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Abstract

We study the baryogenesis via leptogenesis in a class of left-right symmetric models, in which

D-parity is broken spontaneously. We first discuss the consequence of the spontaneous breaking

of D-parity on the neutrino masses. Than we study the lepton asymmetry in various cases, from

the decay of right handed neutrino as well as the triplet Higgs, depending on their relative masses

they acquire from the symmetry breaking pattern. The leptogenesis bound on their masses are

discussed by taking into account the low energy neutrino oscillation data. It is shown that a

TeV scale leptogenesis is viable if there is an additional source of CP violation like CP -violating

condensate in the left-right domain wall. This is demonstrated in a class of left-right symmetric

models where D-parity breaks spontaneously at a high energy scale while allowing SU(2)R gauge

symmetry to break at the TeV scale.
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I. INTRODUCTION

The matter antimatter asymmetry during the big-bang nucleosynthesis era is required to

be very tiny. Recent results from the Wilkinson Microwave Anisotropy Probe (WMAP)

provides a fairly precise value for this asymmetry, given by [1]

(
(nB − nB̄)

nγ

)

0

≡
(
nB

nγ

)

0

=
(
6.1+0.3

−0.2

)
× 10−10. (1)

In recent years the most fascinating experimental result in particle physics came out

in neutrino physics. The atmospheric neutrinos provided us the first evidence for a non-

vanishing neutrino mass [2] and hence first indication for physics beyond the standard model.

The mass-squared difference providing νµ − ντ oscillations, as required by the atmospheric

neutrinos, is given by

∆matm ≡
√

|m2
3 −m2

2| ≃ 0.05eV . (2)

This result is further strengthened by the solar neutrino results [3] which require a mass-

squared difference providing a νe − νµ oscillation. The mass splitting given by

∆m⊙ ≡
√
m2

2 −m2
1 ≃ 0.009eV , (3)

where m1, m2 and m3 are the masses of light physical neutrinos. Note that ∆m⊙ is positive

as indicated by the SNO data while there is an ambiguity in the sign of ∆matm to the date.

The above discoveries, the matter antimatter asymmetry of the present Universe (1) and

the sub-eV neutrino masses (2) and (3), could be intricately related with each other. A most

viable scenario to explain is the baryogenesis via leptogenesis (BVL) [4, 5]. The smallness

of the neutrino masses compared to the charged fermions are best understood in terms of a

seesaw mechanism [6]. Although the neutrinos are massless in the standard model, a minimal

extension including right-handed neutrinos or triplet Higgs scalars or both can generate tiny

Majorana masses for the neutrinos through the seesaw mechanism. The smallness of the

neutrino masses depend on a large suppression by the lepton (L) number violating scales in

the model, which is the scale of Majorana masses of the right-handed neutrinos or the masses

and dimensional couplings of the triplet Higgs scalars. The L-number violating decays of

the right-handed neutrinos or the triplet Higgs scalars at this large scale can then generate a

L-asymmetry of the universe, provided there is enough CP -violation and the decays satisfy

the out-of-equilibrium condition, the necessary criteria of Sakharov [7]. This L-asymmetry



of the universe is then get converted to a baryon (B) asymmetry of the universe (BAU)

through the sphaleron processes unsuppressed above the electroweak phase transition [8].

In the simplest type-I seesaw models the singlet right-handed neutrinos (NR’s) are added

to the Standard Model (SM) gauge group, SU(2)L × U(1)Y . The canonical seesaw then

gives the light neutrino mass matrix:

mν = mI
ν = −mDM

−1
R mT

D , (4)

where mD is the Dirac mass matrix of the neutrinos connecting the left-handed neutrinos

with the right-handed neutrinos and MR is the Majorana mass matrix of the right handed

heavy neutrinos, which also sets the scale of L-number violation. Since the Majorana mass of

the right handed neutrinos violate L-number by two units, their out of thermal equilibrium

decay to SM particles is a natural source of L-asymmetry [4]. The CP -violation, which

comes from the Yukawa couplings that gives the Dirac mass matrix, resulted through the one

loop radiative correction requires at least two right handed neutrinos. Assuming a strong

hierarchy in the right handed neutrino sector a successful L-asymmetry in these models

requires the mass scale of the lightest right handed neutrino to be M1 ≥ O(109) GeV [9]. If

the corresponding theory of matter is supersymmetric then this bound, dangerously being

close to the reheat temperature, poses a problem. A modest solution was proposed in ref. [10]

by introducing an extra singlet. However, the success of the model is the reduction of above

bound [9] by an order of magnitude.

In the type-II seesaw models, on the other hand, triplet Higgses (∆L’s) are added to the

SM gauge group. The triplet seesaw [11] in this case gives the light neutrino mass matrix:

mν = mII
ν = fµ

v2

M2
∆L

, (5)

where M∆L
is the mass of the triplet Higgs scalar ∆L, f is the Yukawa coupling relating

the triplet Higgs with the light leptons, µ is the coupling constant with mass dimension 1

for the trilinear term with the triplet Higgs and two standard model Higgs doublets and

v is the vacuum expectation value (vev) of the SM Higgs doublet. The L-asymmetry, in

these models, is generated through the L-number violating decays of the ∆L to SM lepton

and Higgs. The CP -violation, originated from the one loop radiative correction, requires at

least two triplets. Again the scale of L-number violation is determined by M∆L
and µ and

required to be very high and larger than the type-I models [12].



An attractive scenario is the hybrid seesaw models (type-I+type-II), where both right-

handed neutrino as well as triplet Higgs scalar are present. So, there is no constraint on

their number to have CP -violation. The neutrino mass matrix in these models is given by

mν = mI
ν +mII

ν , (6)

where mI
ν and mII

ν are given by equations (4) and (5) respectively. A natural extension of

the SM to incorporate both type-I as well as type-II terms of the neutrino mass matrix is

the left-right symmetric models [13] with the gauge group SU(2)L⊗SU(2)R⊗U(1)B−L. The

advantages of considering this model is that (1) it has a natural explanation for the origin of

parity violation, (2) it can be easily embedded in the SO(10) Grand Unified Theory (GUT)

and (3) B − L is a gauge symmetry. Since B − L is a gauge symmetry of the model, it

is not possible to have any L-asymmetry before the left-right symmetry breaking. An L-

asymmetry can be produced after the left-right symmetry breaking phase transition, either

through the decay of right handed neutrinos or through the decay of the triplet Higgses

or can be both depending on the relative magnitudes of their masses. Assuming a strong

hierarchy in the right-handed neutrino sector and M1 < M∆L
, it is found that M1 can be

reduced to an order of magnitude in comparison to the type-I models [14, 15, 16]. Despite

the success, this mechanism of producing L-asymmetry in these models can not bring down

the scale of leptogenesis to the scale of the next generation accelerators.

