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Abstract—Lattices possess elegant mathematical properties
which have been previously used in the literature to show that
structured codes can be efficient in a variety of communication
scenarios, including coding for the additive white Gaussian noise
(AWGN) channel, dirty-paper channel, Wyner-Ziv coding, coding
for relay networks and so forth. We consider the family of single-
transmitter multiple-receiver Gaussian channels where the source
transmits a set of common messages to all the receivers (multicast
scenario), and each receiver has coded side information, i.e., prior
information in the form of linear combinations of the messages.
This channel model is motivated by applications to multi-terminal
networks where the nodes may have access to coded versions of
the messages from previous signal hops or through orthogonal
channels. The capacity of this channel is known and follows from
the work of Tuncel (2006), which is based on random coding
arguments. In this paper, following the approach of Erez and
Zamir, we design lattice codes for this family of channels when
the source messages are symbols from a finite field Fp of prime
size. Our coding scheme utilizes Construction A lattices designed
over the same prime field Fp, and uses algebraic binning at the
decoders to expurgate the channel code and obtain good lattice
subcodes, for every possible set of linear combinations available
as side information. The achievable rate of our coding scheme is
a function of the size p of underlying prime field, and approaches
the capacity as p tends to infinity.

Index Terms—Capacity, Construction A, Gaussian broadcast
channel, lattice, multicast, side information, structured codes.

I. INTRODUCTION

INFORMATION-theoretic results often rely on random

coding arguments to prove the existence of good codes.

Usually, the codebook is constructed by randomly choosing

the components of each codeword independently and identi-

cally from a judiciously chosen probability distribution. While

this technique is powerful, the resulting codebooks do not

exhibit any structure that may be of practical interest. One

such desirable structure is linearity, which allows complexity

reductions at the encoder and decoder by utilizing efficient

algebraic processing techniques. Further, in certain communi-

cation scenarios, coding schemes based on linear codes yield a

larger achievable rate region than random code ensembles, as
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was shown by Körner and Marton [1] for a distributed source

coding problem. Structured coding schemes have been widely

studied in the literature, especially for communications in the

presence of side information and in multi-terminal networks.

For an overview of structured coding schemes we refer the

reader to [2], [3] and the references therein.

For communication in the wireless domain, structured codes

can be obtained by choosing finite subsets of points from

lattices [2], [4]–[6]. A lattice is an infinite discrete set of

points in the Euclidean space that are regularly arranged and

are closed under addition. Codes based on lattices, known

as (nested) lattice codes or Voronoi codes, are the analogues

of linear codes in wireless communications. Efficient lattice

based strategies are known for a variety of communication sce-

narios, such as for achieving the capacity of the point-to-point

additive white Gaussian noise (AWGN) channel [7]–[11], for

dirty-paper coding [2], [12], the Wyner–Ziv problem [2] and

communication in relay networks [13]–[16], to name only a

few.

In this paper we present good lattice strategies for com-

munication in common message Gaussian broadcast chan-

nels, which we refer to as the multicast channel, where

receivers have prior side information about the messages being

transmitted. In particular, we assume that the transmitter is

multicasting K message symbols w1, . . . , wK from a finite

field Fp, of prime size p, to all the receivers, and each

receiver may have coded side information about the messages:

the prior knowledge of the values of (possibly multiple) Fp-

linear combinations of w1, . . . , wK . The number of linear

combinations available as side information and the coefficients

of these linear combinations can differ from one receiver

to the next. The capacity of this channel is known and

follows from the results of Tuncel [17], where the achievability

part utilizes an ensemble of codebooks generated using the

Gaussian distribution.

The multiuser channel considered in this paper is a noisy

version of a simple special case of index coding [18]–[20].

The index coding problem considers a noiseless broadcast link

where each receiver demands a subset of the source messages

and knows the values of some other subset as side information.

A generalization of the index coding problem in which the

receivers have access to linear combinations of messages

was studied recently in [21], [22]. The specific instance of

index coding where each receiver demands all the messages

from the source corresponds to a noiseless multicast chan-

nel and has a simple optimum solution based on maximum
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distance separable (MDS) codes [23]. When the channel is

noisy, capacity-achieving coding schemes based on structured

codes are not available. In this paper we design lattice-based

strategies for multicasting over the AWGN channel where

the side information at the receivers is in the form of linear

combinations of source messages.

The case of Gaussian multicast channel with coded side

information is motivated by applications to multi-terminal

communication networks. It is known that signal interference

in wireless channels can be harnessed by decoding linear

combinations of transmit messages instead of either treating

interference as noise or decoding interference along with the

intended message [14], [15]. When such a technique is used in

a mutli-hop communication protocol, one encounters receivers

that have coded side information obtained from transmissions

in the previous phases. Similarly, in a network that consists of

both wired and wireless channels, the symbols received from

wired links can be utilized as side information for decoding

the wireless signals. If a linear network code is used in the

wired part of the network, then the side information is in the

form of linear combinations of the source messages.

Example 1 (Communciation in relay networks). Consider a

wireless network with two base stations BS1 and BS2, that

hold message symbols w1 and w2, respectively. The base

stations are required to multicast w1 and w2 to four user

nodes U1, . . . ,U4 through the relay node R, see Fig. 1. In

the first phase of the protocol, BS1 and BS2 encode the data

symbols w1 and w2, and transmit the resulting codewords

simultaneously. By using the decoding technique of compute-

and-forward [15], U3 reliably decodes some linear combi-

nation s1w1 + s2w2, s1, s2 ∈ Fp, from the received noisy

superposition of the two transmit signals. On the other hand,

R has a higher signal-to-noise ratio and successfully decodes

both w1 and w2 by behaving as a multiple-access receiver.

Further, there is no signal interference at U1 and U2, and these

two nodes reliably decode w1 and w2, respectively.

