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A B S T R A C T

We investigate the linear stability characteristics of a pressure-driven two-layer channel flow of immiscible
Newtonian and Herschel–Bulkley fluids subjected to an applied electric field normal to the flow. The linear
stability equations are derived and solved using an accurate spectral Chebyshev collocation method. It is
found that the electric field can stabilise or destabilise the flow depending on the electrical properties of the
fluids. We also observe that increasing the electric permittivity ratio and decreasing the electrical conductivity
ratio, while keeping the rest of the parameters constant, enhances the growth rate of the disturbances. The
‘‘Reynolds stress’’ of the Newtonian layer and the work done by the velocity and stress disturbances tangential
to the interface are found to be the mechanism of the instability observed due to the applied electric field. A
parametric study is also conducted by varying the thickness of the bottom layer, Bingham number and flow
index of the Herschel–Bulkley fluid. Increasing Bingham number is found to be stabilising or destabilising
depending on the thickness of the non-Newtonian layer and the maximum disturbance growth occurs at an
optimum value of non-Newtonian layer thicknesses. Increasing the shear-thinning and shear-thickening nature
is shown to destabilise the flow. Our study is relevant in many microfluidic and electronic cooling applications.

1. Introduction

Interfacial instability in the flows involving two superposed fluid
layers has been a topic of interest for decades due to its relevance in
many engineering applications [1,2]. Thus, a large number of earlier
studies considered the linear stability characteristics of Newtonian [3–
9] and non-Newtonian Herschel–Bulkley fluids [10–16] in two-layer
channel/pipe flows. The main findings of these studies are (i) the
interfacial instability appears due to viscosity stratification even at a
very small Reynolds number, (ii) the work done by the velocity and
stress disturbances in the direction tangential to the interface is the
mechanism of this instability for both Newtonian and non-Newtonian
fluids, (iii) for Bingham fluids, the yield stress either stabilises and
destabilises interfacial instability depending on the presence and ab-
sence of an unyielded region in the flow. A review of the literature on
this subject can be found in Govindarajan and Sahu [17]. All of these
studies are for configurations in the absence of electric field.

The electrical field can be used in controlling the instability that
was addressed in the pioneering work of Taylor and McEwan [18]
and Melcher and Smith [19], and subsequently extended by many
researchers for Newtonian fluids (see, for instance, Ref. [20] and ref-
erences therein). The application of electric field on multiphase flows
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includes the generation of droplets in microchannels [21], enhancing
the mixing in micro-electro-mechanical systems (MEMS) [22–24], to
name a few. Two types of configurations were considered to study the
effect of the electrical field on the instability in superimposed fluid
layers, namely, bulk-coupled configuration [25] where the electrical
fluid properties vary in a thin diffusion layer and surface-coupled
configuration [26] where the electrical fluid properties are subjected
to a sudden jump across the interface. The present study considers
a surface-coupled configuration. In the latter configuration, assuming
rapid relaxation time scale, Thaokar and Kumaran [27] used linear and
weakly nonlinear analyses to investigate the stability of the interface
between two dielectric fluids confined between two parallel plates
subject to an electrical field in the Stokes flow limit. Ozen et al. [28]
conducted a linear stability analysis to study the interfacial instability
of two Newtonian fluids in a plane Poiseuille flow subject to a nor-
mal electrical field in the limit of fast charge relaxation time scale.
They found that the applied electric field can suppress or amplify the
interfacial instability for different parameter values.

Several researchers have also studied the influence of the electric
field on the stability of non-Newtonian fluids of different rheologies,
due to its relevance in many practical applications (e.g. see Ref. [29]).
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Moreover, there has been a growing research interest in this topic [30–
32]. In a two-layer Couette flow of two dielectric Oldroyd-B fluids,
Eldabe [33] conducted a long-wave stability analysis to investigate the
effect of electric field applied normal to the flow. This was extended
to power-law fluids in Ref. [34]. In these studies, it was reported that
the electric field can have a stabilising or destabilising influence. Ersoy
and Uguz [35] studied the linear stability of the interface between a
Newtonian fluid and non-Newtonian fluid characterised by the upper-
convected Maxwell model subjected to a normal electric field. They also
found that increasing the applied voltage could stabilise or destabilise
the flow depending on the electrical properties of the liquids. Nurocak
and Uguz [36] investigated the effect of an electric field applied along
or normal to an interface between an upper-convected Maxwell fluid
and a passive fluid. Recently, the linear instability characteristic of a
flat interface between Newtonian and power-law fluids has been inves-
tigated by Kaykanat and Uguz [37]. They observed that the kinematic
boundary condition at the interface is the main source of instability
when the charge relaxation time is quick.

In this study, we examine the linear stability characteristics of New-
tonian and Herschel–Bulkley fluids in a two-layer configuration that is
subjected to an electric field normal to the flow. In order to isolate
the effect of the electric field, the fluids are assumed to have the same
density. As the fluids are immiscible, the fluid and electrical properties
undergo sudden jump across the interface. The linear stability equa-
tions are derived and solved using a spectral Chebyshev collocation
method. We found that the electric field has a destabilising influence
on the flow for the parameters considered in the present study. The
‘‘Reynolds stress’’ of the Newtonian layer and the work done by the
velocity and stress disturbances tangential to the interface are found to
be the mechanism of the instability observed. The enhancement of the
instability due to the applied electric field is also examined by plotting
the disturbance eigenfunctions profiles. We have also conducted a
parametric study by varying the electric permittivity and conductivity
ratios, the thickness of the bottom layer, the Bingham number and the
flow index of the Herschel–Bulkley fluid layer. It is found that increas-
ing Bingham number can be stabilising or destabilising depending on
the thickness of the non-Newtonian layer. Increasing the shear-thinning
and shear-thickening nature of the non-Newtonian layer is also shown
to destabilise the flow. Moreover, increasing the flow index increases
the range of unstable wavenumbers in the presence and absence of
electrical field.

The rest of the article is organised as follows. The problem is
formulated in Section 2, wherein the basic state, the linear stability
equations are provided and the associated dimensionless numbers are
presented. In Section 3, the linear stability results are discussed and an
energy budget analysis is also conducted to understand the mechanism
of the instability observed under the application of an electric field. The
concluding remarks are given in Section 4.

2. Formulation

We study the linear instability in a two-layer pressure-driven chan-
nel flow of a Newtonian fluid (designated by fluid 2) and a non-
Newtonian fluid (designated by fluid 1) under the influence of an
electric field of electric potential 𝜙0 applied orthogonally to the flow as
shown in the schematic diagram (Fig. 1). It is assumed that the fluids
are incompressible and immiscible and have the same density (𝜌). A
rectangular coordinate system (𝑥, 𝑦) is used to modelled the system,
where 𝑥 and 𝑦 denote the streamwise and wall-normal directions, re-
spectively. The lower and upper channel walls are located at 𝑦 = 0 and
𝑦 = 𝐻 , respectively. The sharp interface that separates the fluids is at
𝑦 = ℎ0. The dynamic viscosity, electrical conductivity and permittivity
of fluid ‘1’ and fluid ‘2’ are (𝜇1, 𝜎1, 𝜖1) and (𝜇2, 𝜎2, 𝜖2), respectively. The
interfacial tension is denoted by 𝛾.

Fig. 1. The schematic diagram of the flow configuration considered. Fluid 1 is a
non-Newtonian fluid characterised by a Herschel–Bulkley model, whereas Fluid 2 is
a Newtonian fluid. The height of the channel is 𝐻 and the fluids are separated by
a sharp interface at 𝑦 = ℎ0. The wall at 𝑦 = 0 is grounded and an electric field of
potential 𝜙0 is applied between the walls in 𝑦 direction.