The alternatives to these are provided by mechanisms which work at the TeV scale [17]

either in supersymmetric extensions of the SM relying on the new particle content or finding

the additional source of CP violation in the model [18]. It is worth investigating other

possibilities, whether or not supersymmetry is essential to the mechanism. In the following

we consider a class of left-right symmetric models in which the spontaneous breaking of

D-parity occurs at a high energy scale (∼ 1013GeV ) leaving the SU(2)R intact. In the left-

right symmetric models, parity connects the left-handed gauge group with the right-handed

gauge group. But the same need not be true for the scalar particles. In this class of left-

right symmetric models, the spontaneous D-parity violation allows the scalars transforming

under the group SU(2)L to decouple from the scalars transforming under the group SU(2)R

and these scalars can have different masses and couplings. This allows the mass scale of the

triplet ∆L to be very high at the D-parity breaking scale [19] while leaving the mass of ∆R

to be as low as the SU(2)R symmetry breaking scale or vice versa. However, we will see that



even in these models a successful leptogenesis doesn’t allow neither the mass of triplets nor

the mass of right handed neutrinos less than 108 GeV if the L-asymmetry arises from their

out of equilibrium decay. We then consider an alternative mechanism to bring down the

mass scale of right handed neutrinos to be in TeV scale. In the respective mechanism a net

L-asymmetry arises through the preferential scattering of left-handed neutrino νL over its

CP conjugate state νcL from the left-right domain wall [20]. The survival of this asymmetry

then requires the mass scale of lightest right handed neutrino, assuming a normal mass

hierarchy in the right handed neutrino sector, to be in TeV scale [21, 22]. In this class of

models the TeV scale masses of the right handed neutrinos are resulted through the low scale

(∼ 10 TeV) breaking of SU(2)R gauge symmetry while D-parity breaks at a high energy

scale (∼ 1013 GeV). This is an important result pointed out in this paper.

The rest of the manuscript is arranged as follows. In the section-II we briefly discuss

the left-right symmetric models, elucidating the required Higgs structure for spontaneous

breaking of D-parity. In section-III we discuss the parities in left-right symmetric models

and their consequence on neutrino masses. Than we give a possible path for embedding the

left-right symmetric models in the SO(10) GUT. In section-IV we discuss the production

of L-asymmetry through the decay of heavy Majorana neutrinos as well as the triplet ∆L

separately by taking into account the relative magnitudes of their masses. In section V, by

assuming a charge-neutral symmetry, we derived the neutrino mass matrices from the low

energy neutrino data. Using this symmetry the L-asymmetry is estimated in section VI by

considering the relative masses of N1 and the triplet ∆L. In any case, it is found that the

leptogenesis scale can not be lowered to a scale that can be accessible in the next generation

accelerators. In section VII, we therefore discuss an alternative mechanism which has the

ability to explain the L-asymmetry at the TeV scale. In section VIII we give a qualitative

suggestion towards the density perturbations due to the presence of heavy singlet scalars.

We summarize our results and conclude in section IX.

II. LEFT-RIGHT SYMMETRIC MODELS

In the Left-Right symmetric model, the right handed charged lepton of each family which

was a isospin singlet under SM gauge group gets a new partner νR. These two form an isospin

doublet under the SU(2)R of the left-right symmetric gauge group SU(2)L × SU(2)R ×



U(1)B−L × P , where P stands for the parity. Similarly, in the quark-sector, the right

handed up and down quarks of each family, which were isospin singlets under the SM gauge

group, combine to form the isospin doublet under SU(2)R. As a result before the left-right

symmetry breaking both left and right handed leptons and quarks enjoy equal strength

of interactions. This explains that the parity is a good quantum number in the left-right

symmetric model in contrast to the SM where the left handed particles are preferential

under the electro-weak interaction.

In the Higgs sector, the model consists of a SU(2) singlet scalar field σ, two SU(2)

triplets ∆L and ∆R and a bidoublet Φ which contains two copies of SM Higgs. Under

SU(2)L×SU(2)R×U(1)B−L the field contents and the quantum numbers of the Higgs fields

are given as

σ ∼ (1, 1, 0) (7)

Φ =


φ

0
1 φ+

1

φ−
2 φ0

2


 ∼ (2, 2, 0) (8)

∆L =


δ

+
L /

√
2 δ++

L

δ0L −δ+L /
√
2


 ∼ (3, 1, 2) (9)

∆R =


δ

+
R/

√
2 δ++

R

δ0R −δ+R/
√
2


 ∼ (1, 3, 2). (10)

The most general renormalizable Higgs potential exhibiting left-right symmetry is given

by [23]

V = Vσ +VΦ +V∆ +Vσ∆ +VσΦ +VΦ∆ , (11)

where

Vσ = −µ2
σσ

2 + λσσ
4 ,

V∆ = −µ2
∆

[
Tr
(
∆L∆

†
L

)
+ Tr

(
∆R∆

†
R

)]

+ρ1

{[
Tr
(
∆L∆

†
L

)]2
+
[
Tr
(
∆R∆

†
R

)]2}

+ρ2

[
Tr (∆L∆L)Tr

(
∆†

L∆
†
L

)
+ Tr (∆R∆R) Tr

(
∆†

R∆
†
R

)]

+ρ3

[
Tr
(
∆L∆

†
L

)
Tr
(
∆R∆

†
R

)]

+ρ4

[
Tr (∆L∆L)Tr

(
∆†

R∆
†
R

)
+ Tr

(
∆†

L∆
†
L

)
Tr (∆R∆R)

]
,



VΦ = −µ2
Φ1Tr

(
Φ†Φ

)
− µ2

Φ2

[
Tr
(
Φ̃Φ†

)
+ Tr

(
Φ̃†Φ

)]

+λ1
[
Tr
(
ΦΦ†)]2 + λ2

{[
Tr
(
Φ̃Φ†

)]2
+
[
Tr
(
Φ̃†Φ

)]2}

+λ3

[
Tr
(
Φ̃Φ†

)
Tr
(
Φ̃†Φ

)]

+λ4

{
Tr
(
Φ†Φ

) [
Tr
(
Φ̃Φ†

)
+ Tr

(
Φ̃†Φ

)]}
,

Vσ∆ = Mσ
[
Tr(∆L∆

†
L)− Tr(∆R∆

†
R)
]
+ γσ2

(
Tr(∆L∆

†
L) + Tr(∆R∆

†
R)
)
,

VσΦ = δ1σ
2Tr(Φ†Φ) +M ′σ

[
Tr(Φ̃Φ†)− Tr(Φ̃†Φ)

]

+ δ2σ
2
[
Tr(Φ̃Φ†) + Tr(Φ̃†Φ)

]
,

VΦ∆ = α1

{
Tr
(
Φ†Φ

) [
Tr
(
∆L∆

†
L

)
+ Tr

(
∆R∆

†
R

)]}

+ α2{Tr
(
Φ̃†Φ

)
Tr
(
∆R∆

†
R

)
+ Tr

(
Φ̃Φ†

)
Tr
(
∆L∆

†
L

)

+ Tr
(
Φ̃Φ†

)
Tr
(
∆R∆

†
R

)
+ Tr

(
Φ̃†Φ

)
Tr
(
∆L∆

†
L

)
}

+ α3

[
Tr
(
ΦΦ†∆L∆

†
L

)
+ Tr

(
Φ†Φ∆R∆

†
R

)]

+ β1

[
Tr
(
Φ∆RΦ

†∆†
L

)
+ Tr

(
Φ†∆LΦ∆

†
R

)]

+ β2

[
Tr
(
Φ̃∆RΦ

†∆†
L

)
+ Tr

(
Φ̃†∆LΦ∆

†
R

)]

+ β3

[
Tr
(
Φ∆RΦ̃

†∆†
L

)
+ Tr

(
Φ†∆LΦ̃∆

†
R

)]

+ β4

[
Tr
(
Φ̃∆RΦ̃

†∆†
L

)
+ Tr

(
Φ̃†∆LΦ̃∆

†
R

)]
,

where Φ̃ = τ 2Φ∗τ 2, τ 2 being the Pauli spin matrix and µ2
a > 0, with a = σ,∆,Φ1,Φ2.