We observe that the second phase of the protocol is a

common message broadcast channel with coded side infor-

mation at the receivers: the relay needs to multicast w1, w2

to four user nodes, the first three users U1,U2,U3 have prior

knowledge of the linear combinations w1 + 0w2, 0w1 + w2

and s1w1 + s2w2, respectively, while the fourth user has no

such side information.

Example 2 (Wireless overlay for wired networks). Assume

a network of noiseless wired links in the form of a directed

acyclic graph, where the source node vs desires to multicast K
independent messages w1, . . . , wK ∈ Fp to a set of destination

nodes D. The wireline network employs a traditional (scalar)

linear network code [24]–[26], i.e., the symbol transmitted

on each outgoing edge of a node is an element of Fp

generated as a linear combination of the symbols received

on its incoming edges. At every destination node vd ∈ D,

the decoder attempts to recover the K message symbols from

their Fp-linear combinations received on its incoming edges.

Recovery is possible if and only if the number of linearly

independent equations available at vd is K. It is known that

the maximum number of linearly-independent equations that

(a) Multiple-access phase: The relay R decodes both w1 and w2,
while U1,U2,U3 decode w1,w2 and s1w1 + s2w2, respectively.

(b) Multicast phase: R multicasts w1 and w2 to all four user
nodes. Three of the users have the knowledge of some linear
combination of w1 and w2, while the fourth user has no side
information.

Fig. 1. A relay network where one encounters a common message broadcast
channel with coded side information at the receivers.

can be made available at vd is min{max-flow(vd),K}, where

max-flow(vd) is the maximum number of edge-disjoint paths

from vs to vd, see [26]. It follows that multicasting is possible

if and only if max-flow(vd) ≥ K for every vd ∈ D.

Now suppose there exist destination nodes with max-flow
less than K, i.e., the communication demands are beyond the

wireline network’s capacity. A solution to meet the demands

is to broadcast a wireless signal from the source to fill the

capacity deficiency of the wired network, see Fig. 2. At

each destination, the Fp-linear combinations obtained from

the wireline network serve as side information to decode the

wireless broadcast signal.

A special case of coded side information is the Gaussian

multicast channel where each receiver has prior knowledge of

the values of some subset of the K messages. The known

capacity-achieving coding schemes for this special case are

based on random coding using i.i.d. (independent and iden-

tically distributed) codewords [17], [27]–[31]. Existence of

lattice based capacity-achieving coding schemes were proved
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Fig. 2. Wireless multicast as an overlay for a wired network: the source
node vs encodes w1, . . . , wK and broadcasts wirelessly to the destination
nodes v1, . . . , v4 in order to supplement the communication through the wired
network. Each destination receives (possibly multiple) Fp-linear combinations
of the source symbols through a linear (wireline) network code and uses this
information to decode the wireless signal broadcast by vs.

in [28], [32] for the special case where the number of messages

and receivers are two and each receiver has the knowledge of

one of the messages. Constructions of binary codes for this

channel were proposed in [33]–[35]. Explicit constructions of

lattice codes were given in [36], [37] that convert receiver side

information into additional apparent coding gain in the AWGN

channel. Codes based on quadrature amplitude modulation

were constructed in [38], [39]. In [32], explicit codes based

on lattices and coded modulation have been designed that

perform within a few decibels of capacity when the number

of receivers is two and each knows one of the two messages

being transmitted.

The objective of this paper is to prove that lattice codes

can achieve the capacity of the common message Gaussian

broadcast channels with coded side information. We use the

information-theoretic framework set by Erez and Zamir [8] to

this end. The proposed coding scheme uses lattices obtained by

applying Construction A to linear codes over the prime field Fp

which is the alphabet of the source messages. The achievable

rate of our lattice-based coding scheme is a function of the

prime p, and approaches the capacity of the common message

Gaussian broadcast channel as p → ∞.

Our decoding scheme involves algebraic binning [2] where

the receiver side information is used to expurgate the channel

code and obtain a lower rate subcode. The set of linear

equations available as side information may differ from one

receiver to another, and hence, each receiver must employ

a different binning scheme for the same channel code. The

coding scheme ensures that the binning performed at each

receiver produces a good lattice subcode of the transmitted

code. Following expurgation, each receiver decodes the chan-

nel output by minimum mean square error (MMSE) scaling

and quantization to an infinite lattice. The algebraic structure

of the coding scheme facilitates the performance analysis by

decomposing the original channel into multiple independent

point-to-point AWGN channels – one corresponding to each

receiver – where each of the point-to-point AWGN channels

uses a lattice code for communication. Unlike [8], where

achievability in a point-to-point AWGN channel was proved

using error exponent analysis, we provide a direct proof based

only on simple counting arguments.

As a corollary to the main result, we obtain an alternative

proof of the goodness of lattice codes in achieving the capacity

of the point-to-point AWGN channel. Previous proofs of this

result presented in [8]–[10] also use ensembles of lattices

obtained by applying Construction A to random linear codes

over a prime field Fp; see also [40], [41]. While [8] used

primes p that were exponential in the code length n, [9]

and [10] improved this result to let p grow as n1.5 and

n0.5, respectively. The corollary presented in this paper further

improves these results by enabling a choice of the prime p
which is independent of the code length n but is a function

only of the gap between the desired rate and the channel

capacity.

Lattices have been used to design powerful physical-layer

coding schemes for wireless networks consisting of multiple

sources, relays and destinations [13]–[16]. In these networks

information from the source nodes is conveyed to the des-

tination nodes through relays over multiple hops and time

slots. In each time slot, a set of nodes act as transmitters

and every other node in their range observes a linear su-

perposition of the transmitted signals perturbed by AWGN.

Lattice coding schemes for these networks are designed such

that each receiver can reliably decode the observed noisy

superposition to a linear combination of source messages

which it then proceeds to transmit in the next time slot. Every

destination node decodes its desired messages once it collects

sufficiently many linear combinations. In contrast, in this paper

we consider a single hop interference-free transmission in a

multicast channel consisting of one transmitter and multiple

destination nodes that are aided by coded side information.

