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Abstract Let .7 be a complex Banach algebra with unit e. Let p be a non trivial
idempotent element in .o/ and ¢ > 0. For a € ./, it is proved that the interior of the
level set of (p,e — p) — ¢ pseudo spectrum of a is empty in the unbounded com-
ponent of (p,e — p) resolvent set of a. An example is constructed to show that the
condition ‘unbounded component’ can not be dropped. Further, it is proved this
‘unbounded component’ can be dropped in the case when .o/ is B(X) where X is a
complex uniformly convex Banach space. That is, if T € B(X) then interior of the
level set of (p,I — p) — ¢ pseudo spectrum is empty in (p,I — p) resolvent set of 7.
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1 Introduction

Let f be a complex valued analytic function defined on an open connected subset Q2
of C. If fis non constant then by maximum modulus theorem, Ifl can not be constant
on Q. This need not to be true for general analytic Banach algebra valued functions.
We first see the definition of analytic Banach algebra valued function. Let .7 be a
complex Banach algebra with unit e and Q be an open subset of C.
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Definition 1 ([11], Definition 3.2) A map f : 2 — .o/ is said to be differentiable at
the point p € Q if there exists an element f'(u) € .o such that
) —
L)1

iou

A—u

—f’(u)H =0.

If fis differentiable at every point in 2 then fis said to be analytic in 2.

ay  ap

Consider Q = C, o7 = M,(C) := {A A= (
a ax

) where a; € C} with

. 20
norm Al = maxs < <2(E2.,lyl). Define ' € — (O byp(1) = (5 ):

Clearly  is analytic and for any u € C, y/'(u) = ((1) 8) Moreover [[y(4)[], is
constant on the open set {4 € C:|1]<1}. Hence, the norm of general Banach
algebra valued analytic maps may be constant or need not to be constant in an open
connected subset of C. We shall identify 4 -e as 1 for any 4 € C. Recall that for
a € o/, the resolvent set is defined as {4 € C: (a — 1) isinvertiblein o/} and it is
denoted by p(a). Complement of p(a) is called spectrum of a, which is denoted by
o(a). It is a well known fact that o(a) is a nonempty compact subset of C and hence
p(a) is a nonempty open subset of C. Globevnik in [8] studied about the norm
constant value of the map,

R:p(a) — 4 byR() = (a— )"
in the open subset of p(a). He proved in [8, Proposition 1, Proposition 2],

(a) foranya € .o/, ||(a— 2)""| can not attain local maximum in any unbounded
component of p(a).

(b) If X be a complex uniformly convex Banach space and T € B(X) then ||(T —
i)fl || can not attain local maximum in any open subset of p(T).

One can find, some more answers related to this question in [3-5]. Shargorodsky in
[13, Theorem 3.1] showed, there exists an invertible bounded linear operator T
acting on the Banach space [*(Z) with norm |[|x||, = sup;_ |x| + |xo| where x =
(Xk)gez, such that [|(T — 2)""| is constant in an open neighborhood of 4 = 0.

The main aim of this paper is to investigate and classify the possible cases, when
the norm of the (p, g) resolvent map (see Definition 3) is not constant in an open
connected subset of the (p, g) resolvent set (see Definition 3).

Consider two idempotent elements p,q € .7 i.e. p> = p and ¢* = q.

Definition 2 ([10, Definition 1.1]) Let a € /. An element b € .o/ satisfying,
bab=b,ba=p and 1—ab=gq

will be called a (p, g) outer generalized inverse of a and it is denoted by al(f).
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Level sets of (p,e — p) outer generalized pseudo spectrum

In [10], Kolundzija introduced the concept of the (p, ¢) — ¢-pseudo spectrum of a
in.o/. Let ¢ > 0 and a € <. The (p, q) — e-pseudo spectrum is defined as
2 (2 . 2
AEp?q%s(a) ={1eC:(a— A)z(%; doesnotexistor ||(a — i);;” >e}.
In the same article, Kolundzija discusses about (p,q) — e-pseudo spectrum of ele-
ments of the Banach algebra which are in the block matrix form. For the geometric
understanding of (p,q) — e-pseudo spectrum, because of the inequalities in
(p,q) — e-pseudo spectrum and in order to understand it, one has to know more
about its boundary set. It is clear that the boundary sets are subsets of the set (see
Theorem 5),
2 ) 2
LY (a)={ieC:|(a— D)l =¢}.
The above set is called level set of (p,q) — ¢ pseudo spectrum. In computational
point of view, if we are sure that the level sets do not contain any interior point then

E?q)_g(a). Because of the reasons so
(2)

far discussed, this paper studies the interior property of L(W_p
ac ..