III. PARITIES IN LEFT-RIGHT SYMMETRIC MODELS AND CONSE-

QUENCES

Now we briefly discuss the parities, P and D, in left-right symmetric models. The main

difference between a D-parity and P -parity is that the D-parity acts on the groups SU(2)L⊗
SU(2)R, while the P -parity acts on the Lorentz group. In the left-right symmetric models

we identify both the parities with each other, so that when we break the SU(2)R group or

the D-parity, the Lorentz P -parity is also broken.



Under the operation of parity the fermions, scalars and the vector bosons transform as:

ψL,R −→ ψR,L

Φ −→ Φ†

∆L,R −→ ∆R,L

σ −→ −σ

WL,R −→ WR,L. (12)

This implies that the combinations WL +WR and ∆L + ∆R are even under parity, while

WL−WR and ∆L−∆R are odd under parity. So,WL−WR is axial vector and σ and ∆L−∆R

are pseudo scalars. Thus the vev of the fields σ or ∆R can break parity spontaneously.

It is possible to break the D-parity spontaneously by breaking the group SU(2)R sponta-

neously by the vev of the field ∆R, or by breaking it by the vev of σ. In general, σ could be

a scalar or pseudo scalar. If we start with σ to be a scalar, then it can break the D-parity

keeping the P -parity invariant. However, if we consider σ to be a pseudo scalar, it can break

both D and P parities spontaneously. Since it is conventional to identify P parity with the

D parity, we consider σ to be a pseudo scalar. Then the vev of the field σ will break parity

and the group SU(2)R at different scales. This will have some interesting phenomenology.

This was proposed in ref. [19]. Recently its phenomenological consequences using doublet

and triplet Higgses are studied in ref. [24].

We assume that µ2
σ > 0 in equation (11). As a result below the critical temperature

Tc ∼ 〈σ〉, the parity breaking scale, the singlet Higgs field acquires a vev

ηP ≡ 〈σ〉 = µσ√
2λσ

. (13)

Since σ doesn’t possess any quantum number under SU(2)L,R and U(1)B−L, these groups

remain intact while P breaks. However it creates a mass splitting between the triplet fields

∆L and ∆R since it couples differently with them as given in equation (11). This leads to

different effective masses for ∆L and ∆R

M2
∆L

= µ2
∆ − (MηP + γη2P ) , (14)

M2
∆R

= µ2
∆ + (MηP − γη2P ). (15)



We now apply a fine tuning to set M2
∆R

> 0 so that ∆R can acquire a vev

〈∆R〉 =


 0 0

vR 0


 . (16)

In order to restore the SM prediction, i.e., to restore the observed phenomenology at a low

scale, Φ and Φ̃ acquire vevs

〈Φ〉 =



k1 0

0 k2



 and 〈Φ̃〉 =



k2 0

0 k1



 . (17)

This breaks the gauge group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L down to U(1)em. However, this

induces a non-trivial vev for the triplet ∆L as

〈∆L〉 =



 0 0

vL 0



 . (18)

In the above vL, vR, k1 and k2 are real parameters. Further the observed phenomenology

requires that vL ≪ k1, k2 ≪ vR.

Using equations (16), (17) and (18) in equation (11) we get the effective potential

Veff = −µ2
ση

2
P

−
[
µ2
∆ −MηP − γη2P − α1(k

2
1 + k22)− α2(4k1k2)− α3k

2
2

]
v2L

−
[
µ2
∆ +MηP − γη2P − α1(k

2
1 + k22)− α2(4k1k2)− α3k

2
2

]
v2R

−µ2
Φ1(k

2
1 + k22)− µ2

Φ2(4k1k2)

+λση
4
P + ρ1(v

4
L + v4R) + ρ3v

2
Lv

2
R

+λ1(k
2
1 + k22) + (2λ2 + λ3)(4k

2
1k

2
2) + λ4(k

2
1 + k22)(4k1k2)

+δ1η
2
P (k

2
1 + k22) + δ2η

2
P (4k1k2)

+2(β1k1k2 + β2k
2
1 + β3k

2
2 + β4k1k2)vLvR. (19)

The electroweak phase transition occurs at a low energy scale and hence it is reasonable to

assume that the parameters k22, k1k2, k
2
1 ≪ ηP . Using this approximation in equation (19)

one can see that the effective masses of ∆L and ∆R coincides with equations (14) and (15).

Further assuming M = γηP we get

M2
∆R

= µ2
∆ and M2

∆L
=M2

∆R
− 2γη2P . (20)



Thus a large cancellation between M∆R
and γηP allows an effective mass scale of the triplet

∆L to be very low and vice-versa.

We now check the order of magnitude of the induced vev of the triplet ∆L. This should

be small (less than a GeV) in order the theory to be consistent with Z-decay width. Further

the sub-eV masses of the light neutrinos require vev of ∆L to be of the order of eV, because

it gives masses through the type-II seesaw mechanism. From equation (19) we get

vR
∂Veff

∂vL
− vL

∂Veff

∂vR
= 0

= vLvR[4MηP − 4ρ1(v
2
R − v2L) + 2ρ3(v

2
R − v2L)]

+ 2(β1k1k2 + β2k
2
1 + β3k

2
2 + β4k1k2)(v

2
R − v2L). (21)

In the quark sector the vevs k1 and k2 give masses to the up and down type quarks respec-

tively. Therefore, it is reasonable to assume

k1
k2

=
mt

mb

. (22)

With the approximation vL ≪ k1, k2 ≪ vR ≪ ηP and using the above assumption (22) in

equation (21) we get

vL ≃ −β2v2vR
2MηP

, (23)

where we have used v =
√
k21 + k22 ≃ k1 = 174 GeV. Notice that in the above equation the

smallness of the vev of ∆L is decided by the parity breaking scale, not the SU(2)R breaking

scale. So there are no constraints on vR from the seesaw point of view. After SU(2)R

symmetry breaking the right handed neutrinos acquire masses through the Majorana Yukawa

coupling with the ∆R. Depending on the strength of Majorana Yukawa coupling a possibility

of TeV scale right handed neutrino is unavoidable. We will discuss the consequences in

context of L-asymmetry in section IV.

