supply chains, provided they are 
aptly linked to Industry 4.0 technologies. Thirdly, from the methodo-
logical perspective, the application of an integrated ISM and SEM 
approach for modelling the causal relationship between Industry 4.0 and 
GSCM in the automotive supply chains is distinctive. Fourthly, while 
exploring the role played by mediating and moderating variables of the 
model, the study established that there is an indirect effect of Industry 
4.0 technologies through GSC practices on GSC performance, and this 
link is stronger than the direct effect of Industry 4.0 and GSC practices. 
Overall, this research contributes to the growing literature on sustain-
ability and Industry 4.0 in the broad domain of supply chain 
management. 

6.3. Practical implications 

From a managerial perspective, the study provides evidence to or-
ganizations that although the implementation of GSCM and Industry 4.0 
varies depending on the organization’s size and SC area of operation, 
there are quantifiable benefits of implementing both within their supply 
chains. Wagire et al. (2020) call for developing Industry 4.0 maturity 
models, which are empirically grounded, and technology focussed. 
Empirically establishing the link between Industry 4.0 and GSCM can 
help practitioners with improved confidence in implementing GSC 
practices along with Industry 4.0 technologies for improved firm per-
formance. Furthermore, this study provides a detailed analysis into the 
extent to which the technologies of Industry 4.0 will influence the 
implementation of GSC practices and their indirect impact on GSC 
performance. These insights will help early adopting practitioners with a 
better understanding of the interplay of smart production systems 
(driven by integrated Industry 4.0 technologies) for overcoming safety, 
control and other operational issues faced by organizations (Queiroz 
et al., 2020). Furthermore, the structural relationship among the key 
Industry 4.0 technologies and GSC practices (Fig. 3) will guide supply 
chain managers in making hard decisions regarding the choice of tech-
nologies/practices to implement first for enhanced supply chain per-
formance. This data-driven study will encourage managers to further 
explore the implications of Industry 4.0 on wider sustainability aspects 
within their supply chains. 

6.4. Limitations and future research 

Like any other research, the study has several limitations. The 
following research could benefit from a larger sample size, where a 
geographical area is a key focus of the research. The data were mostly 
collected in developed countries (Europe and UK), where some level of 
advancement is found in technology acceptance and adherence to sus-
tainability principles. It would be interesting to expand the scope of this 
study worldwide to capture the perspective of automotive sectors in 
developing and under-developed countries. Due to the vastness of In-
dustry 4.0 applications, in future, similar studies in other sectors (such 
as aerospace and locomotive) can be conducted to support the gener-
alization of the established link as noted in this paper. Furthermore, the 
current research did not consider variables such as firm experience, size, 
and other moderating variables with Industry 4.0 technology and GSCM, 
and whether this may influence the relationships of the coexisting 

A. Ghadge et al.                                                                                                                                                                                                                                 



Computers & Industrial Engineering 169 (2022) 108303

12

paradigms is an interesting research question to explore in the future. 
Several technologies fall under the remit of Industry 4.0, and the study 
selected only relevant technologies based on the authors’ perceptions 
(Ivanov et al., 2020). From the research methodology perspective, the 
application of Fuzzy ISM-MICMAC to the problem may have provided 
better results and should be further explored. In the near future, macro 
and micro-level analysis can be conducted by investigating the impact of 
the individual as well as the combined Industry 4.0 technologies on 
GSCM. 
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