Preliminary section of this note concentrates on the non emptiness of Agi?e_p)_s(a)
and the analyticity of (p, e — p) resolvent map. Section 3 of this paper focus on the
interior property of the level set of (p,e — p) — ¢ pseudo spectrum set. Theorems
which are in this section (Theorems 6, 7) are extended version of the results of
Globevnik. Using these results we prove (p,q) — ¢ pseudo spectrum has finite
number of components and each component has nonempty intersection with (p, q)

spectrum (Theorem 8). Example is constructed to show that Lg?e_p)_g(a) may have

it can help us to trace out the boundary sets of A

)_;(a) for given

nonempty interior (Example 4) for some Banach algebra .7 and a € «/.

Throughout this paper, B(4,r) denotes the open disk in the complex plane with
center 4 and radius r > 0 and B(X) denotes the set of all bounded linear operators
defined on the complex Banach space X.

2 Preliminaries

In this section, we introduce some basic definitions, terminologies and results which
are related to (p,e — p) resolvent set and (p,e — p) — & pseudo spectrum and the
major goal is to show the non-emptiness of these sets.

Definition 3 For an element a € ./, the (p, g)-resolvent set is defined as
91(3;(“) ={1eC:(a— l);%; exists}.
(2)

The complement of the set p,;(a) is called (p, g)-spectrum and it is denoted by

aéfg(a). The map A (a — ;“)1(92.; defined from pf,%;(a) to .o/ is called the (p, g)-

resolvent map.
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From now onwards, we consider the idempotent p # 0 and p # e and we fix the
idempotent element g := e — p. If 1 € p,(,?,g (a) then we denote the element (a — 1) 1(2
by R,(1).

Note 1 For given a € o/, if R,(1) exists for some A € C then from Definition 2,
Re(A)@—2) =p and (a—2)Ra(A)] = p. (1)

By Eq. (1), ap = pa. Consequently, if ap # pa then a,(,i),(a) = C. Because of this
reason, in the rest of the paper we assume ap = pa for given a € .</.
Note 2 If R,(7) exists for some 4 € C then by Eq. (1), Ra( ) and a commutes and

[(a — ))”]<2) exists for any n € N. Moreover, [(a — )" ]pq = [Ra(A)]".

Note 3 If ) € apq( ) then we assume that ||R,(4)|| = oco. It is well known that
p(a) for any a € ./ is nonempty open subset of .oZ, the following lemma and
Theorem prove the same for (p, g) resolvent set.

Lemma 1 Leta € o/. If A € p(a) then A € p](,?g(a).
Proof 1t is easy to see that R,(1) = p(a — 2)”" for any / € p(a).

Theorem 1 The set p,(,%;(a) is a nonempty open subset of C, for any a € <.

Proof By Lemma 1, p< ) ,(a) is nonempty. Take p € p,% (a), for any 1 € C satisfies

=<
we have e + [R,(1)]((a — A) — (a — p)) is invertible. From Eq. (1),
(@ = A)[Ra(W)l(a — 1) = (a — w[Ra(w)](a — ).
Hence by Theorem 4.1 in [6], 1 € p,(,z,;(a).

The following corollary shows the norm of the (p, g) resolvent is very large in the
neighborhood of an element from the (p, ¢) spectrum set.

Corollary 1 Let {1,} be a sequence from p,,q( ). If 2y — A for some A € 0',,;( )
then ||R,(4,)|| — oo.

Proof Suppose ||R, ( #)| <M for some M € R then 7 (1/1 > > 4. Since A, — 4,
for the real number 37~ +1 , there exists ny € N such that
, 1 1
A=A <——<—<—+— forall n>ny.
M+1 M~ |[Ra(Z)l

By Theorem 1, 1 € p,gz;(a) This is a contradiction.
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Theorem 2 The map f : pﬁ,?;(a) — o/ defined by f(1) = [R,(A)]" is analytic for
each n € N.