2.1. Electric field

Under the action of the applied electric field, the fluids experience
electrostatic force/Coulomb force, which in turn effect the interfacial
stresses (normal/tangential) at the interface separating the immiscible
fluids. In the absence of magnetic field, the electric field can be assumed
to be irrotational. Thus, the Gauss law of the volumetric surface charge
density (𝑞) is given by

∇ ⋅

(
𝜖𝑖∇𝜙0

)
= −𝑞 (𝑖 = 1, 2). (1)

The surface charge density around a fluid particle decays with a time
scale, 𝑡𝑒 = 𝜖𝑖∕𝜎𝑖 (known as electric relaxation time). The viscous time
scale is given by 𝑡𝑣 = 𝜌𝑖𝐻

2∕𝜇𝑖. In case of a conducting fluid with
𝑡𝑒 ≪ 𝑡𝑣, the charge accumulates at the interface almost instantaneously,
i.e the charge conservation in the bulk fluid can reach to a steady state
much faster than the fluid motion. When both fluids have low electrical
conductivities, 𝑡𝑒 ≫ 𝑡𝑣, then the medium is known as perfect dielectric;
i.e. in this case, 𝑞 = 0.

2.2. Governing equations and nondimensionalisation

The viscosity of the non-Newtonian fluid (𝜇1) is characterised by the
Herschel–Bulkley model, which is given by

𝜇1 = 𝑘𝜋𝑛−1 + 𝜏0𝜋
−1, (2)

where 𝑘 and 𝑛 denote the consistency and flow index, respectively; 𝜏0 is
the yield shear stress; 𝜋 ≡ (2𝐸𝑖𝑗𝐸𝑖𝑗 )

1∕2 represents the second invariant
of the rate of strain tensor, 𝐸𝑖𝑗 =

1

2
(𝜕𝑢𝑖∕𝜕𝑥𝑗 + 𝜕𝑢𝑗∕𝜕𝑥𝑖).

The flow dynamics is governed by the continuity, Navier–Stokes
and Gauss’s law of electric potential for each layer. The solution of
these equations is sought subject to the conditions of no-slip and
no-penetration on the walls, continuity of the normal and tangential
components of the velocity and stress, and the kinematic condition at
the interface. The following scaling is used to render the governing
equations and boundary conditions non-dimensional.

(𝑥, 𝑦, ℎ0) = 𝐻
(
𝑥, 𝑦, ℎ̃0

)
, 𝑡 = 𝐻∕𝑉 �̃�, 𝐮 = 𝑉 �̃�, (𝜙1, 𝜙2) = 𝜙0(𝜙1, 𝜙2),

𝑝𝑖 = 𝜇2𝑉 𝑃𝑖∕𝐻, (𝜇1, 𝜇2) = 𝜇2(𝜇1, 𝜇2), (𝜎1, 𝜎2) = 𝜎2(𝜎1, 𝜎2),

(𝜖1, 𝜖2) = 𝜖2(𝜖1, 𝜖2), 𝑞 = 𝑞𝑠𝑞, (3)

where the superscript tilde designates the dimensionless quantity, and
𝐮(𝑢, 𝑣) represents the velocity field, where 𝑢 and 𝑣 are the components
of the velocity in the 𝑥 and 𝑦 directions, respectively. 𝑉 (≡ 𝑄∕𝐻),
𝑞𝑠

(≡ 𝜀2𝜙0∕𝐻
)
and the fluid properties of the Newtonian fluid are used

as the scales, wherein 𝑄 denotes the total flow rate per unit width in the
spanwise direction and𝐻 is the height of the channel. After suppressing
tilde notations, the dimensionless governing equations are given by

𝑢𝑖,𝑥 + 𝑣𝑖,𝑦 = 0, (4)

𝑅𝑒
(
𝑢𝑖,𝑡 + 𝑢𝑖𝑢𝑖,𝑥 + 𝑣𝑖𝑢𝑖,𝑦

)
= −𝑃𝑖,𝑥 + 2

(
𝜇𝑖𝑢𝑖,𝑥

)
𝑥
+
(
𝜇𝑖(𝑢𝑖,𝑦 + 𝑣𝑖,𝑥)

)
𝑦
, (5)
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𝑅𝑒
(
𝑣𝑖,𝑡 + 𝑢𝑖𝑣𝑖,𝑥 + 𝑣𝑖𝑣𝑖,𝑦

)
= −𝑃𝑖,𝑦 +

(
𝜇𝑖(𝑣𝑖,𝑥 + 𝑢𝑖,𝑦)

)
𝑥
+ 2

(
𝜇𝑖𝑣𝑖,𝑦

)
𝑦
, (6)

𝜙𝑖,𝑥𝑥 + 𝜙𝑖,𝑦𝑦 = 0, (7)

where subscripts 𝑡, 𝑥 and 𝑦 represent the partial derivatives with
respect to 𝑡, 𝑥 and 𝑦, respectively. The dimensionless viscosity of the
non-Newtonian fluid (𝜇1) is given by

𝜇1 = 𝑚𝛱𝑛−1 + 𝐵𝑛𝛱−1. (8)

Here 𝑅𝑒 ≡ 𝜌𝑉 𝐻∕𝜇2 is the Reynolds number, 𝐵𝑛 ≡ 𝜏0𝐻∕𝜇2𝑉 is a
Bingham number and 𝑚 ≡ 𝜇−1

2
𝑘(𝑉 ∕𝐻)𝑛−1 is the Newtonian viscosity

ratio.
The dimensionless boundary conditions at the walls are given by

𝑢1 = 0, 𝑣1 = 0, 𝜙1 = 0 at 𝑦 = 0, (9)

𝑢2 = 0, 𝑣2 = 0, 𝜙2 = 1 at 𝑦 = 1. (10)

The interfacial boundary conditions at the interface are given by:
(i) The continuity of the velocity components at the interface

𝑢1 = 𝑢2, 𝑣1 = 𝑣2. (11)

(ii) The continuity of the tangential components of the electric field
across the interface

𝜙1,𝑥 + ℎ𝑥𝜙1,𝑦 = 𝜙2,𝑥 + ℎ𝑥𝜙2,𝑦. (12)

(iii) Two additional interfacial boundary conditions for the surface
charge density, 𝑞 are required. The first boundary condition comes from
Gauss’s law, i.e., the normal component of the electric field satisfies

ℎ𝑥𝜙2,𝑥 − 𝜙2,𝑦 − 𝜀𝑟
(
ℎ𝑥𝜙1,𝑥 − 𝜙1,𝑦

)
= 𝑞(1 + ℎ2𝑥)

1∕2. (13)

(iv) The second boundary condition deals with accumulation of the
charge particles at the interface due to the ionic conduction from the
bulk fluid (leaky-dielectric model), which is given by

𝑞𝑡 + 𝑢1𝑞𝑥 −
1

(1 + ℎ2𝑥)

[
ℎ2𝑥𝑞𝑥𝑢1 − ℎ𝑥𝑞𝑥𝑣1

+ 𝑞
{
ℎ2𝑥𝑢1,𝑥 − ℎ𝑥

(
𝑢1,𝑦 + 𝑣1,𝑥

)
+ 𝑣1,𝑥

}]

=
𝛬(

1 + ℎ2𝑥
)1∕2

[
−ℎ𝑥𝜙2,𝑥 + 𝜙2,𝑦 − 𝜎𝑟

(
−ℎ𝑥𝜙1,𝑥 + 𝜙1,𝑦

)]
. (14)

(v) The normal and shear stresses balance equations are given by

𝑃1 − 𝑃2 +
2

(1 + ℎ2𝑥)