Our objective is to design coding schemes that can utilize

prior knowledge at these receivers rather than exploit wireless

interference arising from multiple simultaneous transmissions,

as often experienced in relay networks.

The organization of this paper is as follows. We introduce

the channel model in Section II-A and review the relevant

background on lattices and lattice codes in Section II-B. In

Section III, we state the main theorem, and describe the

lattice code ensemble and encoding and decoding procedures.

We prove the main theorem and state a few corollaries in

Section IV, and finally, we discuss some concluding remarks

in Section V.

Notation: Matrices and column vectors are denoted by

bold upper and lower case letters, respectively. The symbol

‖ · ‖ denotes the Euclidean norm of a vector, and (·)⊺ is the

transpose of a matrix or a vector. The Kronecker product of

two matrices AAA and BBB is AAA ⊗ BBB, IIIℓ is the ℓ × ℓ identity

matrix, and 000 is the all zero matrix of appropriate dimension.

The symbol log(·) denotes logarithm to the base 2 and ln(·)
denotes logarithm to the base e. The expectation operator is

denoted by E. The symbol M\N denotes the elements in the
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set M that do not belong to the set N .

II. CHANNEL MODEL AND LATTICE PRELIMINARIES

A. Channel Model and Problem Statement

We consider a (non-fading) common message Gaussian

broadcast channel with a single transmitter and finitely many

receivers, where all terminals are equipped with single an-

tennas. The transmitter operates under an average power

constraint and the receivers are affected by additive white

Gaussian noise with possibly different noise powers. There are

K independent messages w1, . . . , wK at the transmitter that

assume values with a uniform probability distribution from

a prime finite field Fp. Each receiver desires to decode all

the K messages while having prior knowledge of the values

of some Fp-linear combinations of the messages w1, . . . , wK .

Consider a generic receiver that has access to the values um,

m = 1, . . . ,M , of the following set of M linear equations

K
∑

k=1

sm,kwk = um, m = 1, . . . ,M.

We will denote this side information configuration using the

matrix SSS = [sm,k] ∈ F
M×K
p , where each row of SSS represents

one linear equation. Any row of SSS that is linearly dependent

on the other rows represents redundant information and can be

discarded with no loss to the receiver side information, and

hence, with no loss to system performance. Hence, without

loss in generality, we will assume that the rows of SSS are lin-

early independent over Fp, i.e., rank(SSS) = M , and M < K.

Note that the values of SSS and M can be different across the

receivers. A receiver with no side information is represented

with an empty matrix for SSS (with M = 0).

A receiver in the multicast channel is completely character-

ized by its (coded) side information matrix SSS and the variance

σ2 of the additive noise. If we assume that the average transmit

power at the source is 1, then the signal-to-noise ratio at this

receiver is SNR = 1
σ2 . We will denote a receiver by the pair

(SSS, σ2), where SSS is any matrix over Fp with K columns and

linearly independent rows, and σ2 > 0. Note that uncoded

side information, i.e., the prior knowledge of the values of a

size M subset of w1, . . . , wK , is a special case, and hence, is

contained within the definition of our channel model.

Example 3. Consider a source transmitting K = 3 symbols,

w1, w2, w3, from the finite field F5 = {0, 1, 2, 3, 4}. A receiver

that has prior knowledge of the value of w2 has side informa-

tion matrix SSS =
(

0 1 0
)

. This corresponds to the equation

0w1 + 1w2 + 0w3, and the number of linearly independent

equations at this receiver is M = rank(SSS) = 1.

Now consider another receiver that has the knowledge of

the values of the following three equations: w1 + 4w2 + 3w3,

4w1 + 3w2 and 2w1 + w2 + 3w3. In matrix form, this side

information is represented by




1 4 3
4 3 0
2 1 3



 ,

where the three rows represent the three equations, in that

order. The first row of this matrix is equal to the sum (over F5)

of the second and third rows, and hence, the side information

from the first equation is redundant and can be discarded.

Since the remaining two rows are linearly independent, the

side information at this receiver can be represented by the

following matrix that consists of these two rows,

SSS =

(

4 3 0
2 1 3

)

.

The number of linearly independent equations at this receiver

is M = rank(SSS) = 2.

From elementary linear algebra we know that if the values

um of M linearly independent combinations of the variables

w1, . . . , wK are given, then the set of all possible solutions

of (w1, . . . , wK) is a coset of a (K −M) dimensional linear

subspace of F
K
p . Since the a priori probability distribution of

w1, . . . , wK is uniform, we conclude that, given the side infor-

mation values um, m = 1, . . . ,M , the probability distribution

of (w1, . . . , wK) is uniform over this coset. Using the fact that

the number of elements in the coset is pK−M , we observe

that the conditional entropy of (w1, . . . , wK) given the side

information is

H (w1, . . . , wK |u1, . . . , uM ) = log
(

pK−M
)

= (K −M) log p. (1)

Suppose we want to transmit, on the average, one realization

of (w1, . . . , wK) in every κ uses of the broadcast channel. The

transmission rate of each message is R = 1
κ log p b/dim (bits

per real dimension or bits per real channel use).

For the simplicity of exposition, we consider only the

symmetric case where all the K messages are required to

be transmitted at the same rate R. The general scenario,

where the messages are of different rates, can be reduced

to the symmetric case through rate-splitting: if there are K ′

messages with transmission rates r1, . . . , rK′ , respectively,

then by splitting each of these original sources into multiple

virtual sources, one can generate a set of K sources (K ≥ K ′)

such that their rates R1, . . . , RK are as close to each other as

required.

We will assume that the encoding at the transmitter is

performed on a block of ℓ independent realizations of the

K message symbols, i.e., the source jointly encodes K mes-

sage vectors www1, . . . ,wwwK ∈ F
ℓ
p. The transmitter uses an n-

dimensional channel code X ⊂ R
n together with a function

ρ : Fℓ
p × · · · × F

ℓ
p → X

to jointly encode the K message vectors. The number of

codewords in X is pKℓ, and we will assume that the codebook

X satisfies the per-codeword power constraint

‖xxx‖2
n

≤ 1, for all xxx ∈ X . (2)

The average number of channel uses to transmit each re-

alization of (w1, . . . , wK) is κ = n
ℓ . The resulting rate of

transmission of each of the K messages is

log
(

pℓ
)

n
=

ℓ

n
log p b/dim.