Proof We first prove this theorem for n=1. For any A,u€ p,(f;(a), by
Theorem 4.2 (a) in [6],

[Ra(A)] = [Ra()] = (4 = 1) [Ra(A)][Ra(p)]- 2)
)

Fix u € pp4(a) and consider the open set B(y, I (u)\l) By Theorem 1, B(u, 7 (xt)\l)

a subset of pp,;(a). Since e — [R,(p)](A — ) is invertible for any A € B(u, A )H)

and from Eq. (2),

Hence the map 4+ R, (/) is analytic. The map 4+ [R,(A)]" is also analytic because
it is the product of n analytic functions of the form A+ [R,(1)].

The following are some examples of (p, g)-resolvent set and (p, g)-spectrum for
givena € o/ and p € /.

Example 1 Let a= A for some A€ C. It is easy to see, p,(,q( ) =C\{4} and
O-P q( ) = {4}
Our next example shows that p( )( ) may have multiple components.

Example 2 Consider the set E={z€C:1<|7]<2}U{ze€C:3<z|<4}.
Take the operator T € B(¢*(N)) with,

T(ezi_l) =riepi—1 and T(ezi) = g;éy; foralli € N

where {e; : i € N} is the standard orthonormal basis for *(N), {r; € C :i € N} is
countable dense subsets of {z€ C:1<|z] <2} and {g; € C:i € N} is a count-
able dense subset of {z€ C:3<|z]<4}. Take the projection operator
P € B(?(N))

P(eyi—1) = ezi-1 and P(ey) =0 forallie N
Take Q =1 — P. It is evident that PT = TP and o(T) = E. By Lemma 1,

{z€C: [ >4} U{zeCi2<[f<3}U{z € C: [f]<1} C ppy (D).

We prove, {z€ C:1<z] <2} C GEIZ,)Q)(T). Suppose Rr(r;) exists for some r;, then
from the equation [Ry(r;)|(T — r;) = P,
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Ker(T — r;) N Ran(P) = {0}.

where Ker(T — r;) denotes the null space of T — r; and Ran(P) denotes the range
space of P. But for every i € N,

e2i—1 € Ker(T — r;) N Ran(P)

which is a contradiction. Hence {r; € C:i € N} C a? )(T). Since {r;eC:i¢€

(P.Q
N} is dense in {z € C: 1< |z] <2} and pg,)‘Q)(T) is open,

{z€C:1<kI<2} ol (T)

2)

From this we also conclude, Pro

)(T) has more than one component.

Our next objective is to prove, (p,q) — ¢ pseudo spectrum is non empty. We
achieve this with the aid of the results we observed so far.

Definition 4 ([10, Definition 3.3]) Let ¢ > 0. The (p, q) — &-pseudospectrum of an
element a € .o/ is defined as

4D

o _o(@) = {4 € C: (a— 2)}) does notexist (or) || (a — 1)) | > &}

P4 4

In the following is an example, we find the (p, g) — ¢ pseudo spectrum explicitly.

Example 3 Consider the Banach algebra B(C") where C" is the Euclidean space.
Let T € B(C") such that T(e;) = a,e; for some o; € C and the projection operator
P € B(C") defined as P(e;) =e; and P(e;) =0 for all i =2ton. For any A€
C\{oy}, we define the operator S(1) € B(C") by

el fori =1

0 otherwise.

It is easy to see, REQ,,P)(A) = S(4) for any 4 € C\{oy}. Hence

1
)»—OC]|S}.
&

Ay (1) = {x eC:

Theorem 3 The set Ag?q)is(a) is a compact subset of C.

Proof We know, Ag?q%g(a) = a,g%;(a) U{2 € C|||R.(2)]| >¢}. By Theorem 1,
aﬁ(a) is closed. The set {1 € C: ||R,(1)|| >¢} is closed, because the map
A ||R,(A)|| is continuous. By Lemma 1, for any 1€ p(a)ﬁ/lg_)q%g(a) with

|A| > ||a||, we have
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Level sets of (p,e — p) outer generalized pseudo spectrum

B 1
e<||R.(A)|| = llp(a — 2) 1“ < ||P||m

The above equation implies, 8‘)@%((1) is compact.

Theorem 4 The set 0'1(,2((1) is a nonempty subset of C. In particular, AE;_)‘]% .(a)is

a nonempty subset of C.