[
𝑣2,𝑦 + ℎ

2
𝑥𝑢2,𝑥 − ℎ𝑥

(
𝑢2,𝑦 + 𝑣2,𝑥

)]

−
2𝜇1

(1 + ℎ2𝑥)

[
𝑣1,𝑦 + ℎ

2
𝑥𝑢1,𝑥 − ℎ𝑥

(
𝑢1,𝑦 + 𝑣1,𝑥

)]

+
𝐸0

2

[
(ℎ2𝑥 − 1)

{
𝜙2
2,𝑥

− 𝜙2
2,𝑦

− 𝜀𝑟

(
𝜙2
1,𝑥

− 𝜙2
1,𝑦

)}

−4ℎ𝑥
{
𝜙2,𝑥𝜙2,𝑦 − 𝜀𝑟𝜙1,𝑥𝜙1,𝑦

}]

= −
𝛤

(1 + ℎ2𝑥)
3∕2

ℎ𝑥𝑥, (15)

and

(1 − ℎ2𝑥)
(
𝑢2,𝑦 + 𝑣2,𝑥

)
+ 2ℎ𝑥

(
𝑣2,𝑦 − 𝑢2,𝑥

)
−

𝜇1
[
(1 − ℎ2𝑥)

(
𝑢1,𝑦 + 𝑣1,𝑥

)
+ 2ℎ𝑥

(
𝑣1,𝑦 − 𝑢1,𝑥

)]
=

−𝐸0

[(
ℎ𝑥𝜙2,𝑥 − 𝜙2,𝑦

) (
𝜙2,𝑥 + ℎ𝑥𝜙2,𝑦

)

−𝜀𝑟
(
ℎ𝑥𝜙1,𝑥 − 𝜙1,𝑦

) (
𝜙1,𝑥 + ℎ𝑥𝜙1,𝑦

)]
, (16)

respectively. All the boundary conditions discussed so far are the
dynamic boundary conditions.

(vi) The kinematic condition is given by

ℎ𝑡 + 𝑢1ℎ𝑥 = 𝑣1, (17)

where 𝜀𝑟(≡ 𝜀1∕𝜀2) is the electrical permittivity ratio, 𝜎𝑟(≡ 𝜎1∕𝜎2) is
the electrical conductivity ratio, 𝛬(≡ 𝐻𝜎2∕𝑉 𝜖2) is the fluid to electric

Table 1
The critical value of the Bingham number for different values of the flow index (𝑛).
The rest of the parameters are 𝑚 = 10 and ℎ0 = 0.5.

Flow index (𝑛) Critical Bingham number (𝐵𝑛𝑐𝑟)

0.7 11.0
1.0 13.0
1.2 13.4
1.5 14.1

time-scales and 𝐸0(≡ 𝜀2𝜙
2
0
∕𝜇2𝑉 𝐻) is the electric Weber number. We

restrict the analysis to sufficiently low values of 𝐵𝑛 so that there are no
unyielded regions in the flow domain. Note that in the above equations,
by setting the electric field to zero, we can recover the governing
equations and the boundary conditions reported in Refs. [14,15,38].

2.3. Basic state

The basic state velocity field is assumed to be steady and unidirec-
tional driven by a linear pressure distribution in 𝑥 (𝑃1 = 𝑃2 ≡ 𝑃 ).
Thus, the basic state streamwise velocity profiles in both the layers
can be obtained by integrating Eq. (5) under these assumptions. The
streamwise velocity profiles in both the layers are given

𝑈1 =
𝑛

𝑛 + 1

𝑃𝑥
−1

𝑚1∕𝑛

(
𝑃𝑥𝑦 + 𝑐3 − 𝐵𝑛

)(𝑛+1)∕𝑛
+ 𝑐4, (18)

𝑈2 = 𝑃𝑥
𝑦2

2
+ 𝑐1𝑦 + 𝑐2. (19)

The constant pressure gradient (𝑃𝑥) and the integration constants (𝑐1,
𝑐2, 𝑐3, and 𝑐4) are obtained by solving the following simultaneous
equations resulting from the no-slip boundary conditions at the upper
and lower walls, and demanding continuity of velocity at the interface
separating the fluids (𝑦 = ℎ0).

𝑛𝑃𝑥
−1

(𝑛 + 1)𝑚1∕𝑛

[(
𝑃𝑥ℎ

0 + 𝑐3 − 𝐵𝑛
)(𝑛+1)∕𝑛

−

(𝑐3 − 𝐵𝑛)
(𝑛+1)∕𝑛

]
−

1

2
𝑃𝑥(ℎ

02 − 1) − 𝑐1(ℎ
0 − 1) = 0, (20)

𝑐3 = 𝑐1, 𝑐2 = −
𝑃𝑥

2
− 𝑐1, 𝑐4 = −

𝑛𝑃𝑥
−1

(𝑛 + 1)𝑚1∕𝑛
(𝑐1 − 𝐵𝑛)

(𝑛+1)∕𝑛. (21)

The condition for the constant volumetric flow rate is given by

∫
ℎ0

0

𝑈1𝑑𝑦 + ∫
1

ℎ0
𝑈2𝑑𝑦 = 1. (22)

𝜙0
1
=

𝑦(
𝜎𝑟 + ℎ

0(1 − 𝜎𝑟)
) , (23)

The base state of the electric potential in each layer is given by

𝜙0
2
=

𝜎𝑟(
𝜎𝑟 + ℎ

0(1 − 𝜎𝑟)
) 𝑦 + ℎ0(1 − 𝜎𝑟)

(𝜎𝑟 + ℎ
0(1 − 𝜎𝑟))

, (24)

and the constant charge density at the interface at 𝑦 = ℎ0 obtained
using the Gauss’s law, which is given by

𝑞0 =
(𝜀𝑟 − 𝜎𝑟)

(𝜎𝑟 + ℎ
0(1 − 𝜎𝑟))

. (25)

The basic state streamwise velocity profile, 𝑈 (i.e. 𝑈1 and 𝑈2 for the
non-Newtonian and Newtonian layers, which are given by Eqs. (18) and
(19), respectively) is a function of the Bingham number (𝐵𝑛), flow index
(𝑛), Newtonian viscosity ratio (𝑚) and the location of the interface (ℎ0).
In Figs. 2(a) and (b), the streamwise velocity profiles are plotted for
different values of 𝐵𝑛 for ℎ0 = 0.3 and ℎ0 = 0.5, respectively. The rest
of the parameters are 𝑛 = 1 and 𝑚 = 10. It can be seen that increasing
𝐵𝑛 decreases the gradient of the velocity profile of the non-Newtonian
fluid layer and reaches to zero near the interface (unyielded region) for
a critical value of 𝐵𝑛 (𝐵𝑛𝑐𝑟). The values of 𝐵𝑛𝑐𝑟 for different values of
𝑛 are given in Table 1.
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Fig. 2. The basic state streamwise velocity profile for different values of the Bingham number for 𝑛 = 1. (a) ℎ0 = 0.5 and (b) ℎ0 = 0.3.

2.4. Linear stability analysis

In order to study the linear stability characteristics of the basic state
to infinitesimally small disturbances, the flow variables are represented
as the sum of the basic state and two-dimensional disturbances as

(𝑢𝑖, 𝑣𝑖, 𝑃𝑖, 𝜙𝑖)(𝑥, 𝑦, 𝑡) = [𝑈𝑖(𝑦), 0, 𝑃 , 𝜙
0
𝑖 (𝑦)] + (�̂�𝑖, �̂�𝑖, 𝑝𝑖, �̂�𝑖)(𝑥, 𝑦, 𝑡) (𝑖 = 1, 2).