The sum rate of all the messages is Kℓ
n log p b/dim.
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Fig. 3. Each receiver (SSS, σ2) of the multicast channel uses its own side information (SSS,uuu1, . . . ,uuuM ) to expurgate the channel code X and obtain a
subcode X (SSS,uuu1, . . . ,uuuM ). Note that the resulting subcodes can be different across the receivers. In order to achieve the capacity of the multicast channel,
we require that each of these expurgated codes be good for channel coding over the point-to-point AWGN channel.

The side information at (SSS, σ2) over a block of ℓ realizations

of the K message symbols is of the form
∑K

k=1 sm,kwwwk =
uuum, m = 1, . . . ,M , where M = rank(SSS) and uuum ∈ F

ℓ
p.

This side information allows the receiver to conclude that the

transmitted codeword must belong to the following subcode

X (SSS,uuu1, . . . ,uuuM ) of X ,

{

ρ(www1, . . . ,wwwK)
∣

∣

∣
www1, . . . ,wwwK ∈ F

ℓ
p,

K
∑

k=1

sm,kwwwk = uuum for m = 1, . . . ,M
}

. (3)

The optimal decoder at (SSS, σ2) decodes the channel output

vector to the nearest codeword x̂̂x̂x of this subcode, and the error

probability at this receiver is the probability that the estimated

message tuple ρ−1(x̂̂x̂x) is not equal to the transmit message

(www1, . . . ,wwwK). In order to achieve the optimal performance at

a given receiver (SSS, σ2), we thus require that the expurgated

code X (SSS,uuu1, . . . ,uuuM ) be a good channel code for the point-

to-point AWGN channel. In the multicast channel that consists

of multiple receivers, the side information matrix SSS can vary

from one receiver to the next, and hence, the expurgated codes

can be different at each receiver, see Fig. 3. Hence, a capacity-

achieving channel code X is such that the resulting expurgated

code at every receiver is a good channel code for the AWGN

channel.

Problem Statement

Problem Setup: Consider a common message Gaussian

broadcast channel with single transmitter and N receivers.

The transmitter desires to multicast K independent mes-

sages from a prime field Fp subject to the unit power

constraint (2) on the transmit codeword. Each of the N
receivers (SSS1, σ

2
1), . . . , (SSSN , σ2

N ) has coded side information

corresponding to the side information matrix SSSi ∈ F
Mi×K
p ,

i = 1, . . . , N , and experiences an additive white Gaussian

noise of variance σ2
i , i = 1, . . . , N . Without loss of generality,

we assume that each of the side information matrices SSSi has

linearly independent rows, i.e., rank(SSSi) = Mi. Using the

information-theoretic arguments of [17], which is based on the

average performance of an ensemble of randomly generated

codebooks, it can be shown that the (symmetric) capacity of
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this multicast channel is

C = min
i∈{1,...,N}

1

(K −Mi)
· 1
2
log2

(

1 +
1

σ2
i

)

. (4)

The proof of this result is similar to the proof of Theorem 6

of [17] which considers a discrete memoryless common mes-

sage broadcast channel where the side information at each

receiver is, in general, a random variable jointly distributed

with the source messages (w1, . . . , wK). A sketch of the proof

that C is the capacity for the Gaussian multicast channel

with coded side information at the receivers is given in the

appendix.

Problem Statement: Let ǫ, ζ > 0 be fixed positive real

numbers and let R ≤ C − ǫ. We seek to determine whether

there exists a lattice code for the multicast channel with coded

side information at the receivers that transmits each of the K
messages with rate at least (R − ǫ) such that the probability

of decoding error at each of the N receivers is at the most ζ.

In this paper we answer the above stated problem in the

affirmative under the assumption that the prime field Fp is

sufficiently large. In particular, we prove the existence of a

lattice code with the said properties when the prime p satisfies

the inequality p ≥ max
{

22KR, (2
ǫ
4 − 1)−12−R

}

. Unlike the

capacity (4) which holds for any value of p, our result on

the optimality of lattice codes requires that p vary with the

tolerance ǫ. The larger the gap to capacity ǫ, the smaller is the

size requirement on the prime field Fp.

B. Lattice Preliminaries

We now briefly recall the necessary properties of lattices

and lattice codes, and establish our notation and terminology.

The material presented in this section consists of standard

ingredients used in the literature, and is mainly based on [5],

[8], [42], [43].

1) Lattices and Lattice Codes: Throughout this manuscript

we consider n-dimensional lattices Λ with full-rank generator

matrix. The closest vector lattice quantizer corresponding to Λ
is denoted by the function QΛ : Rn → Λ, and the volume of

its (fundamental) Voronoi region V(Λ) = Q−1
Λ (000) is denoted

by Vol(Λ). For any λλλ ∈ Λ, λλλ + V(Λ) is the set of all points

in R
n that are mapped to λλλ under QΛ, and it has the same

volume Vol(Λ) as V(Λ). For any two distinct lattice points

λλλ1 6= λλλ2, the sets λλλ1 + V(Λ) and λλλ2 + V(Λ) are disjoint.