Proof Suppose o,gzq( ) =0 then AE )) Ja)={i¢e p,,q( ) : ||Ra(A)]| > ¢} Since

A<i>q)7£(a) is compact, there exists M > 0 such that |R,(A)|| <M for all A€

(
AED )_¢(@). Consequently,

20

|Ra(A)|| <M forevery AieC. (3)

Since p,(,q( ) = C and the map A— R,(4) is analytic and bounded on C, by The-

orem 19.1 in [1], there exists a constant K such that
|R.(A)|| =K forall Ae€C.

If K=0 then R,(4) =0, this implies p = 0, which is a contradiction to our
assumption p # 0. If K > 0 then AE;) K (a) is unbounded, which is a contradiction

to Theorem 3. Hence apq( ) # (). By Definition 4, ‘71(13( ) C A8>q)7£(a). Thus
Afpy-i(@) 0.

Theorem 5 Let a € o/ and ¢ > 0. Then Ag?q% .(a) has no isolated points.

Proof Every point in “E;,)q) (@) is an interior point of AE;’)({)ﬂ(a). Otherwise, there

exists a sequence {4,} with 4, € pglz)’)q) (a) and ||R,(4,)|| <& such that 4, — A. This

is a contradiction to Corollary 1. Since the map A ||R,(4)

{hepl) (@) |Ra(2)] > &} (4)

is open and hence every A which satisfies |R,(4)]| > ¢ is an interior point of

Ag)q) .(a). Next, we consider a point u € AEp)q> .(a) such that ||R,(u)|| = &. If pis
an isolated point then there exists an r > 0 such that ||R,(1)||<e¢ for every 4 €

B(u, r). Take Qo = Q = B(u, r) define the following map

F:Qy— o definedby F(1) = R,(4).

We apply Theorem 2.1 in [13] and it gives us ||R,(u)|| <&, which is a contradiction.
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3 Level sets of (p, g)-outer generalized pseudo spectrum

2)

(p.g)—¢
principle (see Theorem 6) to the (p, g) resolvent map, we prove that Lg?q)_s(a) has

empty interior in the unbounded component of p,g(a). We observed a similar kind

of result to any non scalar operator 7 acting on the complex uniformly convex

This section focuses on L (a). By proving a version of maximum modulus

Banach space X irrespective of the size of component of p;,?;(T). With the help of
these results, we also look at some topological property (see Theorem 8) of

A}j o(@).

Note 4 The set Lg)q)_g(a) is non empty. Otherwise Ag?q)_s(a) is a nonempty open

as well as closed subset of C. This is a contradiction to the fact C is connected.
Note 5 Let u be a point of the boundary of Ag?q)_g(a). By Theorem, 3
IR.(1)|| > &. Suppose ||R,(u)|| > &, then by Theorem 5, u is an interior point of
Ag?q)ﬁ(a). This is a contradiction to x is a boundary point. Hence y € Lg)q% (a).
Consequently, boundary set of AEIZJ) - (a) is a subset of L(p (a). The following

q)—
is a form of maximum modulus principle to the map 4 [R,(4)]".

Theorem 6 Let a € .o/, Q be an open subset in the unbounded component of

Ep) (a) and n € N. For some M > 0, suppose ||[(a — A)"L%H <M for all 1€ Q,

then [[[(a — 2)")) || <M for all J € Q.

Proof Let us take the unbounded component of pgi?q) (a) be Q. By note 2, for any
neN, [(a—2)"% = [R,(2)]" for all 2 € Q. We note the following,

P4

(e C RN =M} € {he Tt R(A)]I =M.
By Theorem 3, {/l € C: ||R.(A)| zMﬁ} is bounded and hence

(€ C: R <M} N Qo £ 0.

Take u € {2 € C: ||[R.(4)]" . Proof follows by applying theorem 2.1 in
[13] to the analytic function A — [R,(4)]" defined from € to .7, the open set  and
to the point .