(26)

Similarly 𝜇1, ℎ, and 𝑞 can be perturbed as

𝜇1(𝜋) = 𝜇0
1
+
𝜕𝜇1
𝜕𝜋

|||
0
(𝜋 −𝛱) ≡ 𝜇0

1
+ 𝑆�̂�,

ℎ(𝑥, 𝑡) = ℎ0 + ℎ̂(𝑥, 𝑡), 𝑞(𝑥, 𝑡) = 𝑞0 + 𝑞(𝑥, 𝑡), (27)

where 𝑆 = (𝑛 − 1)𝑚𝛱𝑛−2 − 𝐵𝑛𝛱−2 and the superscript 0 designates the
basic state quantities. Here, 𝜋 and �̂� are the second invariant of the
rate of strain tensor associated with the resulting flow after introducing
the disturbance (i.e. basic flow + disturbance) and only disturbance,
respectively. Substitution of Eqs. (26) and (27) into the governing
equations, subtraction of the basic state equations, subsequent lineari-
sation and elimination of the pressure perturbations yield the equations
that govern the linear stability characteristics of the flow. These flow
variables are then re-expressed in terms of the stream function as
(𝑢𝑖, 𝑣𝑖) = (𝜕𝛹𝑖∕𝜕𝑦,−𝜕𝛹𝑖∕𝜕𝑥), (𝑖 = 1, 2) and decomposed using normal
mode analysis as

(�̂�𝑖, �̂�𝑖, �̂�𝑖, �̂�, �̂�𝑖)(𝑥, 𝑦, 𝑡) = (𝜓 ′
𝑖 ,−𝑖𝛼𝜓𝑖, 𝑝𝑖, 𝜋𝑖, 𝜙𝑖)(𝑦)𝑒

𝑖(𝛼𝑥−𝜔𝑡), (28)

ℎ̂ = ℎ̃𝑒𝑖(𝛼𝑥−𝜔𝑡), 𝑞 = 𝑞𝑒𝑖(𝛼𝑥−𝜔𝑡), (29)

where 𝜓𝑖, ℎ̃ and 𝑞 denote the amplitude of the stream function, interfa-
cial perturbation and surface charge density perturbation, respectively.
The prime represents differentiation with respect to 𝑦. Here, 𝛼 is a
streamwise (real) wavenumber and 𝜔(= 𝛼𝑐) is a complex frequency,
wherein 𝑐 is a complex phase speed of the disturbance, such that 𝜔𝑖 > 0

or 𝑐𝑖 > 0 indicates the presence of a linear instability. The linear
stability equations are given by

𝑖𝛼𝑅𝑒
[
(𝜓 ′′

1
− 𝛼2𝜓1)(𝑈1 − 𝑐) − 𝜓1𝑈

′′
1

]
= 𝜇0

1
(𝜓 ′′′′

1
− 2𝛼2𝜓 ′′

1
+ 𝛼4𝜓1) +

2𝜇0
1

′
(𝜓 ′′′

1
− 𝛼2𝜓 ′

1
) + 𝜇0

1

′′
(𝜓 ′′

1
+ 𝛼2𝜓1) + 2𝑈 ′′

1
(𝑆𝜋′ + 𝑆′𝜋) +

𝑈 ′
1

(
𝑆𝜋′′ + 2𝑆′𝜋′ + 𝑆′′𝜋

)
+ 𝑆𝜋

(
𝑈 ′′′
1

+ 𝛼2𝑈 ′
1

)
, (30)

𝑖𝛼𝑅𝑒
[(
𝜓 ′′
2
− 𝛼2𝜓2

) (
𝑈2 − 𝑐

)
− 𝜓2𝑈

′′
2

]
= 𝜓 ′′′′

2
− 2𝛼2𝜓 ′′

2
+ 𝛼4𝜓2, (31)

𝜙′′
1
− 𝛼2𝜙1 = 0, (32)

𝜙′′
2
− 𝛼2𝜙2 = 0. (33)

In the (𝑛, 𝐵𝑛) → (1, 0) limit, these equations reduce to the linear stability
equations used for Newtonian two-layer system under the influence of
the electric field [39]. In the absence of an electric field, we recover the
stability equations given in Refs. [40,41]. The classical Orr–Sommerfeld
equation [42] can be obtained by setting (𝑛, 𝐵𝑛) → (1, 0) and in the
absence of electric field.

The eigenvalue (𝑐) and the eigenfunctions (𝜓1, 𝜓2, 𝜙1 and 𝜙2) are
obtained via the solution of Eqs. (30)–(33) subject to the following
boundary conditions for the disturbance.

𝜓1 = 𝜓 ′
1
= 𝜙1 = 0, at 𝑦 = 0, (34)

𝜓2 = 𝜓 ′
2
= 𝜙2 = 0, at 𝑦 = 1, (35)

𝜓1 = 𝜓2, (36)

𝜓 ′
1
− 𝜓 ′

2
+ ℎ

(
𝑈 ′
1
− 𝑈 ′

2

)
= 0, (37)

𝜙1 − 𝜙2 + ℎ
(
𝜙0
1

′
− 𝜙0

2

′
)
= 0, (38)

𝑖𝛼𝑅𝑒
[
{(𝑐 − 𝑈1)𝜓

′
1
+ 𝜓1𝑈

′
1
} − {(𝑐 − 𝑈2)𝜓

′
2
+ 𝜓2𝑈

′
2
}
]
− 2𝜇0

1
𝛼2𝜓 ′

1
+ 3𝛼2𝜓 ′

2
+

𝜇0
1
(𝜓 ′′′

1
− 𝛼2𝜓 ′

1
) + 𝜇0

1

′
(𝜓 ′′

1
+ 𝛼2𝜓1) + 𝑆

′𝑈 ′
1
𝜋 + 𝑆𝑈 ′

1
𝜋′ + 𝑆𝑈 ′′

1
𝜋 − 𝜓 ′′′

2
+

𝑖𝛼𝐸0

(
𝜙′
2
𝜙0
2

′
− 𝜀𝑟𝜙

′
1
𝜙0
1

′
)
= −𝑖𝛼3𝛤

(𝜓 ′
2
− 𝜓 ′

1
)

(𝑈 ′
2
− 𝑈 ′

1
)
, (39)

𝜓 ′′
2
+ 𝛼2𝜓2 − 𝜇

0
1
(𝜓 ′′

1
+ 𝛼2𝜓1) − 𝑆𝑈

′
1
𝜋 =

𝑖𝛼𝐸0

[(
𝜙2 −

𝜓2

(𝑈2 − 𝑐)
𝜙0
2

′
)
𝜙0
2

′
− 𝜀𝑟

(
𝜙1 −

𝜓1

(𝑈1 − 𝑐)
𝜙0
1

′
)
𝜙0
1

′
]
. (40)

The kinematic condition for the disturbance is given by

ℎ =
𝜓1

(𝑐 − 𝑈1)

|||||ℎ0
=

𝜓2

(𝑐 − 𝑈2)

|||||ℎ0
, (41)

and the conservation charge density at the interface is given by

𝑖𝛼(𝑈1 − 𝑐)
(
𝜀𝑟𝜙

′
1
− 𝜙′

2

)
+ 𝑖𝛼𝑞0𝜓 ′

1
= 𝛬

(
𝜙′
2
− 𝜎𝑟𝜙

′
1

)
. (42)

The linear perturbation equations (Eqs. (30)–(33)) along with the per-
turbed boundary conditions (Eqs. (34)–(42)) constitute an eigenvalue
problem, which is given by