Finally before going to discuss the L-asymmetry in this model we give a most economic

breaking scheme of SO(10) GUT through the left right symmetric path. Keeping in mind

that the P and SU(2)R breaking scales are different, the breaking of SO(10) down to U(1)em

can be accomplished by using a set of Higgses: {210}, {126}, {10} of SO(10). At the first

stage SO(10) breaks to G224 ≡ SU(2)L⊗SU(2)R⊗SU(4)C(⊃ SU(2)L⊗SU(2)R⊗U(1)B−L⊗
SU(3)C) through the vev of {210}. Under G224 its decomposition can be written as

{210} = (1, 1, 1) + (2, 2, 20) + (3, 1, 15) + (1, 3, 15) + (2, 2, 6) + (1, 1, 15) , (24)



where (1, 1, 1) is a singlet and it is odd under the D parity, which is a generator of the group

SO(10). Hence it can play the same role as σ discussed above. At a later epoch {126} of

SO(10) can get a vev and breaks SU(2)L ⊗ SU(2)R ⊗SU(4)C to G213 ≡ SU(2)L ⊗U(1)Y ⊗
SU(3)C . Under G224 the decomposition of {126} is given as

{126} = (3, 1, 10) + (1, 3, 10) + (2, 2, 15) + (1, 1, 6) , (25)

where (3, 1, 10) and (1, 3, 10) contain the fields ∆L and ∆R respectively as in the above

discussion. Finally the vev of {10} breaks the gauge group SU(2)L⊗U(1)Y ×SU(3)C down

to U(1)em ⊗ SU(3)C which contains a (2, 2, 1) playing the role of Φ in our discussion.

IV. NEUTRINO MASSES AND LEPTOGENESIS IN LEFT-RIGHT SYMMET-

RIC MODELS

The relevant Yukawa couplings giving masses to the three generations of leptons are given

by

Lyuk = hijψLiψRjΦ + h̃ijψLiψRjΦ̃ +H.C.

+ fij

[
(ψLi)cψLj∆L + (ψRi)cψRj∆R

]
+H.C. , (26)

where ψT
L,R = (νL,R, eL,R). The discrete left-right symmetry ensures the Majorana Yukawa

coupling f to be same for both left and right handed neutrinos. The breaking of left-right

symmetry down to U(1)em results in the effective mass matrix of the light neutrinos to be

mν = fvL −mD
f−1

vR
mT

D

= mII
ν +mI

ν , (27)

where mD = hk1 + h̃k2 ≃ hk1 and vL is given by equation (23). In theories where both

type-I and type-II mass terms originate at the same scale it is difficult to choose which of

them contribute dominantly to the neutrino mass matrix. In contrast to it in the present

case since the parity and the SU(2)R breaking scales are different and, in fact, ηP ≫ vR it is

reasonable to assume that the type-I neutrino mass dominantly contributes to the effective

neutrino mass matrix. In what follows we assume

mν = mI
ν = −mD

f−1

vR
mT

D. (28)



In the previous section we showed that the SU(2)R breaking scale vR can be much lower

than the parity breaking scale ηP since the smallness of vL doesn’t depend on vR. Conven-

tionally this leads to the right handed neutrino masses to be smaller than that of the triplet

∆L [19]. However, in the present case a large cancellation between M2
∆R

and γη2P allows

an effective mass of the triplet ∆L to be in low scale while leaving the mass of ∆R at the

D-parity breaking scale. Note that the source of smallness of the right handed neutrinos and

the triplet ∆L are absolutely different. Unless the low energy observables constrain their

masses one can’t predict which one is lighter. In the following we take leptogenesis as a tool

to distinguish their mass scales.

A. Leptogenesis via heavy neutrino decay

Without loss of generality we work in a basis in which the mass matrix of the right handed

neutrinos is real and diagonal. In this basis the heavy Majorana neutrinos are defined as

Ni = (1/
√
2)(νRi ± νcRi), where i=1,2,3 representing the flavor indices. The corresponding

masses of the heavy Majorana neutrinos are given byMi. In this basis a net CP -asymmetry

results from the decay of Ni to the SM fermions and the bidoublet Higgses and is given

by the interference of tree level, one loop radiative correction and the self-energy correction

diagrams as shown in figs.(1). The resulting CP -asymmetry in this case is given by

ν Ri

Φ

ν Lj

  +

a

ν

ν

ν

ν
Φ

Φ

Ri

Lj

Rl

Lk          +              

a

b

ν Ri

ν Lj

Φ
Φ

ν

ν

Rl

Lk

 +

b
a

FIG. 1: The tree level, one loop radiative correction and the self energy correction diagrams

contributing to the CP -asymmetry in the decay of heavy Majorana neutrinos.

ǫIi =
1

8π

∑
l Im

[
(ha†hb)il(h

b†ha)il

]

(ha†ha)ii

√
xl [1− (1 + xl) log(1 + 1/xl) + 1/(1− xl)] , (29)

where xl =M2
l /M

2
i and ha, with a = 1, 2 stands for the Dirac Yukawa couplings of fermions

with Φ and Φ̃ respectively. That is h1 = h and h2 = h̃ as given in equation (26). Now



we assume a normal mass hierarchy, M1 ≪ M2 < M3, in the heavy Majorana neutrino

sector. In this case while the heavier right handed neutrinos N2 and N3 are decaying yet the

lightest one, N1, is in thermal equilibrium. Any L-asymmetry thus produced by the decay

N2 and N3 is erased by the L-number violating scatterings mediated by N1. Therefore, it is

reasonable to assume that the final L-asymmetry is given by the decay of N1. Simplifying

equation (29) we get a net CP -asymmetry coming from the decay of N1 to be

ǫI1 = −3M1

16π

∑
i,j Im

[
(ha†)1i(h

b(Mdia)
−1(ha)T )ij(h

b∗)j1
]

(ha†ha)11
. (30)

Expanding the above equation (30) and using the fact that mν ≃ −k21(hM−1
diah

T ) we get

ǫI1 =
3M1

16πv2

{∑
i,j Im

[
(h†)1i(m

I
ν)ij(h

∗)j1
]

(ha†ha)11
+ (h, h̃)terms

}
. (31)

Unlike the type-I models [9] here we have additional terms contributing the CP -asymmetry

in the decay of N1. Note that if the strength of h̃ is comparable with h then the resulting

CP -asymmetry enhances by a factor of 2 in comparison with the CP -asymmetry in the

exclusive type-I models [9].

An additional contribution to CP -asymmetry also comes from the interference of tree

level diagram in fig. (1) and the one loop radiative correction diagram involving the virtual

triplet ∆L as shown in fig. (2). The resulting CP -asymmetry in this case is given by [14, 25]
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FIG. 2: The one loop radiative correction through the virtual triplet ∆L in the decay of right

handed heavy Majorana neutrino contributes to the CP -asymmetry.

ǫIIi =
3

8π

∑
k,j Im

[
(ha)∗ji(h

b)∗kifjk(vRβ)ab
]

(haha†)iiMi

(
1−

M2
∆L

M2
i

log(1 +M2
i /M

2
∆L

)

)
, (32)

where

β =



β1 β3

β2 β4



 . (33)



If we further assume thatM1 ≪M∆L
in addition to the normal mass hierarchy in the heavy

Majorana neutrino sector, then the final L-asymmetry must be given by the CP -violating

decay of N1 to the SM lepton and the bidoublet Higgs. Now using (23) in equation (32) we

get the CP -asymmetry parameter

ǫII1 =
3M1

16πv2

(
2MηP

−β2M2
∆L

)∑
jk Im

[
(ha†)1j(m

II
ν )jk(h

b)∗k1βab
]

(ha†ha)11
. (34)

Note that this result differs from the usual type-II seesaw models [14, 15] where only one

triplet ∆L is usually introduced into the SM in addition to the singlet heavy Majorana

neutrinos.