Corollary 2 Let a € .o/ and ¢ > 0. Then Lg)q%g(a) has empty interior in the
unbounded component of pE;)q) (a)

Proof Follows from Theorem 6, by applying n = 1.
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Level sets of (p,e — p) outer generalized pseudo spectrum

2)

M)_E(T) is empty in any component of

Our next aim is to prove the interior of LE

p,<,2,(3(T) where T € B(X) and X is complex uniformly convex Banach space. We

prove that, if ||[R7(2)]"|| is constant in an open set of pgg(T) then it is the global
minimum of ||[Ry(4)]"| for all A€ p,(,zg(T) The following is the definition of

complex uniformly convex Banach space, with the help of Lemma 2, we obtain the
required result.

Definition 5 ([13, Definition 2.4 (ii)]) A complex Banach space X is said to be
complex uniformly convex (uniformly convex) if for every ¢ > 0 there exists > 0
such that

xyeX|yllze and |x+0f <1, VeC((eR), with [{<1=|x[|<1-0.

It is so obvious that every uniformly convex Banach space is complex uniformly
convex Banach space and hence L, (with 1 <p <o0) spaces are complex uniformly
convex Banach spaces. In [7], Theorem 1, Globvink showed L; space is complex
uniformly convex. The Banach space L, is not complex uniformly convex Banach
space.

Lemma 2 ([9, Lemma 1.1]) Let A—f(A) = ap + a1 A + a)* + -+ be a function
with values in a complex Banach space X, defined and analytic in a neighbourhood
of the point 0 in the complex plane. If ||f (1)|| = |lao|| in a neighbourhood of the
point 0, then for each a;(i=1,2,...) an ri >0 exists such that
o + Aail < llao (7] < 7).

Proof of the following theorem goes similar to the proof of the Theorem 3.4 in
(2].
Theorem 7 Let T € B(X) where X be a complex uniformly convex Banach space
and n € N. If ||[(T—))"];2;|| =1 in an open subset U of pgz,;(T) then ||[(T —
PN 21 for all i€ pF(T).

Proof We know, [(T — ).)"]f; = [Rr(A)]". By Theorem 2, for every fixed o € U,

there exists an r > 0 such that the map,
f:B(0,r) — B(X) definedby f(1) = [Rr(A+ 4o)]"
is analytic at 0. Moreover, for any A € B(0,r),

o0

[Rr(%+ 4)]" = [Z [RT(/”LO)]”I/”J] = [Rr(o)]" + n[Rr(G)]" 2+ 0(33).

i=0

Take ao = [Rr(%)]" and a; = n[Rr(%)]""". Since ||[f(2)|| = ||ao||, by Lemma 2,
there exists r; > 0 such that
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I[Rr(70)]" + 2n[Rr(A0)" || <1 forall || <ry.
Hence for any 4 € B(0, 1),
[R7 (o))" + ri2n[Rr (20)]" || < 1. (5)
There exists a sequence {e;} from X with ||ex|| = 1, such that
Jim [[[Rr (o))" (e0)]| = [Re o))" = 1. ©
Equation (5) implies,
NRr (o))" (ex) + rim{Rr (o))" (e < 1. ™)

Take Xk = [Rr(/lo)]"(ek) and Yk = rln[RT()vo)]"H(ek).

We claim that lim_ . ||yk|| = 0. Suppose ||yx|]|>¢ for some ¢ >0 then by
Eq. (7),

llxe + Aye]] <1 forall 1€ B(0,1). (8)

From the definition of complex uniformly convex Banach space, there exists 6 > 0
such that

]l <1 - 9.

This is a contradiction to Eq. (6). Hence,

Jim [yl = lim [lrn[Ry ()] (e0)]] = 0.
Therefore,
Jim |[Ry (7)) (e0)]] = 0. 9)

For any 1 € p,(,%g(a), by Theorem 4.2 (a) in [6]
Rr(2) = Rr(Jo) = (A — 20)[Rr(A)][Rr(4o)] = (2 — o) [I + (4 — o) [Rr(A)]][Rr ()]
(10)

where [ denotes the identity operator on B(X). From Eq. (10), it is easy to see,

[Rr(2)])" = [Rr(40)]" = Bu[Rr(4o)]""" (11)

j+1
operator B, is bounded and from the Egs. (6), (9),

where B, := Y1 < " >(;~ — J0Y NI+ (2= 20)Rr ()Y T (R (2))’. Since the
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lim [[(Rr(2)]"(e0)]| > Tim [[[Ry (o))" (e0)]| = lim 1B, R (o))" (ex) |
> lim [[Rr(Zo)" ()| = B, Jim | [Rr (i)} (ex)
=1.
Hence the theorem follows.