The modulo-Λ operation, defined as [xxx] mod Λ = xxx−QΛ(xxx),
satisfies the following properties for all xxx,xxx1,xxx2 ∈ R

n

[xxx] mod Λ ∈ V(Λ),
[xxx1 + xxx2] mod Λ =

[

[xxx1] mod Λ + xxx2

]

mod Λ, and (5)

[xxx] mod Λ = 000 if and only if xxx ∈ Λ. (6)

We will denote the n-dimensional ball of radius r with center

sss ∈ R
n as B(sss, r), i.e. B(sss, r) = {xxx ∈ R

n | ‖xxx− sss‖ ≤ r}, and

the volume of a unit-radius ball in n dimensions by Vn. It

follows that the volume of B(sss, r) equals Vnr
n. The covering

radius of the lattice Λ is denoted by rcov(Λ) and the effective

radius of Λ by reff(Λ). We recall that reff(Λ) ≤ rcov(Λ) and

reff(Λ) =

(

Vol(Λ)

Vn

)
1
n

. (7)

Rogers [44] showed that for every dimension n there exists a

lattice Λ such that

rcov(Λ)

reff(Λ)
≤
(

c n (lnn)
1
2 log 2πe

)
1
n

, (8)

where c is a constant. Note that the right hand side of the

above inequality converges to 1 as n → ∞. A sequence of

lattices of increasing dimension n is said to be Rogers-good

if rcov
reff

→ 1. Rogers’ result (8) shows that such a sequence

exists (see also [45]).

Let Λc ⊂ Λ be a pair of nested lattices and ddd ∈ V(Λc)
be a fixed vector. A (nested) lattice code or a Voronoi code

(Λ− ddd)/Λc is the set (Λ− ddd) mod Λc obtained by applying

the mod Λc operation on the points of the lattice translate

Λ − ddd. The code consists of all the points in Λ − ddd that lie

within the Voronoi region of Λc, i.e., (Λ − ddd) ∩ V(Λc). The

lattice Λc is called the coarse lattice or the shaping lattice,

Λ is called the fine lattice or the coding lattice, and ddd is the

dither vector. The cardinality of this code is |(Λ − ddd)/Λc| =
|Λ/Λc| = Vol(Λc)

Vol(Λ) , and every codeword point xxx ∈ (Λ− ddd)/Λc

satisfies ‖xxx‖ ≤ rcov(Λc). Note that Λ/Λc is a lattice code with

zero dither.

2) Lattice Codes from Linear Codes over a Finite Field:

In this subsection we briefly describe the method proposed

in [15] to construct a pair Λc ⊂ Λ of nested lattices, and

recall its relevant properties. This construction uses a coarse

lattice Λc and a linear code C to generate a fine lattice Λ such

that |Λ/Λc| = |C |.
Let g(·) denote the natural map that embeds Fp =

{0, 1, . . . , p − 1} into Z. When applied to vectors, g(·) acts

independently on each component of a vector. Let C ⊂ F
n
p be

a linear code of rank L, 1 ≤ L ≤ n,

C =
{

GwGwGw |www ∈ F
L
p

}

,

where GGG is the n×L generator matrix with full column rank,

and www is the message encoded to C . The set g(C ) + pZn

obtained by tiling copies of g(C ) at every vector of pZn is

a lattice in R
n and is known as the Construction A lattice

of the linear code C [5]. Note that the number of points in

g(C )+pZn contained in the Voronoi region of the lattice pZn

is |C | = pL. We obtain Λ by scaling down the Construction A

lattice by p−1 and transforming it by the generator matrix BBBc

of Λc

Λ = BBBcp
−1 (g(C ) + pZn) = BBBcp

−1g(C ) +BBBcZ
n

= BBBcp
−1g(C ) + Λc.

Since C contains the all zero codeword, it follows that

Λ ⊃ BBBcp
−1g(000) + Λc = Λc. We observe that applying the

transformation BBBcp
−1 to the lattice pZn (instead of the lattice

g(C ) + pZn) generates Λc (instead of Λ). Hence, Λ/Λc has

the same algebraic structure as that of (g(C ) + pZn)/pZn,

which in turn, is equivalent to the linear code C . In particular,

|Λ/Λc| = |C | = pL. (9)

The following lemma provides an explicit bijection between

the message vectors www ∈ F
L
p encoded by C and the points in

the lattice code Λ/Λc. This result, which is originally from [15,

Lemma 5], is proved below for completeness.
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Lemma 1. The map www →
[

BBBc p
−1g (GwGwGw)

]

mod Λc is a

bijection between F
L
p and Λ/Λc.

Proof: From (9), we know that |Λ/Λc| = |FL
p | = pL.

Hence, it only remains to show that no two distinct messages

wwwA and wwwB are mapped to the same point in Λ/Λc. As-

suming the contrary, we have
[

BBBcp
−1g(GwGwGwA)

]

mod Λc =
[

BBBcp
−1g(GwGwGwB)

]

mod Λc. Using (5) and (6), we obtain

BBBcp
−1g(GwGwGwA)−BBBcp

−1g(GwGwGwB) ∈ Λc.

Multiplying both sides by pBBB−1
c , we obtain g(GwGwGwA) −

g(GwGwGwB) ∈ pZn. Reducing this result modulo-p, we have

GwGwGwA−GwGwGwB = 000 over Fp. Since this implies GGG(wwwA−wwwB) = 000
over Fp while wwwA −wwwB 6= 000 and GGG has full column rank, we

have arrived at a contradiction.

In order to prove capacity achievability, we will rely on

random coding arguments to show the existence of a good

choice of GGG. As in [15], we will assume that GGG is a random

matrix chosen with uniform probability distribution on F
n×L
p .

The following result is useful in upper bounding the decoding

error probability over the ensemble of random codes.

Lemma 2 ([15], [41], [45]). Let www ∈ F
L
p \{000} be a given

non-zero vector, and let GGG be uniformly distributed in F
n×L
p .

Then
[

BBBcp
−1g(GwGwGw)

]

mod Λc is uniformly distributed over
(

p−1Λc

)

∩ V(Λc), i.e., over the lattice code p−1Λc/Λc.

III. LATTICE CODES FOR THE COMMON MESSAGE

GAUSSIAN BROADCAST CHANNEL WITH CODED SIDE

INFORMATION

We will assume that the number of messages K and a design

rate R are given, and show that there exist good lattice codes of

sufficiently large dimension n that encode K messages over an

appropriately chosen prime field Fp at rates close to R b/dim.