The total CP -asymmetry coming from the decay of N1 thus reads

ǫ1 = ǫI1 + ǫII1 , (35)

where ǫI1 and ǫII1 are given by equations (31) and (34) respectively. Unlike the existing

literature [15, 16] in the present case it is impossible to compare the magnitude of ǫI1 and

ǫII1 through the type-I and type-II neutrino mass terms unless one takes the limiting cases.

1. Dominating type-I contribution

Let us first assume that ǫI1 dominates in equation (35) and the neutrino Dirac Yukawa

coupling h ≃ h̃. The resulting CP -asymmetry is then given by

ǫ1 = ǫI1 = 2

{
3M1

16πv2

∑
i,j Im

[
(h†)1i(m

I
ν)ij(h

∗)j1
]

(h†h)11

}
. (36)

The maximum value of ǫ1 then reads ǫmax
1 = 2ǫ01 [9], where

|ǫ01| =
3M1

16πv2

√
∆m2

atm . (37)

As a result we gain a factor of 2 in the lower bound on M1 which is given as

M1 ≥ 4.2× 108GeV

(
nB/nγ

6.4× 10−10

)(
10−3

nν
R

s
δ

)( v

174GeV

)2
(

0.05eV√
∆m2

atm

)
, (38)

where we have made use of the equation (1).



2. Dominating type-II contribution

Suppose ǫII1 dominates in equation (35). In that case, assuming h̃ ≃ h and βi’s of order

unity we get the maximum value of the CP -asymmetry parameter [16]

|ǫmax
1 | =

(
4MηP
M2

∆L

)
3M1

16πv2
m3 , (39)

where m3 =
√

∆m2
atm ≃ 0.05 eV. Following the same procedure in section (IVA1) we gain

a factor of (M2
∆L
/4MηP ) in the lower bound on M1.

B. Leptogenesis through triplet decay

In the left-right symmetric models the decay of the scalar triplets ∆L and ∆R violates

L-number by two units and hence potentially able to produce a net L-asymmetry. The

efficient decay modes which violate L-number are

∆L,R −→ νL,R + νL,R ,

∆L,R −→ Φa† + Φb. (40)

However, the decay rate in the process ∆R −→ Φa† +Φb is highly suppressed in comparison

to ∆L −→ Φa† + Φb because of the proportionality constant is vL in the former case while

it is of vR in the latter case. Moreover, in the present case the effective mass scale of the

triplet ∆R is larger than the mass of ∆L due to the large cancellation between M2
∆R

and

2γη2P . Therefore, in what follows we take only the decay modes of the triplet ∆L. The decay

rates are given as:

Γν(∆L → νLiνLj) =
|fij |2
8π

M∆L
, (41)

ΓΦ(∆L → Φa†Φb) =
|βab|2
8π

r2M∆L
, (42)

where βab are given in equation (33) and r2 = (v2R/M
2
∆L

). A net asymmetry is produced

when the decay rate of the triplet ∆L fails to compete with the Hubble expansion rate of

the Universe. This is given by the conditions:

Γν
<∼ H(T =M∆L

) , (43)

ΓΦ
<∼ H(T =M∆L

). (44)



As shown in equation (20) a large cancellation can lead to a TeV scale of the triplet ∆L.

However, the SM gauge interaction W †
L +WL −→ ∆†

L +∆L keeps it in thermal equilibrium.

The out of equilibrium of this process requires ΓW ≤ H(T = M∆L
). Consequently we will

get a lower bound on the mass of the triplet ∆L to be M∆L
≥ 4.8× 1010 GeV.

The CP -asymmetry in this case arises from the interference of tree level diagrams in

figs. (3) with the one loop radiative correction diagrams involving the virtual right handed

neutrinos as shown in the figs: (4). The resulting CP -asymmetry in this case is given

∆
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  X

∆

       
< ∆ R >
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Φ

Φ
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FIG. 3: The tree level diagrams of the decay of the triplet ∆L contributing to the CP -asymmetry.

by [14, 25]

ǫ∆ =
1

8π

∑

k

Mk

∑
ij Im

[
(ha)∗ik(h

b)∗jk(βvR)
∗
abfij

]
∑

ij |fij|2M2
∆L

+
∑

cd |βcd|2v2R
log(1 +

M2
∆L

M2
k

). (45)

Assuming that M∆L
< M1 and h = h̃ the above equation can be simplified to

ǫ∆ =
1

8πv2

∑
ij Im

[
(mI

ν)
∗
ij(MR)ij∑ β∗

]
∑

ij |fij|2 +
∑

cd |βcd|2r2
, (46)

where mI
ν is given by equation (28) which can be calculated from the low energy neutrino

oscillation data.
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FIG. 4: The one loop radiative correction of the decay of the ∆L through the exchange of virtual

right handed neutrinos contributing to the CP -asymmetry.



V. CHARGE-NEUTRAL SYMMETRY AND NEUTRINO MASS MATRICES

The present neutrino oscillation data show that the neutrino mixing matrix up to a

leading order in sin θ13 is [26]

UPMNS =




√
2√
3

1√
3

ǫe−iδ

−1√
6
− 1√

3
ǫeiδ 1√

3
− −1√

6
ǫeiδ 1√

2

1√
6
− 1√

3
ǫeiδ −1√

3
− −1√

6
ǫeiδ 1√

2


dia

(
1, eiα, e(β+δ)

)
(47)

where we have used the best fit parameters [27]; the atmospheric mixing angle θ23 = 45◦,

the solar mixing angle θ12 ≃ 34◦ and the reactor angle sin θ13 ≡ ǫ. Using (47) the neutrino

mass matrix can be written as

mν = U∗
PMNSm

dia
ν U †

PMNS , (48)

where mdia
ν = dia(m1, m2, m3), with m1, m2, m3 are the light neutrino masses. Using equa-

tions (47) and (48) we get, up to an order of ǫ, the elements of the neutrino mass matrix:

(mν)11 =
m2

3
+

2

3
m1

(mν)12 = ǫeiδ
m3√
2
+
m2√
3

(
1√
3
− 1√

6
ǫe−iδ

)
−
√

2

3
m1

(
1√
6
+
ǫe−iδ

√
3

)

(mν)13 = ǫeiδ
m3√
2
− m2√

3

(
1√
3
+

1√
6
ǫe−iδ

)
+

√
2

3
m1

(
1√
6
− ǫe−iδ

√
3

)

(mν)23 =
m3

2
− m2

3
− m1

6

(mν)22 =
m3

2
+
m1√
6

(
1√
6
+

2ǫe−iδ

√
3

)
+
m2√
3

(
1√
3
−
√

2

3
ǫe−iδ

)

(mν)33 =
m3

2
+
m1√
6

(
1√
6
− 2ǫe−iδ

√
3

)
+
m2√
3

(
1√
3
+

2ǫe−iδ

√
6

)
(49)

Inverting the seesaw relation (28) we get the right handed neutrino mass matrix [28]

MR = −mT
Dm

−1
ν mD , (50)

where MR = fvR. The m−1
ν in the above equation can be calculated from equation (48).