Corollary 3 Let M >0, T € B(X) where X be a complex uniformly convex
Banach space andn € N If ||[(T — X)"]MH = M in an open subset U of p,(f;(T) then

(T = 2|51 > M for all 7 € p(T).

Proof Suppose ||[(T — )»)"][(,2(;” = M in an open subset U of p,(,z,;(T), then

1 1\ ®
(M1 — b))
P
Consider the operator § := M:T. From Eq. (12), for each p € MU, we obtain

n(2 ny(2 2

1S — w")2| = 1. By Theorem 7, [|[(S — p)")2)]| > 1 forall u € pjy(S). Thus
n A 2

(T = 2)") 2| > M for all € p)(T).

=1 forall 1€ U. (12)

Corollary 4 Let X be a complex uniformly convex Banach space. If T € B(X) then

2 (2
Lgp?q)_g(T) has empty interior in pgp?q)(T).
Proof Immediate from Corollary 3 by applying n = 1.

Theorem 8 Let X be a complex uniformly convex Banach space, T € B(X). Then
Ag)q)is(T) has finite number of components and every component of A8>q)7£(T)

contains an element from o}f,;(T).

Proof Let E be a component of Agp) - .(T). We first prove the following,

ifEN{A€C:|Rp(A)| >e} #0 then ENa)N(T) # 0.

Assume to the contrary that E is a component and EN {1 € C: ||Rr (1)
but EN J,(,?;(T) = (). Consider the set

G=E\(L{), (1) =EN(L, ().

Note that, G C {1 € C: |Rr(4)]| > &} C (L8>q)7s(T))”. We prove that G is open in

C. Let u € G. Since {4 € C: |[Rr(4)|| > ¢} is open, there exists r, > 0 such that

B(u,r,) C {4 € C: ||Rr(2) C (Ly), (1))
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Since E is a component, p € E and B(u, r,,) is connected, we have B(u,r,) C E. By
the definition of G, B(u,r,) C G, it follows that G is open in C. Let u € G, hence
there exists F € B(X)" such that F(Rr(p)) = ||[Rr(u)]|. Define

Y:G—C by ¥(4)=F(Rr(d).

Clearly  is well defined, analytic and also continuous on G (closure of G). For any
boundary point 1 of G we have ||[Rr(1)|| = ¢, hence |(1)| < ¢ but at the point u, we
have |y (u)| = |F(Rr(w))| = ||[Rr(w)|| > &. This is a contradiction to Maximum
Modulus Theorem.

By Corollary 1, for each 1€ af,zé(T), there exists r; >0 with B(A,r;) C

qu J(T)and {B(4,r;): 2 € apq( )} is an open cover for ang( T). Since a< )( T)

is compact, there exists {11, 42, ..., 4,} such that aﬁ( T) C UL, B(4,r,,). Conse-
quently, there exists components Cy, C,, ..., C,, of AEp?q)fe(T) with m <n and each

C; contains atleast one B(4;,r;,) such that

B(ii, r;y,.) C LmJCl

1 i=1

C:

Ay < |

We claim that {1 € C: |[|[Rr(4)|| > ¢} C U, Ci. For ue {2 € C: |Rp(4)|| > ¢},
there exists » > 0 such that B(u,r) C {1 € C: ||Rr(A) (,u, r) C E for
some connected component E of AEIZ)) - .(T). We proved that EN qu( )£ 0, it
follows that E C (JI, C;. Thus

{AeC:|Rr(A)] >} | JC
i=1

Since each C; is closed in C and by Theorem 5, Corollary 4, we have

{Z€C:|[Rr(A)]| > &} = qu) (T) :,UC’"

Hence the theorem follows.
The following is an example for interior of L8>q)7s(a) can be nonempty in the

bounded component of pﬂ(a).