In order to rigorously state the main result, we consider a fixed

non-zero tolerance ǫ > 0 that determines the gap to capacity.

Theorem 1 (Main theorem). Let the number of messages

K, design rate R and tolerance ǫ > 0 be given. For every

sufficiently large prime integer p, there exists a sequence of

lattice codes of increasing dimension n that encode K message

vectors over Fp such that the rate of transmission of each

message is at least (R− ǫ) b/dim and the probability of error

at a receiver (SSS, σ2) decays exponentially in n if

1

2
log

(

1 +
1

σ2

)

≥ (R+ ǫ) (K − rank(SSS)). (10)

To prove Theorem 1, we utilize the lattice code ensemble

introduced in [15]; see Section II-B2 of this paper. A Rogers’

good lattice is chosen as the coarse lattice Λc. The fine lattice

Λ is obtained from the generator matrix BBBc of the coarse lattice

Λc and a linear code C over a large enough prime field Fp

using the construction described in Section II-B2.

The multicast channel considered in Theorem 1 reduces

to the traditional single-user AWGN channel if the number

of messages K = 1, and the multicast channel consists of

one receiver with an empty side information matrix SSS, i.e.,

rank(SSS) = 0. Hence, Theorem 1 provides an alternative proof

of the existence of lattice codes that achieve the capacity of

the single-user AWGN channel, and we have the following

corollary.

Corollary 1. Consider a single user AWGN channel where

the input is subject to unit power constraint and the noise

variance at the receiver is σ2. Let ǫ > 0 be any constant and

let

R ≤ 1

2
log

(

1 +
1

σ2

)

− ǫ.

For every sufficiently large prime integer p, there exists a se-

quence of lattice codes of increasing dimension n constructed

from linear codes over Fp (as described in Section II-B2)

such that the rate of each lattice code is at least R − ǫ
and the probability of decoding error at the receiver decays

exponentially in n.

The relation of Corollary 1 to existing results on the

optimality of Construction A based lattice codes in single-user

AWGN channel is described in detail in Section IV-D2.

In the rest of this section we describe the construction

of random lattice codes, and the encoding and decoding

operations used to prove Theorem 1. We provide the proof

of the Theorem 1 in Section IV.

A. Random lattice code ensemble

1) Prime p: Given the design rate R, number of messages

K and tolerance ǫ > 0, we require p to satisfy the constraint

p ≥ max
{

22KR, (2
ǫ
4 − 1)−12−R

}

. (11)

The coding schemes of this paper are based on Construction A

lattices which are obtained by lifting linear codes over Fp to

the Euclidean space R
n. The generator matrices of these Fp-

linear codes are constructed randomly, and the first constraint

in (11), viz. p ≥ 22KR, will allow us to show that these

randomly constructed generator matrices are full-ranked with

probability close to 1.

The proof of Theorem 1 given in Section IV involves the

derivation of an upper bound on the probability of decoding

error averaged over an ensemble of lattice codes derived from

Construction A. We will use the inequality p ≥ (2
ǫ
4 −1)−12−R

from (11) to show that this upper bound is exponentially small

in dimension n. Note that this inequality implies

p ≥ (2
ǫ
4 − 1)−12−(R+ǫ)(K−M)

for any integer M satisfying 0 ≤ M ≤ K − 1. Rearranging

the terms in the above inequality we obtain

1

p 2(R+ǫ)(K−M)
+ 1 ≤ 2

ǫ
4 . (12)

2) Message length ℓ: Once p is fixed, we choose ℓ as the

largest integer that satisfies

ℓ

n
log p ≤ R. (13)

The left-hand side in the above inequality is the actual rate at

which the lattice code encodes each message, while R is the

design rate. The difference between the two is at the most

ℓ+ 1

n
log p− ℓ

n
log p =

log p

n
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Fig. 4. The encoding operation at the transmitter that maps the messages www1, . . . ,wwwK to a point in (Λ− ddd)/Λc.

which converges to 0 as n → ∞. It follows that the code rate
ℓ
n log2 p tends to the design rate R as n → ∞, and hence,
ℓ
n log2 p ≥ R− ǫ for all sufficiently large n.

3) Coarse Lattice Λc: From (8) in Section II-B1, we know

that for a given ǫ > 0 and for all sufficiently large n, there

exists an n-dimensional lattice Λc such that

rcov(Λc)

reff(Λc)
≤ 2

ǫ
4 .

We will choose such a Rogers-good lattice as Λc, and scale it

so that

rcov(Λc) =
√
n.

It follows that reff(Λc) ≥ 2−
ǫ
4 rcov(Λc) = 2−

ǫ
4
√
n. Using the

definition of the effective radius (7), we arrive at the following

lower bound on the volume of the Voronoi region of Λc

Vol(Λc) = Vn r
n
eff(Λc) ≥ Vn n

n
2 2−

nǫ
4 . (14)

4) Fine Lattice Λ: The fine lattice is obtained by the

construction of [15] described in Section II-B2. The length

of the linear code C is n, and its rank L = Kℓ is the number

of message symbols to be encoded by the lattice code. Note

that this requires that Kℓ < n be true. Using (13) and the

property p ≥ 22KR, we have

Kℓ ≤ nKR

log p
≤ nKR

2KR
=

n

2
(15)

which ensures that Kℓ < n. If GGG ∈ F
n×Kℓ
p is the generator

matrix of C , then Λ = BBBcp
−1g(C ) + Λc. We will choose GGG

uniformly random over the set of all n×Kℓ matrices of Fp,

resulting in a random ensemble of fine lattices Λ.

5) Dither vector ddd: We will rely on random coding argu-

ments to prove the existence of a translate ddd such that the code

(Λ−ddd)/Λc performs close to capacity. We will assume that ddd
is distributed uniformly in V(Λc) and is chosen independently

of GGG. This random dither ddd is usually viewed as a common

randomness available at the transmitter and the receivers [8].

Note that ‖ddd‖ ≤ rcov(Λc) =
√
n.