Unless one assumes a texture of mD it is difficult to link mν and MR through equation

(50). In general it is almost impossible to connect the low energy CP -phase and the CP -

phase appearing in leptogenesis. So, by using some approximations for the neutrino Dirac



mass matrix one can calculate the right handed neutrino mass matrix MR and hence the

CP -asymmetry [29]. We assume a charge neutral symmetry which is natural in the super-

symmetric left-right symmetric models [30]. We take the neutrino Dirac mass

mD = cml , (51)

where ml is the charged lepton mass matrix and c is a numerical factor. Further we assume

the texture of the charged leptons mass matrix as [31]

ml =




0
√
memµ 0

√
memµ mµ

√
memτ

0
√
memτ mτ


 . (52)

We shall further assume that at a high energy scale, where the leptogenesis occurs, the

PMNS matrix is given by [32]

UPMNS = U †
l U0 , (53)

where Ul and U0 are the diagonalizing matrix of ml and mν respectively. At this scale we

assume Ul = I and a bimaximal structure for U0 which is given by

U0 =




1√
2

1√
2
ǫe−iδ

−1
2

1
2

1√
2

1
2

−1
2

1√
2


 . (54)

Now using (51) and (52) in equation (50) we get the elements in the right handed neutrino

mass matrix as:

(MR)11 ≃ −c2(memµ)

(
1

4m1

(1 + 2ǫeiδ) +
1

4m2

(1− 2ǫeiδ) +
1

2m3

)

(MR)12 ≃ −c2(mµ
√
memµ)

(
1

4m1
(1 + 2ǫeiδ) +

1

4m2
(1− 2ǫeiδ) +

1

2m3

)

(MR)13 ≃ −c2(mτ
√
memµ)

(
− 1

4m1
− 1

4m2
+

1

2m3

)

(MR)22 ≃ −c2m2
µ

(
1

4m1

(1 + 2ǫeiδ) +
1

4m2

(1− 2ǫeiδ) +
1

2m3

)

(MR)23 ≃ −c2(mµmτ )

(
− 1

4m1
− 1

4m2
+

1

2m3

)

(MR)33 ≃ −c2m2
τ

(
1

4m1
(1 + 2ǫeiδ) +

1

4m2
(1− 2ǫeiδ) +

1

2m3

)
. (55)



Below the electroweak phase transition the charged leptons are massive and the correspond-

ing mass matrix is given by equation (52). So we can recover the PMNS matrix at low

energy as given by equation (53) by attributing the small deviation from its bimaximal form

to the diagonalizing matrix of the charged leptons Ul [32].

VI. LEPTON ASYMMETRY WITH CHARGE-NEUTRAL SYMMETRY

In this section we estimate the L-asymmetry from the decay of right handed neutrino as

well as the triplet ∆L, depending on the relative masses they acquire from the symmetry

breaking pattern.

A. L-asymmetry with M1 < M∆L
and dominating ǫI1

Using (49) and (51) in equation (36) we get the resulting CP -asymmetry parameter from

the decay of right handed neutrino to be

ǫI1 ≃ − M1

16πv2

[
(2m1 +m2)ǫ

2 sin 2δ + 2
√
2(m1 −m2)ǫ sin δ

]
. (56)

The L-asymmetry in a comoving volume is then given by

YL = ǫI1YN1
d , (57)

where YN1
= (nN1

/s), s = (2π2/45)g∗T
3 is the entropy density, nN1

is the number density

of lightest right handed neutrino in a physical volume and d is the dilution factor which

can be obtained by solving the required Boltzmann equations. A part of the L-asymmetry

is then transferred to the B-asymmetry in a calculable way. As a result we get the net

B-asymmetry
nB

nγ
= 7YB = −3.5ǫI1YN1

d . (58)

With the maximal CP asymmetry, i.e., δ = π/2, and using the best fit parameter for

m2 = 0.009 eV we have shown the regions in the sin θ13 versus m1 plane for various values of

M1 as shown in fig. (5). The upper most region represents 4.2× 108GeV < M1 < 4.2× 109

GeV. As we go down the mass of N1 increases by an order of magnitude per region. If we

assume a normal mass hierarchy for the light physical neutrinos then only the bottom most
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FIG. 5: Contours satisfying the required B-asymmetry are plotted in the sin θ13 versus m1 plane

for (4.2 × 108GeV/M1) = 0.1, 0.01, 0.001, 0.0001

region i.e., M1 > 4.2 × 1012 GeV, is allowed for all m1 < 0.001eV and sin θ13 < 0.2, the

present experimentally allowed values.

B. L-asymmetry with M1 < M∆L
and dominating ǫII1

Assuming a normal mass hierarchy in the right handed neutrino sector and the mass

of lightest right handed neutrino M1 < M∆L
, the CP -asymmetry parameter (32) can be

rewritten as

ǫII1 =

(
3M1

16πM2
∆L

)
Im
[(
(ma

D)
†MR(m

b
D)

∗)
11
βab
]

((ma
D)

†ma
D)11

. (59)

We further assume mD ≃ m̃D and β = O(1). Thus using the value of mD and MR from

equations (51) and (55) in the above equation we get

ǫII1 ≃
(
−
3M1βc

2m2
µ

8πM2
∆L

)
ǫ sin δ

2

(
1

m1
− 1

m2

)
. (60)

Following the same procedure in section (VIA) we calculate the B-asymmetry by using

ǫII1 . The corresponding regions in the sin θ13 versus m1 plane are shown in figure (6) for
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FIG. 6: Contours satisfying the required B-asymmetry in the sin θ13 versus m1 plane are plotted

for (4.2 × 108GeV/M1) = 0.01, 0.001, 0.0001. We have used the parameters β = 1, c = 1 and

M∆L
= 1013GeV .

various values of M1. In the bottom most region we have 4.2 × 109GeV < M1 < 4.2 × 109

GeV. As we go up the mass of N1 increases by an order of magnitude for each region.

By taking the best-fit value for m2 = 0.009 eV and using the maximal CP -violation it is

found that in a large allowed range of sin θ13 the smaller values of M1 are preferable for

all m1 < 10−3 eV. That means a successful leptogenesis with m1 < 10−3eV prefers the

only values 4.2 × 108GeV ≤ M1 < 4.2 × 1012GeV . Note that these regions are exactly

complementary to the dominant type-I case.

