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A B S T R A C T

Lattice structures result from biomimicry to create strong and lightweight materials. Triple Periodic Minimal
Surface (TPMS) are complex geometry lattices which are highly challenging to design them using computer-
aided drafting tools. Lattice_Karak resolves this problem by providing open-source software for generating
TPMS. It has all the features for generating and modifying TPMS like density grading, cell size grading,
hybridization and hierarchical unit cell. It also exports the generated TPMS into an STL file for further modeling
and additive manufacturing. Lattice_Karak can generate scaffolds, heat sinks and porous structures, making it
an excellent application for tissue engineering, lightweighting and heat exchanging.
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1. Introduction

The progress of civilization has led to the development of sophisti-
cated materials & structures [1]. Example, Pyramids to the Eiffel tower.
Due to this rapid development, the new age structures must perform
various functions. Increasing the design space of the product is an
exclusive way to incorporate Multifunctionality. The orthodox way of
product development includes controlling the product’s final shape (di-
mensions in meters) and material (dimensions in micrometers) [2]. This
approach excludes the dimensions between meters and micrometers.
These untapped dimensions allow for integrating different functions
without changing shape or material. The primary way to explore the
untapped dimensions is by introducing lattice structures [3]. Lattice
structures allow localized control of functional properties by controlling
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lattice structures’ shape, size and features. Triple Periodic Minimal
Surface (TPMS) is a unique kind of lattice structure with applications in
aerospace, electrodes for batteries, scaffolds, catalysts, implants, tissue
engineering, energy absorption, and lightweighting [4]. With these
many applications, it is very much indispensable to have a free and
open-source tool for generating TPMS lattice structures.

The complex shape of TPMS makes it a burdensome task to design
them using computer-aided tools. Some free software for generating
these lattice structures are MS Lattice [5], Minisurf [6] and TPMS
Designer [7]; all the software mentioned, i.e. MS Lattice, Minisurf
and TPMS Designer, does not have options for generating variable
density, cell size grading, hybridization and Hierarchical. Even though
MS Lattice can generate TPMS with variable density and cell size
grading, but MS Lattice is not open-source software. These features
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Fig. 1. Functions of Lattice_Karak.

make Lattice_Karak stand out from the rest of the software as it has all
the essential features needed to design TPMS and control its topology.
Students & Researchers can fully exploit the applications of TPMS
when there is open-source availability of codes and Graphical User
Interface (GUI)based applications for generating TPMS. Lattice_Karak
satisfies all the demands: It is open-source software; it has GUI; it has
features to generate density grading, cell size grading, hybridization
and hierarchical lattice. The Fig. 1 shows the functions of the ap-
plication. These features make Lattice_Karak a marvelous application
for generating TPMS lattice. Helping students & researchers use the
excellent properties offered by the TPMS.

2. Description & features

Lattice_Karak runs on MATLAB® compiler; it is also a standalone
application, running without the user installing MATLAB®. GUI and
features of the Lattice_Karak were created after brainstorming the needs
of students & researchers so that it helps them to innovate and use it to
the maximum extent possible. Being open-source allows them to change
the codes as per their wish. The GUI was created in such a way that
it is self-explanatory for the user to use it. The Fig. 2 Shows the user
interface (UI) of the application.

The app’s functionality includes variable density, cell size grading,
hybridization and hierarchy. Lattice_Karak can control the number of
cells in each direction, density control and the type of arrangement
of structures (sheet/ skeletal). There are 12 inbuilt TPMS structures
available. The visualization of TPMS takes up to 60% of the window.
The generated structure can be made into an STL file for further
processing and manufacturing using the export option available in the
application. The Simple tab allows for creating a simple TPMS lattice;
the TPMS lattice’s density can be controlled by a level set knob in
the UI. The cell parameters of TPMS are controlled by inputting the
desired number of cells in the cell parameters section. The required
TPMS lattice can be selected from the drop-down menu. The switch
knob can choose the type of network (Sheet/ Skeletal). Pressing the
plot button generates the TPMS lattice. The generated lattice can be
exported into STL by pressing the export button (see Figs. 2 and 3).

The Key aspect of the TPMS is that it is highly found in nature
[8], for example, butterfly wings [9], sea urchins [10], the exoskeleton

of weevils [11] and biological membranes [12]. To imitate the TPMS
found in nature and to satisfy the needs of the various structural
properties [13] has led to the design of variable density [14], cell size
grading [15], Hybridization [16], Hierarchical [17] and TPMS with
complex external shapes [18]. The Variable density, Cell size grading,
Hybridization and Hierarchical help in achieving the geometry control
of TPMS; the geometry of TPMS has a predominant effect on various
structural properties [13]. It is evident that for the complete application
of the TPMS structure in various disciplines and applications [19–
22], the software which generates TPMS must include features to
create TPMS with Variable density, Cell size grading, Hybridization and
Hierarchical; Lattice_Karak fits into the criteria.