⎡⎢⎢⎢⎢⎣

11 0 0 0

0 22 0 0

0 0 33 0

0 0 0 44

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜓1

𝜓2

𝜙1

𝜙2

⎤⎥⎥⎥⎥⎦
= 𝑐

⎡⎢⎢⎢⎢⎣

11 0 0 0

0 22 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜓1

𝜓2

𝜙1

𝜙2

⎤⎥⎥⎥⎥⎦
,

where,

11 = 𝛼𝑈1(𝐷
2 − 𝛼2) − 𝛼𝑈 ′′

1
+

𝑖

𝑅𝑒

[
𝜇0
1
(𝐷4 − 2𝛼2𝐷2 + 𝛼4)

+ 2𝜇0
1

′ (
𝐷3 − 𝛼2𝐷

)
+ 𝜇0

1

′′ (
𝐷2 + 𝛼2

)
+ 𝛼2𝑆𝑈 ′

1
𝜋 +

𝑆′′𝑈 ′
1
𝜋 + 2𝑆′𝑈 ′

1
𝜋′ + 2𝑆′𝑈 ′′

1
𝜋 + 𝑆𝑈 ′

1
𝜋′′ + 2𝑆𝑈 ′′

1
𝜋′ + 𝑆𝑈 ′′′

1
𝜋
]
,

22 = 𝛼𝑈2(𝐷
2 − 𝛼2) − 𝛼𝑈 ′′

2
+

𝑖

𝑅𝑒

(
𝐷4 − 2𝛼2𝐷2 + 𝛼4

)
,

33 = (𝐷2 − 𝛼2),44 = (𝐷2 − 𝛼2),

11 = 𝛼(𝐷2 − 𝛼2), 22 = 𝛼(𝐷2 − 𝛼2).

Here, 𝐷 ≡ 𝑑∕𝑑𝑦, and (𝜓1, 𝜙1) and (𝜓2, 𝜙2) are the eigenfunctions
corresponding to the eigenvalue 𝑐 in the intervals [0, ℎ0] and [ℎ0, 1],
respectively. This eigenvalue problem is solved by using the Cheby-
shev collocation method and a public domain software, LAPACK. This
procedure allows the numerical calculation of the dispersion relations
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Fig. 3. The effect of increasing the order of Chebyshev polynomials, 𝑁 , on the
variation of 𝜔𝑖 with 𝛼 (dispersion curve) obtained using a typical set of parameters, i.e
𝑅𝑒 = 10, 𝑚 = 10, 𝑛 = 1, 𝛤 = 1, ℎ0 = 0.3, 𝜖𝑟 = 2, 𝜎𝑟 = 10, 𝐸0 = 1 and 𝐵𝑛 = 5.

𝜔𝑖 = 𝜔𝑖(𝛼;𝑅𝑒,𝐵𝑛, 𝑛, 𝑚, 𝛤 , 𝐸0, 𝜖𝑟, 𝜎𝑟, ℎ
0). A similar technique has been

used in Refs. [14,15]. We assume that 𝛬 is extremely large, i.e. 𝛬 → ∞,
which implies that the charge relaxation time is very quick.

The stability code used in the present study was used in our earlier
publications without electric field [14,15], wherein the code was ex-
tensively validated by comparing with the previously reported stability
results associated with Newtonian fluids. Thus, here we only present
the dependence of our numerical solutions upon mesh refinement in
Fig. 3, which depicts the growth rate of the most unstable disturbance,
𝜔𝑖 against 𝛼 (dispersion curve) for a typical set of parameters (𝑅𝑒 = 10,
𝑚 = 10, 𝑛 = 1, 𝛤 = 1, ℎ0 = 0.3, 𝜖𝑟 = 2, 𝜎𝑟 = 10, 𝐸0 = 1 and 𝐵𝑛 = 5).
It is seen that the curves for different values of the order of Chebyshev
polynomials, 𝑁 , are virtually indistinguishable for 𝑁 ≥ 21. However,
we generated the rest of the results presented in this study using𝑁 = 41

to be in a safer side.

3. Results and discussion

We begin the presentation of our results by studying the effect
of electric field on the linear stability behaviour of a pressure-driven
two-layer channel flow consisting of two immiscible fluids, namely a
Newtonian fluid (top layer) and a Herschel–Bulkley fluid (bottom layer)
with 𝐵𝑛 = 5 and 𝑛 = 1. In Figs. 4(a) and (b), we examine the dispersion
curves for different values of the electrical Weber number, 𝐸0, which
characterises the strength of the electrical field for ℎ0 = 0.3 and 0.5,
respectively. The rest of the parameters considered are 𝑅𝑒 = 10, 𝑚 = 10,
𝛤 = 1, 𝜖𝑟 = 10 and 𝜎𝑟 = 2 (hereafter, termed as ‘base parameters’).
It can be seen that the dispersion curves are paraboloidal with 𝜔𝑖 >

0 over a finite band of wavenumbers, indicating the presence of a
linear instability. These curves exhibit well-defined ‘‘most-dangerous’’
and ‘‘cut-off’’ modes corresponding to the values of 𝛼 for which 𝜔𝑖 is
maximal (designated by ‘‘𝐴−𝐷’’ in Fig. 4a and ‘‘𝐸−𝐻 ’’ in Fig. 4(b) and
beyond which 𝜔𝑖 ≤ 0, respectively. It can be observed in Figs. 4(a) and
(b) that increasing 𝐸0 increases the growth rate for both the values of
ℎ0 considered. Close inspection also reveals that while the wavenumber
of the most dangerous mode decreases as the value of 𝐸0 increases
for ℎ0 = 0.3, the opposite trend is apparent for ℎ0 = 0.5. Also the
maximum growth rate at a particular value of 𝐸0 for ℎ

0 = 0.3 is higher
than that for ℎ0 = 0.5. It indicates that decreasing the thickness of the
non-Newtonian layer enhances the interfacial instability.

Using the formulation used in the present study, the conditions
derived by Ozen et al. [28] for the stabilising influence of the applied
electric field are

𝜎2𝑟 < 𝜖𝑟 for 𝜎𝑟 < 1, and 𝜎2𝑟 > 𝜖𝑟 for 𝜎𝑟 > 1. (43)

Similarly, the conditions for the destabilising influence of the applied
electric field are

𝜎2𝑟 > 𝜖𝑟 for 𝜎𝑟 < 1, and 𝜎2𝑟 < 𝜖𝑟 for 𝜎𝑟 > 1. (44)

Note that in Figs. 4(a,b), 𝜎2𝑟 < 𝜖𝑟 and 𝜎𝑟 > 1. In Fig. 4(c), we investigate
the effect of 𝐸0 when 𝜎

2
𝑟 > 𝜖𝑟 and 𝜎𝑟 > 1. It can be seen in Fig. 4c

that in this case, 𝐸0 has a stabilising influence. Thus, it can be inferred
that the behaviour of the electric field observed in the present study is
consistent with that reported by Ozen et al. [28].