C. L-asymmetry with M∆L
< M1

We now assume that M∆L
< M1. Hence the final L-asymmetry must be given by the

decay of triplet ∆L. The L-asymmetry from the decay of triplet ∆L is defined as

YL = ǫ∆Y∆d , (61)

where Y∆ = (n∆L
/s), with n∆L

= n∆L
++ + n∆L

+ + n∆L
0 is the density of the triplets and

s is the entropy density, and d is the dilution factor. Assuming β’s of order unity and



substituting ǫ∆ from equation (46) we get the L-asymmetry

YL =
1

8πv2
Im
(
Tr[(mI

ν)
∗MR]

∑
β∗
i

)
∑ |βi|2r2

Y∆d . (62)
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FIG. 7: Contours satisfying the required B-asymmetry in the sin θ13 versus m1 plane are shown

for r2 = 1, 10, 25. We have used the parameters c = 0.1, β = 1.

Using the equations (49) and (55) we evaluate YL. Again following the same procedure as

given in section (VIA) we calculate the B-asymmetry. With the maximal CP -violation and

using the best-fit parameters, m2 = 0.009 eV and m3 = 0.05 eV, the regions in the sin θ13

versus m1 plane are shown in fig. (7) for various values of r2 = v2R/M
2
∆L

. In the bottom

most region we have r2 > 25. r2 values are decreased further to wards upper-left (the red

region which is not allowed because it represents r2 < 1 which implies M∆L
> M1). Thus it

is clear that for sin θ13 < 0.2 the only values of m1 < 10−4 eV are allowed for a successful

leptogenesis.

D. Results and Discussions

Assuming the neutrino Dirac mass matrix follows the same hierarchy of charged lepton

mass matrix we studied the sensitivity of L-asymmetry on the mass scale of the light-



est right handed neutrino as well as the triplet ∆L. In any case it is found that a suc-

cessful L-asymmetry requires the mass of lightest right handed neutrino should satisfy

M1 > O(108)GeV and that ofM∆L
> O(1010)GeV . Therefore, these mechanisms of produc-

ing L-asymmetry is far away from our hope to be verified in the next generation accelerators.

On the other hand, the large masses of N1 and ∆L satisfy a large range of parameters ex-

plored in the neutrino oscillations. In the following we study an alternative to explain the

L-asymmetry at the TeV scale that is compatible with the low energy neutrino oscillation

data.

VII. TRANSIENT LEFT-RIGHT DOMAIN WALLS, LEPTOGENESIS AND TEV

SCALE RIGHT HANDED NEUTRINO

A. Spontaneous breaking of D-parity and transient left-right domain walls

In the conventional low energy left-right symmetric model the discrete left-right symmetry

as well as the guage symmetry SU(2)L×SU(2)R×U(1)B−L breaks at the same scale through

the vev of ∆R. As a result stable domain walls [33], interpolating between the L and R-like

regions, are formed. By L-like we mean regions favored by the observed phenomenology,

while in the R-like regions the vacuum expectation value of ∆R is zero. Unless some non-

trivial mechanism prevents this domain structure, the existence of R-like domains would

disagree with low energy phenomenology. Furthermore, the domain walls would quickly

come to dominate the energy density of the Universe. Thus in this theory a departure from

exact L ↔ R symmetry is essential in such a way as to eliminate the phenomenologically

disfavoured R-like regions.

The domain walls formed can be transient if there exists a slight deviation from exact

L ↔ R symmetry. In other words we require gL 6= gR before SU(2)L × SU(2)R breaking

scale. In the present case this is achieved by breaking the D-parity at a high scale, at

around ηP ∼ 1013 GeV. This gives rise to gL 6= gR before the breaking of guage symmetry

SU(2)L×SU(2)R. As a result the spectrum of Higgs bosons exhibit the left-right asymmetry

even though SU(2)R symmetry is unbroken. Therefore, the thermal perturbative corrections

to the Higgs field free energy will not be symmetric and the domain walls will be unstable.

The slight difference in the free energy between the two types of regions causes a pressure



difference across the walls, converting all the R-like regions to L-like regions. Details of this

dynamics can be found in ref. [20].

B. Leptogenesis from transient domain walls

It was shown in [20] that within the thickness of the domain walls the net CP violating

phase becomes position dependent. Under these circumstances the preferred scattering of

νL over its CP -conjugate state (νcL) produce a net raw L-asymmetry [20]

ηraw
L

∼= 0.01 vw
1

g∗

M4
1

T 5∆w
(63)

where ηraw
L

is the ratio of nL to the entropy density s. In the right hand side ∆w is the

wall width and g∗ is the effective thermodynamic degrees of freedom at the epoch with

temperature T . Using M1 = f1∆T , with ∆T is the temperature dependent vev acquired by

the ∆R in the phase of interest, and ∆−1
w =

√
λeff∆T in equation (63) we get

ηrawL
∼= 10−4vw

(
∆T

T

)5

f 4
1

√
λeff , (64)

where we have used g∗ = 110. Therefore, depending on the various dimensionless couplings,

the raw asymmetry may lie in the range O(10−4 − 10−10). However, it may not be the

final L-asymmetry, because the thermally equilibrated L-violating processes mediated by

the right handed neutrinos can erase the produced raw asymmetry. Therefore, a final L-

asymmetry and hence the bound on right handed neutrino masses can only be obtained

by solving the Boltzmann equations [5]. We assume a normal mass hierarchy in the right

handed neutrino sector. In this scenario, as the temperature falls, first N3 and N2 go out of

thermal equilibrium while N1 is in thermal equilibrium. Therefore, it is the number density

and mass of N1 that are important in the present case which enter into the Boltzmann

equations. The relevant Boltzmann equations for the present purpose are [21, 22]

dYN1

dZ
= −(D + S) (YN1 − Y eq

N1) (65)

dYB−L

dZ
= −WYB−L, (66)

where YN1
is the density of N1 in a comoving volume, YB−L is the B − L asymmetry and

the parameter Z = M1/T . The various terms D,S and W are representing the decay,



scatterings and the wash out processes involving the right handed neutrinos. In particular,

D = ΓD/ZH , with

ΓD =
1

16πv2
m̃1M

2
1 , (67)

where m̃1 = (m†
DmD)11/M1 is called the effective neutrino mass parameter. Similarly S =

ΓS/HZ and W = ΓW/HZ. Here ΓS and ΓW receives the contribution from ∆L = 1 and

∆L = 2 L-violating scattering processes.

In an expanding Universe these Γ’s compete with the Hubble expansion parameter. In

a comoving volume the dependence of ∆L = 1 L-violating processes on the parameters m̃1

and M1 is given as
(

γD
sH(M1)

)
,

(
γN1
φ,s

sH(M1)

)
,

(
γN1
φ,t

sH(M1)

)
∝ k1m̃1 . (68)

On the other hand, the dependence of the γ’s in ∆L = 2 L-number violating processes on

m̃1 and M1 is given by
(

γlN1

sH(M1)

)
,

(
γlN1,t

sH(M1)

)
∝ k2m̃

2
1M1. (69)

Finally there are also L-conserving processes whose dependence is given by
(

γZ′

sH(M1)

)
∝ k3M

−1
1 . (70)

In the above equations (68), (69), (70), ki, i = 1, 2, 3 are dimensionful constants determined

from other parameters. Since the L-conserving processes are inversely proportional to the

mass scale of N1, they rapidly bring the species N1 into thermal equilibrium for all T ≫ M1.