B. Encoding

We will now describe the encoding operation ρ at the

transmitter that maps the message vectors (www1, . . . ,wwwK) ∈
F
ℓ
p × · · · × F

ℓ
p to a codeword xxx ∈ (Λ− ddd)/Λc. The encoder

first concatenates the K messages into the vector www =
(

www⊺

1 , · · · ,www⊺

K

)⊺

, encodes www to a codeword in the linear code

C , and maps it to a point ttt ∈ R
n using Construction A as

follows

ttt =
[

BBBc p
−1g (GwGwGw)

]

mod Λc. (16)

From the discussion in Section III-A, we know that

BBBcp
−1g(GwGwGw) ∈ Λ, and hence, ttt ∈ Λ/Λc. Finally, the transmit

codeword xxx is generated by dithering ttt,

xxx = [ttt− ddd] mod Λc =
[

BBBc p
−1g (GwGwGw)− ddd

]

mod Λc. (17)

This sequence of operations is illustrated in Fig. 4. Note that

since rcov(Λc) =
√
n, each codeword xxx satisfies ‖xxx‖ ≤

rcov(Λc) =
√
n, and hence, the power constraint ‖xxx‖2/n ≤ 1.

It is straightforward to show that the dithering operation (17)

is a one-to-one correspondence between ttt ∈ Λ/Λc and

xxx ∈ (Λ−ddd)/Λc. Further, from Lemma 1 we know that (16) is

a bijection between the message space F
Kℓ
p and the undithered

codewords Λ/Λc if GGG is full rank. Hence, to ensure that no two

messages are mapped to the same codeword, we only require

that the random matrix GGG be full rank. It can be shown that

(see [45])

P (rank(GGG) < Kℓ) ≤ p−(n−Kℓ).

We will only require a relaxation based on the above inequal-

ity. From (15), we have Kℓ ≤ n
2 . Similarly, since p is a prime

integer, we have p ≥ 2, and hence,

P (rank(GGG) < Kℓ) ≤ 2−(n−
n
2 ) = 2−

n
2 . (18)

C. Decoding

The receiver employs a two stage decoder: in the first stage

the receiver identifies the subcode of (Λ−ddd)/Λc corresponding

to the available side information, and in the second stage it

decodes the channel output to a point in this subcode.

1) Using Side Information to Expurgate Codewords: The

side information at (SSS, σ2) over a block of ℓ realizations of

the K messages is of the form

K
∑

k=1

sm,kwwwk = uuum, m = 1, . . . ,M. (19)

The receiver desires to identify the set of all possible values

of the message vector www =
(

www⊺

1 , · · · ,www⊺

K

)⊺

that satisfy (19).

Using the notation uuu =
(

uuu⊺

1 , · · · ,uuu⊺

M

)

⊺ ∈ F
Mℓ
p , the side

information (19) can be rewritten compactly in terms of www
and uuu as

(SSS ⊗ IIIℓ)www = uuu, (20)
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where ⊗ denotes the Kronecker product of matrices and IIIℓ is

the ℓ×ℓ identity matrix over Fp. Observe that (20) is an under-

determined system of linear equations, and the set of solutions

is a coset of the null space of SSS⊗IIIℓ. Let ASASAS ∈ F
Kℓ×(K−M)ℓ
p

be a rank (K −M)ℓ matrix such that (SSS ⊗ IIIℓ)ASASAS = 000, i.e.,

the columns of ASASAS form a basis of the null space of SSS ⊗ IIIℓ.
Then the set of all solutions to (20) is

vvv +
{

ASw̃ASw̃ASw̃ | w̃̃w̃w ∈ F
(K−M)ℓ
p

}

, (21)

where vvv is the coset leader. From (16), we conclude that the

undithered codeword must be of the form

ttt =
[

BBBcp
−1g (GvGvGv +GASw̃GASw̃GASw̃)

]

mod Λc, w̃̃w̃w ∈ F
(K−M)ℓ
p .

(22)

We will now use the property of g(·) that for any aaa,bbb ∈ F
n
p ,

g(aaa+ bbb) = g(aaa) + g(bbb) mod p.

Therefore, g(GvGvGv + GASw̃GASw̃GASw̃) = g(GvGvGv) + g(GASw̃GASw̃GASw̃) + pccc for

some ccc ∈ Z
n. Using this in (22), we obtain

ttt =
[

BBBcp
−1g (GvGvGv) +BBBcp

−1g (GASw̃GASw̃GASw̃) +BBBcccc
]

mod Λc

=
[

BBBcp
−1g (GvGvGv) +

[

BBBcp
−1g (GASw̃GASw̃GASw̃)

]

mod Λc

+ [BBBcccc ] mod Λc

]

mod Λc

=
[

BBBcp
−1g (GvGvGv) +

[

BBBcp
−1g (GASw̃GASw̃GASw̃)

]

mod Λc

]

mod Λc,
(23)

where we have used (5), (6) and the fact that BBBcccc ∈ Λc. Since

the receiver knows vvv, the component of ttt unavailable from the

side information is

t̃̃t̃t =
[

BBBcp
−1g (GASw̃GASw̃GASw̃)

]

mod Λc. (24)

Let CSSS ⊂ F
n
p be the subcode of C with generator matrix GASGASGAS ,

and ΛSSS be the lattice obtained by applying Construction A to

CSSS and transforming it by BBBcp
−1, i.e.,

ΛSSS = BBBcp
−1g(CSSS) + Λc.

Using GASGASGAS instead of GGG in Lemma 1, we see that t̃̃t̃t ∈ ΛSSS/Λc

and that (24) is a one-to-one correspondence between w̃̃w̃w ∈
F
(K−M)ℓ
p and t̃̃t̃t ∈ ΛSSS/Λc as long as GASGASGAS is full rank. Together

with (17), (23), and (24), we conclude that the transmit vector

xxx belongs to the following lattice subcode of (Λ− ddd)/Λc,
(

ΛSSS +BBBcp
−1g (GvGvGv)− ddd

)

/Λc =
{[

t̃̃t̃t+BBBcp
−1g(GvGvGv)− ddd

]

mod Λc

∣

∣ t̃̃t̃t ∈ ΛSSS/Λc

}

.
(25)

The decoding problem at the second stage is to estimate t̃̃t̃t, or

equivalently w̃̃w̃w, from the channel output.

