Header menu link for other important links
X
Layer number dependent optical and electrical properties of CVD grown two-dimensional anisotropic WS2
D. Thakur, P. Kumar, S. M, , V. Balakrishnan
Published in Elsevier B.V.
2021
Volume: 26
   
Abstract
Engineering 2D transition metal dichalcogenides with precise control over layer number enable tuning of exciting optical and electrical properties at the nanoscale level. We report controlled one-step chemical vapour deposition growth of WS2 monolayer, bilayer, and trilayer for large scale manufacturing and demonstrate layer dependent changes in their work function, photoluminescence, and electrical conductivity. Raman, photoluminescence, and fluorescence imaging revealed that the base WS2 monolayer contains alternating triangular domains with different emission properties. It is observed that bilayer and trilayer grow selectively on less luminescent facet leading to fan-like morphology for second and third layers. We have systematically demonstrated that desired growth and areal coverage of bilayer and trilayer can be achieved by controlling WO3 precursor content. Kelvin probe force microscopic studies suggest a higher work function of thicker layers as compared to the monolayer. It was found that work function increases by 0.04 eV when thickness increases from monolayer to bilayer. FET device measurement on mono and bilayer shows n-type characteristics and two-fold higher photo-current in monolayer in comparison to the bilayer. The studied thickness dependence of the work function of WS2 is vital to the fabrication of metal contacts for WS2 based electronic and optoelectronic devices. © 2021
About the journal
JournalData powered by TypesetSurfaces and Interfaces
PublisherData powered by TypesetElsevier B.V.
ISSN24680230