In order to understand the mechanism behind the instability asso-
ciated with the electric field, we conduct an energy budget analysis
similar to the one given in Ref. [4], which was performed for Newto-
nian fluids without any electric field. In the present study, the electric
effect is included via the normal and tangential stresses. The energy
budget equation is derived by taking the inner product of the horizontal
and vertical components of the velocity disturbance equations with the
respective velocity components. The resultant equation is then aver-
aged over the wavelength of the disturbance, 𝜆 = 2𝜋∕𝛼 and integrated
over the height of the channel to obtain the following energy budget
equation:

2∑
𝑖=1

𝐾𝐼𝑁 𝑖 =

2∑
𝑖=1

𝐷𝐼𝑆𝑖 +

2∑
𝑖=1

𝑅𝐸𝑌 𝑖 + 𝐼𝑁𝑇 , (45)

where, 𝐾𝐼𝑁 𝑖 is the temporal rate of change in disturbance kinetic
energy, so 𝐾𝐼𝑁 > 0 implies instability,𝐷𝐼𝑆𝑖 denotes the rate of change
in the viscous dissipation of energy, 𝑅𝐸𝑌 𝑖 represents the ‘‘Reynolds
stress’’ term, which determines the rate of transfer of energy from the
basic flow to the disturbance and 𝐼𝑁𝑇 is associated with the existence
of an interface. The term 𝐼𝑁𝑇 can be decomposed into 𝑇𝐸𝑁 and 𝑇𝐴𝑁 ,
which represent the work done by the velocity and stress disturbances
in the directions normal and tangential to the interface, respectively,
and are given by

𝐾𝐼𝑁 𝑖 =
1

𝜆

𝑑

𝑑𝑡 ∫
𝑏𝑖

𝑎𝑖

𝑑𝑦∫
𝜆

0

𝑑𝑥
[
1

2

(
�̂�2𝑖 + �̂�

2
𝑖

)]
, (46)

𝐷𝐼𝑆 𝑖 = −
1

𝜆𝑅𝑒 ∫
𝑏𝑖

𝑎𝑖

𝑑𝑦∫
𝜆

0

𝜇𝑖𝑑𝑥
[
2
(
�̂�𝑖,𝑥

)2
+
(
�̂�𝑖,𝑦 + �̂�𝑖,𝑥

)2
+ 2

(
�̂�𝑖,𝑦

)2]
,

(47)

𝑅𝐸𝑌 𝑖 =
1

𝜆 ∫
𝑏𝑖

𝑎𝑖

𝑑𝑦∫
𝜆

0

𝑑𝑥
[
−�̂�𝑖�̂�𝑖𝑈𝑖,𝑦

]
, (48)

𝑇𝐸𝑁 =
1

𝜆𝑅𝑒 ∫
𝜆

0

(
�̂�1𝜏1,𝑦𝑦 − �̂�2𝜏2,𝑦𝑦

)
𝑦=ℎ

𝑑𝑥,

=
1

𝜆𝑅𝑒 ∫
𝜆

0

(�̂�1𝛤 ℎ̂𝑥𝑥)𝑦=ℎ𝑑𝑥 +
𝐸0

𝜆𝑅𝑒 ∫
𝜆

0

[
�̂�1

(
𝜖𝑟𝜙

0
1

′
�̂�′
1
− 𝜙0

2

′
�̂�′
2

)]
𝑦=ℎ

𝑑𝑥,

(49)

𝑇𝐴𝑁 =
1

𝜆𝑅𝑒 ∫
𝜆

0

(
�̂�1𝜏1,𝑥𝑦 − �̂�2𝜏2,𝑥𝑦

)
𝑦=ℎ

𝑑𝑥+

𝐸0

𝜆𝑅𝑒 ∫
𝜆

0

[
�̂�2(�̂�2,𝑥 + ℎ̂𝑥𝜙

0
2

′
)𝜙0

2

′
+ �̂�1

(
�̂�1,𝑥 + ℎ̂𝑥𝜙

0
1

′
)
𝜙0
1

′
]
𝑦=ℎ

𝑑𝑥, (50)

where subscript 𝑖 = 1 and 2 represent the non-Newtonian and Newto-
nian layers, respectively, such that for 𝑖 = 1: 𝜇 = 𝜇1, 𝑎1 = 0 and 𝑏1 = ℎ0

and for 𝑖 = 2: 𝜇 = 1, 𝑎2 = ℎ0 and 𝑏2 = 1. The components of the stress
tensor are defined as

𝜏𝑖,𝑥𝑦 = 𝜇𝑖
(
�̂�𝑖,𝑦 + �̂�𝑖,𝑥

)
𝑎𝑛𝑑 𝜏𝑖,𝑦𝑦 = −𝑝𝑖 + 2𝜇𝑖�̂�𝑖,𝑦, (51)

where 𝑝𝑖 denote the pressure disturbances.
The decomposition of rate of change of energies scaled by the total

spatially averaged rate of change of disturbance kinetic energy, 𝐾𝐼𝑁(=

𝐾𝐸𝑁1+𝐾𝐸𝑁2) associated with points 𝐴, 𝐵, 𝐶 and 𝐷 in Fig. 4(a) which
corresponds to 𝛼 = 4.4, 3.8, 3.78 and 3.76 for ℎ0 = 0.3 is given in
Table 2. It can be observed that the work done by the velocity and
stress disturbances in the direction tangential to the interface (𝑇𝐴𝑁)

provides the biggest positive contribution to the instability. This finding
is similar to the one reported by other researchers for two-layer channel
flow without electric field [4,15,16]. While the other contributions
for point 𝐴 (without electric field) are negative, the ‘‘Reynolds stress’’
term associated with the Newtonian fluid (𝑅𝐸𝑌2) also makes positive
contributions to the instability for points ‘‘𝐵 − 𝐷’’ (with electric field)
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Fig. 4. Effect of the electric Weber number, 𝐸0, on the dispersion curve (𝜔𝑖 versus 𝛼) for 𝐵𝑛 = 5 and 𝑛 = 1. (a) ℎ = 0.3 and (b) ℎ = 0.5 for 𝜖𝑟 = 10 and 𝜎𝑟 = 2; (c) ℎ = 0.3 for 𝜖𝑟 = 2

and 𝜎𝑟 = 5. The rest of the parameters considered are 𝑅𝑒 = 10, 𝑚 = 10 and 𝛤 = 1.

Table 2
Energy ‘‘budgets" for the points labelled 𝐴, 𝐵, 𝐶 and 𝐷 in Fig. 4(a).

Point 𝛼 𝑅𝐸𝑌1 𝑅𝐸𝑌2 𝐷𝐼𝑆1 𝐷𝐼𝑆2 𝑇𝐴𝑁 𝑇𝐸𝑁

𝐴 4.4 0.0 −0.0067 −0.1317 −0.8683 1.1193 −0.0009
𝐵 3.8 0.0 0.0051 −0.5286 −0.4714 1.1583 −0.0212
𝐶 3.78 0.0 0.0071 −0.5359 −0.4641 1.1502 −0.0250
𝐷 3.76 0.0 0.0089 −0.5441 −0.4559 1.1993 −0.0281

Table 3
Energy ‘‘budgets" for the points labelled 𝐸, 𝐹 , 𝐺 and 𝐻 in Fig. 4(b).

Point 𝛼 𝑅𝐸𝑌1 𝑅𝐸𝑌2 𝐷𝐼𝑆1 𝐷𝐼𝑆2 𝑇𝐴𝑁 𝑇𝐸𝑁

𝐸 1.05 0.0 0.0017 −0.4348 −0.5652 1.1412 −0.0001
𝐹 1.8 0.0001 0.0060 −0.6968 −0.3032 1.2617 −0.0030
𝐺 1.9 0.0001 0.0076 −0.7055 −0.2945 1.2615 −0.0042
𝐻 2.0 0.0001 0.0091 −0.7146 −0.2854 1.2584 −0.0055

Table 4
Energy ‘‘budgets" for the points labelled 𝐼 , 𝐽 , 𝐾 and 𝐿 in Fig. 4(c).

Point 𝛼 𝑅𝐸𝑌1 𝑅𝐸𝑌2 𝐷𝐼𝑆1 𝐷𝐼𝑆2 𝑇𝐴𝑁 𝑇𝐸𝑁

𝐼 4.4 0.0 −0.0067 −0.1317 −0.8683 1.1193 −0.0009
𝐽 3.8 0.0 −0.0091 −0.2401 −0.2273 0.5726 −0.0054
𝐾 3.8 0.0 −0.0110 −0.4021 −0.3819 0.8926 −0.0085
𝐿 3.8 0.0 −0.0115 −0.4481 −0.2363 0.7894 −0.0049

in Fig. 4(a). Close inspection of the 𝑅𝐸𝑌2 values in Table 2 reveals that
increasing the value of the electrical Weber number, 𝐸0 increases the
positive contribution of this term towards the instability.