Furthermore, smaller the values of M1, the washout effects (69) are negligible because of

their linear dependence on M1. We shall work in this regime while solving the Boltzmann

equations.

The equations (65) and (66) are solved numerically. The initial B − L asymmetry is the

net raw asymmetry produced through the domain wall mechanism as discussed above. We

impose the following initial conditions:

Y in
N1 = Y eq

N1 and Y in
B−L = ηrawB−L, (71)

assuming that there are no other processes creating L-asymmetry below the B−L symmetry

breaking scale. This requires ΓD ≤ H at an epoch T ≥M1 and hence lead to a bound [34]

mν < m∗ ≡ 4πg1/2∗
G

1/2
N√
2GF

= 6.5× 10−4eV. (72)



Alternatively in terms of Yukawa couplings this bound reads

hν ≤ 10x, with x = (M1/Mpl)
1/2. (73)

At any temperature T ≥M1, wash out processes involving N1 are kept under check due to
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FIG. 8: The evolution of B − L asymmetry for different values of M1 shown against Z(= M1/T )

for m̃1 = 10−4eV and ηrawB−L = 2.0 × 10−10

the m̃2
1 dependence in (69) for small values of m̃1. As a result a given raw asymmetry suffers

limited erasure. As the temperature falls below the mass scale of N1 the wash out processes

become negligible leaving behind a final L-asymmetry. Fig.8 shows the result of solving the

Boltzmann equations for different values of M1. An important conclusion from this figure

is that for smaller values of M1 the wash out effects are tiny. Hence by demanding that the

initial raw asymmetry is the required asymmetry of the present Universe we can conspire

the mass scale of N1 to be as low as 1 TeV. For this value of M1, using equation (73), we

get the constraint on the neutrino Dirac Yukawa coupling to be hν ≤ 10−7. It is shown in

ref. [22] that hν = 10−7 is reasonable to suppress the flavor changing neutral current in the

conventional left-right symmetric model.

We assume that in equation (66) there are no other sources that produce L-asymmetry

below the SU(2)R ×U(1)B−L symmetry breaking phase transition. This can be justified by

considering small values of hν , since the CP asymmetry parameter ǫ1 depends quadratically

on hν . For hν ≤ 10−7 the L-asymmetry YL ≤ O(10−14), which is far less than the raw



asymmetry produced by the scatterings of neutrinos on the domain walls. This explains the

absence of any L-asymmetry generating terms in equation (66).

VIII. SPONTANEOUS BREAKING OF D-PARITY AND IMPLICATIONS FOR

COSMOLOGY

An important aspect of the particle physics models is that the out-of-equilibrium decay

of heavy scalar condensations gives rise to density perturbations in the early Universe [35].

In such a scenario, the cosmic microwave background radiation (CMBR) originating from

the decay products of the scalar condensation and hence its anisotropy can be affected by

the fluctuation of the scalar condensates. The observed anisotropy then constrain the mass

scale of the heavy Higgs which induces the density perturbations. In the present model

the fluctuation of the amplitude of late decaying condensation σ (the so called curvaton

scenario) can give rise to density perturbations if the energy density of σ dominates the

Universe for some time before its decay. Thus the models where inflaton doesn’t generate

sufficient perturbations can be rescued.

One possibility is that the σ can be abundantly produced from the decay of inflaton field

and dominates before its decay. Note that σ is a singlet field under the gauge symmetry

SU(2)L ×SU(2)R ×U(1)B−L. Therefore, the domination of σ before it’s decay is natural in

this model than any other scalar fields which have the gauge interactions. This is possible

if Γinf ≫ Γσ, where Γinf and Γσ are respectively the decay rates of inflaton and σ fields.

The Universe will then go through a radiation dominated era with a reheating temperature

TI ≃ g
−1/4
∗ (MplΓinf)

1/2 when the inflaton field decays completely, i.e. Γinf ∼ H . If the

initial amplitude of σ is substantial then it will reheat the Universe at a latter epoch H ∼ Γσ

characterised by the reheat temperature TII ≃ g
−1/4
∗ (MplΓσ)

1/2 when σ decays completely.

Therefore, the final density perturbation is mostly given by the σ field [35].

Obtaining an acceptable perturbations of the correct size (about 1 in 105) requires that

the vev of σ field ηP ∼ 105HI [35], where HI is the Hubble expansion rate during inflation.

For ηP ∼ 1013 GeV (which is required to suppress the type-II contribution of the neutrino

mass matrix) one can have HI ∼ 108 GeV.



IX. CONCLUSIONS

We studied BVL from the decay of right handed heavy Majorana neutrinos as well as

the triplet ∆L in a class of left-right symmetric models with spontaneous D-parity violation.

While in a generic type-I seesaw models, assuming normal mass hierarchy in the right handed

neutrino sector, one requires M1 > 4.2 × 108GeV for successful thermal leptogenesis, with

D-parity this bound can be lowered up to a factor of
(
M2

∆L
/4MηP

)
. Thus the lowering

factor depends on the model parameters in the present case. On the other hand, in the case

M∆L
< M1 the lower bound on the mass scale of ∆L is of the order 1010 GeV to produce the

required lepton asymmetry. In any case the thermal leptogenesis scale can not be lowered

up to a TeV scale if the lepton asymmetry is produced through the out-of-equilibrium decay

of these heavy particles (either right handed neutrinos or triplet Higgses). However, this is

not true if the production and decay channel of these heavy particles in a thermal bath are

different.

The large masses of these heavy particles satisfy a large range of low energy neutrino

oscillation data as we saw in figs. ( 5), (6) and (7). In particular, we found that in case

M1 < M∆L
(1) the dominating ǫ1 favors M1 > 4.2 × 1012 GeV for all m1 < 10−3 eV, (2)

the dominating ǫII1 , on the other hand, favors 4.2 × 108GeV ≤ M1 < 4.2 × 1012GeV for all

m1 < 10−3 eV. In the case M∆L
< M1 we found that m1 < 10−4 eV are the only allowed

values to give rise a successful leptogenesis.

Despite the success, the out-of-equilibrium decay production of L-asymmetry suffers a

serious problem as far as the collider energy concern. Therefore, we considered an alternative

mechanism of producing L-asymmetry by considering the extra source of CP -violation in the

model. In particular, the complex condensate inside left-right domain wall gives rise to CP -

violation. Under these circumstance the preferred scattering of νL over it’s CP -conjugate

state νcL produce a net L-asymmetry. The survival of this asymmetry then requires the mass

scale of N1 to be very small, say 10TeV . This is compatible with the low energy neutrino

oscillation data if the Dirac mass matrix of the neutrinos follow two orders of magnitude less

than the charged lepton mass matrix. Moreover, the TeV scale masses of the right handed

neutrinos are explained through the breaking of SU(2)R guage symmetry at a few TeV scale

while leaving the D-parity breaking scale as high as 1013 GeV.

Since σ is a singlet scalar field under the gauge symmetry SU(2)L × SU(2)R ×U(1)B−L,



we conjecture that its late decay can produce a density perturbation in the early Universe.

However, in this work, we have not explored the details of density perturbations due to its

out of equilibrium decay. This is under investigation and will be reported else where.
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