A dedicated Tab is provided for each design criteria. The variable
density tab allows for generating TPMS with varying densities along a
particular direction. The Cell size grading tab allows for the varying
porosity of TPMS without changing the density of the TPMS. The
hybridization tabs allow the creation of a new TPMS with two different
TPMS lattices. The. The hierarchy tabs allow for generating hierarchical
TPMS lattice. Hybridization & Hierarchy options are only available in
Lattice_Karak These features help create multifunctional lattice as per
the requirements.

The TPMS is developed using the implicit method. The implicit
method uses a single-valued function of three variables. The surface
is the locus of points for which the function has some constant value.
A zero-valued surface, known as a zero set or level set, represents the
space’s interface regions lying on, inside, and outside the space [23].
Example Schwarz Primitive TPMS can be generated by Eq. (1).

∅𝑃 ≡ cos 𝛼𝑥 + cos 𝛽𝑦 + cos 𝛾𝑧 = 𝑐 (1)

Here 𝛼, 𝛽, and 𝛾 are the parameters that can control the unit cell
size in the x, y, and z directions. The level set constant, i.e. C, can
be changed to get the relative density of the structures. When c=
0, the resulting surface divides the space into sub-domains of equal
volume. The volume of these subdomains is modified to get sheet-based
structures (c ≤ ∅ ≥ c) or skeletal-based structures ( ∅< c or ∅ > c) [24].
All the features like Variable density, Cell size grading, Hybridization
and Hierarchical are obtained by controlling the implicit function and
level set constant.

3. Impact overview

Due to the vast applications of TPMS [25], the generation of lattice
structures for various applications is a highly researched topic. Many
commercial softwares like nTop (nToplogy), Sulis (Gen 3d), Grasshop-
per (Rhino 3D), Simpleware (Synopsys), Optistruct (Altair) and Creo
Parametric (PTC), are being used to generate lattice structures. This
highly expensive software prevents students & researchers from creat-
ing lattice structures. Lattice_Karak gives an open-source way to create
these structures.

Lattice_Karak allows users to generate various types of TPMS lat-
tices. Many researchers are working on the understanding mechanical
behavior of the TPMS lattice [26–30]. This software allows the effort-
less generation of these lattices effectively as per the requirements.
Finite Element Analysis is can be implemented on the output obtained
by the Lattice_Karak (I.e. STL file). This analysis allows for a better
understanding of lattice structures.

Due to the high surface area, TPMS are excellent to use as a scaf-
fold. The pore connectivity is 100% in TPMS, which allows for better
cell attachment, proliferation and differentiation [31]. The mechanical
properties of the scaffold can be adjusted by varying the structure of
TPMS to match the mechanical property of tissue at the site of implan-
tation [1]. TPMS can easily be processed to form a variety of shapes
and sizes. These all features make TPMS an excellent structure to use
as a scaffold for tissue engineering applications [32–34]. Lattice_Karak
allows the researchers to generate a TPMS lattice scaffold for tissue
engineering.

2



S.K.K. Raju and P.S. Onkar Software Impacts 14 (2022) 100425

Fig. 2. UI of Lattice_Karak.

Fig. 3. Features of Lattice_Karak.

The Scaffolds for tissue engineering designed in the papers such as
[24], [35–43] can be designed using Lattice_Karak. Lattice_Karak will
also provide more features in developing scaffolds due to its features
like Hybridization and Cell size grading.

The advent of high computing power requires sophisticated methods
to remove heat so that electronics do not get damaged [44]. TPMS can
act as an excellent heat sink due to its high surface area, especially
the hierarchical TPMS can be used due to more surface area [45–
47]. Lattice_Karak can quickly generate hierarchical TPMS lattice. Lat-
tice_Karak allows the creation of the state of the art heatsinks. The
Heatsinks and Heat Exchangers developed in the papers such as [48–
51] can be generated using Lattice_Karak.

Lattice_Karak was used to develop energy absorption structures
in our lab. Lattice_Karak was also used to generate lattice structures
for lightweight applications, and we manufacture them using additive

manufacturing equipment in our lab. The output file of Lattice_Karak
is an STL file, a defacto input format for additive manufacturing [52].

Lattice_Karak will have a significant influence on multidisciplinary
studies. Due to the multidisciplinary properties of TPMS [25].

4. Limitations

Lattice_Karak cannot fill an object with a TPMS lattice inside it.
Lattice_Karak cannot create a closed heat exchanger.

5. Conclusions and future improvements

This paper gives an open-source software for generating TPMS
lattice structures. It has all the functions and capabilities for generating
functionally graded TPMS. The software helps students & researchers
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to use TPMS in various applications without spending a great extent
of time generating TPMS. The user-friendly GUI helps easy usage of
Lattice_Karak even for the person unfamiliar with the design of TPMS.
Lattice_Karak is all in one solution for generating TPMS lattice for ap-
plications like aerospace, catalysts, implants, tissue engineering, energy
absorption, and lightweighting.

In future, the software will be updated to fill an entire complex
object with a TPMS lattice. Even a feature for including the Finite
element analysis will be added to the software so that Lattice_Karak will
be a complete package for generating lattice structures and performing
computational experiments.
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