The energy budgets for points 𝐸, 𝐹 , 𝐺 and 𝐻 corresponds to 𝛼 =

1.05, 1.8, 1.9 and 2 in Fig. 4b for ℎ0 = 0.5 are presented in Table 3. For
ℎ0 = 0.5, it can be seen that 𝑇𝐴𝑁 , 𝑅𝐸𝑌1 and 𝑅𝐸𝑌2 provide positive
contributions to the instability. In this case, albeit small, 𝑅𝐸𝑌1 also
makes a positive contribution towards the instability. It can be observed
that increasing the electric field strength (increasing 𝐸0) increases the
value of 𝑅𝐸𝑌2. The rest of the terms are negative indicating that they
have stabilising contributions to the instability observed. In Table 4,
the energy ‘‘budgets" for the points labelled 𝐼 , 𝐽 , 𝐾 and 𝐿 in Fig. 4(c),
have been presented. It can be observed that 𝑇𝐴𝑁 remains the biggest

positive contributor to the growth of the disturbance. However, unlike
Table 2 for 𝜖𝑟 = 10 and 𝜎𝑟 = 2, the negative contribution of 𝑅𝐸𝑌2
increases with increasing the strength of the applied electric field for
𝜖𝑟 = 2 and 𝜎𝑟 = 5, thereby stabilising the flow. Thus, it can be
concluded that the work done by the velocity and stress disturbances in
the direction tangential to the interface (𝑇𝐴𝑁) and the rate of transfer
of energy from the basic flow to the disturbance in the Newtonian layer
(𝑅𝐸𝑌2) are the main source of instability observed in our study. The
profiles of the real and imaginary parts of the eigenfunction (𝜓1 and
𝜓2 associated with the bottom and top layers) are shown in Figs. 5(a,b)
and (c,d) for points 𝐴, 𝐵, 𝐶 and 𝐷 in Fig. 4(a) and points 𝐸, 𝐹 , 𝐺
and 𝐻 in Fig. 4b, respectively. It can be seen that the streamwise
disturbance velocity (gradient of 𝜓1 and 𝜓2) undergoes a discontinuity
at the interface, ℎ0 = 0.3 and 0.5 in Figs. 5(a,b) and (c,d), respectively.
This also suggests that the observed instability is due to the presence
of the sharp interface and increasing the strength of the electric field
has a significant effect on the eigenfunction which leads to an increase
in instability.

We also investigate the effect of the electrical properties on the
interfacial stability, by varying the electrical permittivity ratio (𝜖𝑟) for
𝜎𝑟 = 5.0 and conductivity ratio for 𝜖𝑟 = 2.0 in Fig. 6(a) and (b),
respectively. The other parameters are fixed as ℎ0 = 0.5, 𝐵𝑛 = 5,
𝐸0 = 1, 𝑅𝑒 = 10, 𝑚 = 10 and 𝛤 = 1. It can be seen that increasing the
electrical permittivity ratio and decreasing the electrical conductivity
ratio destabilises the flow for the parameters considered in the present
study. A similar behaviour is also observed by Ozen et al. [28] in the
case of Newtonian fluid layers.

Next, we conduct a parametric study by varying the properties of
the Herschel–Bulkley fluid, namely the Bingham number (𝐵𝑛) and the
flow index (𝑛). In Figs. 7(a,c) and (b,d), we investigate the effects of
varying the Bingham number, 𝐵𝑛 on the linear stability characteristic
for 𝐸0 = 0 (without electric field) and 𝐸0 = 2.0, respectively. The panels
(a,b) and (c,d) are for ℎ0 = 0.3 and ℎ0 = 0.5, respectively. The rest of
the parameters are the same as the ‘‘base parameters’’. In Fig. 7(a) for
ℎ0 = 0.3 and without any applied electric field, increasing the value
of 𝐵𝑛 can be seen as resulting in non-monotonic dependency on the
maximum growth rate. The maximum growth rate, 𝜔𝑖,𝑚𝑎𝑥 increases up
to 𝐵𝑛 = 5 and then decreases; it can be clearly seen that 𝜔𝑖,𝑚𝑎𝑥 for
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Fig. 5. The real and imaginary parts of the streamfunction eigenfunctions (𝜓1 , 𝜓2). (a,b) for points 𝐴, 𝐵, 𝐶 and 𝐷 in Fig. 4(a) (ℎ0 = 0.3) and (c,d) for points 𝐸, 𝐹 , 𝐺 and 𝐻 in
Fig. 4(b) (ℎ0 = 0.5).

Fig. 6. The effect of (a) the electric permittivity ratio, 𝜖𝑟 for 𝜎𝑟 = 5.0 and (b) the electrical conductivity ratio, 𝜎𝑟 for 𝜖𝑟 = 2.0 on the dispersion curves. The rest of the parameters
used are ℎ0 = 0.5, 𝐵𝑛 = 5, 𝐸0 = 1, 𝑅𝑒 = 10, 𝑚 = 10 and 𝛤 = 1.

𝐵𝑛 = 8 is lower than that of 𝐵𝑛 = 5 in Fig. 7(a). This reduction in
growth rate for 𝐵𝑛 = 8 can be due to the fact that for 𝐵𝑛 = 8, the
gradient of the basic state velocity profile in the non-Newtonian layer
approaches zero. A similar behaviour was observed in Ref. [43]. For
ℎ0 = 0.5 and without any applied electric field (Fig. 7(b)), it can be
observed that the growth rate at 𝛼 ≈ 1.1 is constant for all values of
𝐵𝑛, but another mode with higher growth rate than the unstable mode
at 𝛼 ≈ 1.1 appears in the high wavenumber region. In contrast, in the
case with electric field Figs. 7(b,d), increasing the value of 𝐵𝑛 decreases
the maximum growth rate, 𝜔𝑖,𝑚𝑎𝑥 for both values of ℎ0 considered.
Comparison of the dispersion curves in Figs. 7(a,c) and Figs. 7(b,d)
also reveals that the external electric field destabilises the system for
all 𝐵𝑛 values. The energy budget analysis presented in Tables 2 and
3 reveals that increasing the strength of the electric field (electrical
Weber number) increases the positive contribution of the ‘‘Reynolds
stress’’ term of the Newtonian layer (𝑅𝐸𝑌2) and thereby increasing the
growth rate of the disturbances for each value of 𝐵𝑛. This surpasses
the stabilising influence from other disturbance energy terms, which in
turn suppresses the non-monotonic behaviour observed as we increase
the value of 𝐵𝑛.

The variations of the growth rate of the most dangerous mode,
𝜔𝑖,𝑚𝑎𝑥 with 𝐵𝑛 for different values of 𝐸0 are plotted in Figs. 8a and
b for ℎ0 = 0.3 and ℎ0 = 0.5, respectively. The rest of the parameters
are the same as those used to generate Fig. 7. The non-monotonic
dependency on the maximum growth rate with 𝐵𝑛 discussed in Fig. 7(a)
for no electric field (𝐸0 = 0) case can be clearly visible in Fig. 8a. This
non-monotonic behaviour is also evident up to 𝐸0 = 1. However, for
𝐸0 ≥ 1.5, it can be seen that increasing 𝐵𝑛 gradually decreases the
value of 𝜔𝑖,𝑚𝑎𝑥 for ℎ

0 = 0.3 (see Fig. 8a). In the case of a thicker non-
Newtonian layer (ℎ0 = 0.5), increasing 𝐵𝑛 has a minimal effect on the
𝜔𝑖,𝑚𝑎𝑥 for each value of 𝐸0.