Example 4 Consider the Banach space /o, (Z) with norm

Ilx]l, = |xo| + sup |x,| where x=(.. .,x,z,x,l,,xl,xz, R
n#0

and the box represents the zero” coordinate of an element in /., (Z). For M > 2,

take an operator A € B({s(Z)) such that
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X1
x
A(...,x,z,x,l,,xl,xz,...) = (...,xz,xl,xg, M,xz,x3,...>. (13)

+} and from Theorem 3.1 in [13], we know that

Take R := min{3;,3

IA=D7 = 1A =2 (eo)ll, =M (14)
where ey = (...,0,0,,0,0,...) and 1€ C such that |A|<R. Consider the

Banach space X = (o (Z) @ £+ (Z) with norm ||(x,y)|| = (||x]|> + Hy||z)% By The-
orem 1.8.6 in [12], X is a Banach space. We take the following operators

T : X — Xdefined by T(x,y) = (A(x),A(y))
where A is an operator defined in Eq. (13) and
P : X — X definedby P(x,y) = (x,0).

It is easy to see that P> = P and PT = TP. By Theorem 1.8.12 in [12], ¢(T) = o(A)
and so we get,

Rr(2) =(T—7)"'P forall 2e{2eC:|i|<R}
For any (x,y) € X with ||(x,y)|| = 1, we have
(T =)' P,y = I(T = 27 (x, 00| = (A= 2" @I, <M]lx]l, <M (x,y)].
(15)
and particularly for the unit vector (ep,0) € X, we have
1T = 2) Pleo, 0)| = T — ) (e, 01l = (A — )" (eo)l. = M = M) (e0, 0)].
(16)

From Egs. (15) and (16), we get ||(T — 2)~'P|| = M for each Ain {4 € C : || <R}.
Thus interior of {1 € C: ||[Rr(4)|| = M} is non empty.

Acknowledgements The authors are thankful to the anonymous referee for the valuable suggestions
towards the improvement of this paper. Research of the first author was supported by the Department of
Science and Technology (DST), India (No: SB/FTP/MS-015/2013). Second author thanks the University
Grants Commission (UGC), India for the financial support provided as a form of Research Fellowship to
carry out this research work at IIT Hyderabad.

Compliance with ethical standards

Conflict of interest The authors have equally contributed and give their consent for publication.The
authors declare that they have no conflict of interest.

Research involving human participants and/or animals This paper does not contain any studies
involving with human participants/ animals.

@ Springer



D. Sukumar, S. Veeramani

References

10.

11.

12.

13.

. Bachman, G., and L. Narici. 1966. Functional analysis. New York: Academic.
. Bogli, S., and P. Siegl. 2014. Remarks on the convergence of pseudospectra. Integral Equa-

tions Operator Theory 80(3):303-321.

. Bottcher, A., S.M. Grudsky, and B. Silbermann. 1997. Norms of inverses, spectra, and pseudospectra

of large truncated Wiener-Hopf operators and Toeplitz matrices. New York Journal of Mathematics
3:1-31.

. Bottcher, A. 1994. Pseudospectra and singular values of large convolution operators. Journal of

Integral Equations and Applications 6:267-301.

. Bottcher, A., and S.M. Grudsky. 2005. Spectral properties of banded Toeplitz matrices. Philadelphia:

SIAM.

. Djordjevi¢, D.S., and Y. Wei. 2005. Outer generalized inverses in rings. Communications in Algebra

33(9):3051-3060.

. Globevnik, J. 1975. On complex strict and uniform convexity. Proceedings of the American Math-

ematical Society 47:175-178.

. Globevnik, J. 1976. Norm-constant analytic functions and equivalent norms. Illinois Journal of

Mathematics 20(3):503-506.

. Globevnik, J., and I. Vidav. 1974. On operator-valued analytic functions with constant norm. Journal

of Functional Analysis 15:394-403.

Kolundzija, M.Z. 2014. (P, Q)-outer generalized inverse of block matrices in Banach algebras.
Banach Journal of Mathematical Analysis 8(1):98-108.

Locker, J. 2000. Spectral theory of non-self-adjoint two-point differential operators. Mathematical
Surveys and Monographs, vol. 73. Providence: Amer. Math. Soc.

Megginson, R.E. 1998. An introduction to Banach space theory. Graduate Texts in Mathematics, vol.
183. New York: Springer.

Shargorodsky, E. 2008. On the level sets of the resolvent norm of a linear operator. Bulletin of the
London Mathematical Society 40(3):493-504.

@ Springer



	Level sets of {(p,e-p)} outer generalized pseudo spectrum
	Abstract
	Introduction
	Preliminaries
	Level sets of (p, q)-outer generalized pseudo spectrum
	Acknowledgements
	References