In Fig. 9, the effect of the flow index, 𝑛 is investigated in the absence
and presence of the electric field with the electrical Weber number,
𝐸0 = 2 for ℎ0 = 0.5 and 𝐵𝑛 = 2. In Fig. 9a with 𝐸0 = 0, it can be seen
that 𝑛 < 1 (shear-thinning) and 𝑛 > 1 (shear-thickening) fluids exhibit
higher growth of the most unstable mode. In the shear thickening case
(𝑛 > 1), increasing 𝑛 not only increases the value of 𝜔𝑖,𝑚𝑎𝑥 but also the
range of unstable wave numbers (i.e. increases the value of the ‘‘cut-
off’’ wave number). In the presence of the electric field (𝐸0 = 2), it can
be seen in Fig. 9b that the maximum growth rate of the disturbance
exhibits a similar non-monotonic trend, but about 𝑛 = 1.5 instead of
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Fig. 7. Effect of the Bingham number, 𝐵𝑛 on the dispersion curves (𝜔𝑖 versus 𝛼) for (a,c) 𝐸0 = 0 (without electric field) and (b,d) 𝐸0 = 2.0. Here, panels (a,b) and (c,d) are for
ℎ0 = 0.3 and ℎ0 = 0.5, respectively. Here, 𝑛 = 1 and the rest of the parameters are the same as the ‘‘base parameters’’.

Fig. 8. Effect of the Bingham number, 𝐵𝑛 on the growth rate of the most dangerous mode, 𝜔𝑖,𝑚𝑎𝑥 for different values of the electric Weber number 𝐸0. (a) ℎ
0 = 0.3 and (b)

ℎ0 = 0.5. Here, 𝑛 = 1 and the rest of the parameters are the same as the ‘‘base parameters’’.

Fig. 9. The effect of flow index, 𝑛 on the dispersion curves (𝜔𝑖 versus 𝛼) for (a) 𝐸0 = 0 (without electric field) and (b) 𝐸0 = 2.0. Here, ℎ0 = 0.5, 𝐵𝑛 = 2 and rest of the parameters
are the same as the ‘‘base parameters’’.

𝑛 = 1 as shown in Fig. 9a. It is also observed in Fig. 9b that the range

of unstable wave numbers increases with increasing the value of 𝑛.

Comparison of the dispersion curves in Figs. 9a and Fig. 9b reveals that

the electric field destabilises the flow for both the shear-thinning and

shear-thickening fluids.

Then, we investigate the effect of the thickness of the bottom layer
(ℎ0) on the linear stability behaviour of the most-unstable mode. In
Figs. 10a,b, we present the variations of 𝜔𝑖,𝑚𝑎𝑥 with ℎ0 for different
values of 𝐸0 for the Newtonian (𝐵𝑛 = 0) and non-Newtonian (𝐵𝑛 = 5)
bottom layer. In both the cases, 𝑛 = 1 and the rest of the parameters are
the same as the ‘‘base parameters’’. It can be seen that the Newtonian
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Fig. 10. Effect of the thickness of the bottom layer, ℎ0 on the growth rate of the most unstable mode, 𝜔𝑖,𝑚𝑎𝑥 for different values of 𝐸0. (a) 𝐵𝑛 = 0 (Newtonian layer) and (b)
𝐵𝑛 = 5 (Bingham fluid layer). Here, 𝑛 = 1 and the rest of the parameters are the same as the ‘‘base parameters’’.

Fig. 11. Effect of the electric Weber number, 𝐸0 on the dispersion curve (𝜔𝑖 versus 𝛼). (a) 𝜖𝑟 = 10, 𝜎𝑟 = 2 and (b) 𝜖𝑟 = 2, 𝜎𝑟 = 10. Here, 𝑚 = 1 (i.e. both fluids having same
viscosity) and the rest of the parameters are for 𝐵𝑛 = 5, 𝑛 = 1, ℎ = 0.3, 𝑅𝑒 = 10 and 𝛤 = 1.

and the non-Newtonian cases show a similar trend, i.e. the maximum
growth rate of the disturbance occurs for an intermediate value of
ℎ0 and increases with increasing the value of 𝐸0. A similar linear
instability behaviour was also observed in Ref. [14] without electric
field.

Finally, to check whether the destabilisation observed in the pres-
ence of the electric field is due to the viscosity contrast between the
fluids, in Fig. 11(a) and (b), we study the effect of the electric Weber
number, 𝐸0 on the growth rate of the disturbance, when both the fluids
have the same viscosity (𝑚 = 1) for 𝜖𝑟 = 10, 𝜎𝑟 = 2 and 𝜖𝑟 = 2, 𝜎𝑟 = 10,
respectively. The rest of the parameters are for 𝐵𝑛 = 5, 𝑛 = 1, ℎ = 0.3,
𝑅𝑒 = 10 and 𝛤 = 1. It can be seen that increasing the value of 𝐸0

has a destabilising and stabilising influence when 𝜎2𝑟 < 𝜖𝑟 and 𝜎
2
𝑟 > 𝜖𝑟,

respectively for 𝜎𝑟 > 1. Thus, it can be concluded that the influence of
the electric Weber number is not due to the viscosity contrast, which is
the main reason behind the interfacial instability without the external
electric field.

4. Concluding remarks

The linear stability characteristics of a pressure-driven two-layer
configuration of two immiscible fluids subjected to an electric field
normal to the flow is investigated by conducting a linear stability
analysis. The bottom layer is a non-Newtonian fluid characterised by
the Herschel–Bulkley model, while the top layer is a Newtonian fluid. In
order to isolate the effect of the electric field, we considered iso-dense
fluids. The linear stability equations are derived and solved using an ac-
curate spectral Chebyshev collocation method. The stability behaviour
of the flow with a bottom non-Newtonian fluid layer is contrasted
with the flow when both the layers are Newtonian fluids. The various
parameters influencing the linear stability behaviour are the electric
field strength, the electric permittivity and electrical conductivity ratios
of the non-Newtonian to the Newtonian fluids, the Bingham number,
the flow index and the thickness of the bottom layer. We ensured that

the parameters considered does not lead to any unyielded region in
the flow. We observe that increasing the electric permittivity ratio (𝜖𝑟)
and decreasing the electrical conductivity ratio (𝜎𝑟) keeping the rest
of the parameters fixed enhances the growth rate of the disturbances.
We also found that increasing the electric field strength destabilises
and stabilises the flow when 𝜎2𝑟 < 𝜖𝑟 and 𝜎2𝑟 > 𝜖𝑟, respectively for
𝜎𝑟 > 1. This finding is consistent with that reported by Ozen et al. [28]
for Newtonian fluids. The ‘‘Reynolds stress’’ of the Newtonian layer
and the work done by the velocity and stress disturbances tangential
to the interface are found to be the mechanism of the instability due
to the electric effect. The other findings obtained from the parametric
study conducted are (i) increasing Bingham number can be stabilising
or destabilising depending on the thickness of the non-Newtonian layer
and the maximum disturbance growth occurs at an optimum value of
non-Newtonian layer thicknesses, (ii) increasing the flow index from
the shear-thinning (𝑛 < 1) to the shear-thickening (𝑛 > 1) has a non-
monotonic effect on the maximum growth rate of the disturbance, and
(iii) the disturbance exhibits a maximum growth for an optimal value
of the thickness of the non-Newtonian layer. The present study finds its
applications in microfluidic and electronic cooling systems.
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