2) MMSE Scaling and Lattice Decoding: Let the channel

output at the receiver (SSS, σ2) be yyy = xxx + nnn, where nnn
is a Gaussian vector with zero mean and variance σ2 per

dimension. The received vector is scaled by the coefficient

α, resulting in

αyyy = αxxx+ αnnn = xxx+ αnnn− (1− α)xxx. (26)

This MMSE pre-processing improves the effective signal-to-

noise ratio of the system beyond the channel signal-to-noise

ratio 1
σ2 and allows the lattice decoder to perform close to

capacity [8], [46]. Let

zzz = αnnn− (1− α)xxx

be the effective noise term in (26). Using the facts that xxx and

nnn are independent, ‖xxx‖ ≤ √
n, and nnn has zero mean, we have

E ‖zzz‖2 = (1− α)2 E ‖xxx‖2 + α2
E ‖nnn‖2 − 2α(1− α)Exxx⊺nnn

≤ (1− α)2 n+ α2σ2 n,

where E is the expectation operator. The choice of

α = 1/(1 + σ2) minimizes this upper bound and yields

E ‖zzz‖2 ≤ nσ2/(1 + σ2), which is less than the Gaussian noise

power E‖nnn‖2 = nσ2. In the rest of the paper we will assume

that α = 1/(1 + σ2) and use the notation

σ2
zzz =

σ2

1 + σ2
. (27)

The lower bound (10) on signal-to-noise ratio can be rewritten

in terms of σ2
zzz as

σ2
zzz ≤ 2−2(R+ǫ)(K−M). (28)

From (25), we know that xxx = t̃̃t̃t +BBBcp
−1g(GvGvGv) − ddd + λλλc

for some λλλc ∈ Λc. After MMSE scaling, the decoder removes

the contributions of the dither ddd and the offset BBBcp
−1g(GvGvGv)

from αyyy to obtain

y′y′y′ = αyyy −BBBcp
−1g(GvGvGv) + ddd = t̃̃t̃t+ λλλc + zzz.

The decoder proceeds by quantizing y′y′y′ to the lattice ΛSSS and

reducing the result modulo Λc. If the noise zzz is sufficiently

‘small’, then this sequence of operations will yield

[

QΛSSS
(y′y′y′)

]

mod Λc =
[

QΛSSS
(t̃̃t̃t+ λλλc + zzz)

]

mod Λc

=
[

t̃̃t̃t+ λλλc

]

mod Λc = t̃̃t̃t. (29)

Given t̃̃t̃t, the receiver uses (23) to obtain the undithered

codeword ttt, and hence the message vector (www⊺

1 , . . . ,www
⊺

K)⊺, as

ttt =
[

BBBcp
−1g(GvGvGv) + t̃̃t̃t

]

mod Λc. To conclude, the decoder

obtains the estimate t̂̂t̂t of the undithered codeword ttt from the

received vector yyy as

t̂̂t̂t =
[

[

QΛSSS
(y′y′y′)

]

mod Λc +BBBcp
−1g(GvGvGv)

]

mod Λc

=
[

QΛSSS
(y′y′y′) +BBBcp

−1g(GvGvGv)
]

mod Λc

=
[

QΛSSS

(

αyyy −BBBcp
−1g(GvGvGv) + ddd

)

+BBBcp
−1g(GvGvGv)

]

mod Λc

which shows that the mod Λc operation arising from (29) can

be ignored. The steps involved in the decoding operation are

illustrated in Fig. 5.

Note that the effective information vector w̃̃w̃w is not encoded

in the point t̃̃t̃t ∈ ΛSSS , but is encoded in the coset t̃̃t̃t + Λc.

The error event for this decoder is QΛSSS
(y′y′y′) /∈ t̃̃t̃t + Λc, i.e.,

QΛSSS
(t̃̃t̃t+ λλλc + zzz) /∈ t̃̃t̃t+ Λc, which is equivalent to the event

QΛSSS
(zzz) /∈ Λc. Hence, a decoding error occurs if and only if

zzz is closer to a point in ΛSSS\Λc than any vector in the coarse

lattice Λc, i.e., if and only if

E : QΛSSS
(zzz) ∈ ΛSSS\Λc. (30)
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Fig. 5. The decoding operation at the receiver (SSS, σ2). The vector vvv and the lattice ΛSSS are determined using the side information available at the receiver.

IV. PROOF OF MAIN THEOREM

In this section we first state and prove two technical lemmas

(Section IV-A), use these lemmas to show that the error

probability at a given fixed receiver (SSS, σ2) is small (Sec-

tion IV-B), and then complete the proof of the main theorem

by showing that the error probability at every receiver of

the multicast channel is simultaneously small (Section IV-C).

Finally, we state some important corollaries of the main

theorem (Section IV-D).

A. Technical Lemmas

The first result, which is a direct generalization of [9,

Lemma 1] and [10, Lemma 2.3], gives an upper bound on

the number of lattice points lying inside a ball.

Lemma 3. For any sss ∈ R
n, r > 0 and any n-dimensional

lattice Λc,

|Λc ∩ B(sss, r)| ≤ Vn

Vol(Λc)
(rcov(Λc) + r)

n
,

where Vn is the volume of a unit ball in R
n.

Proof: Let R = (Λc ∩ B(sss, r)) + V(Λc) be the set of

all points in R
n that are mapped to one of the points in

Λc ∩ B(sss, r) by the lattice quantizer QΛc . Since R is a union

of the pairwise disjoint sets λλλ+V(Λc), λλλ ∈ Λc ∩B(sss, r), and

since each of these sets has volume Vol(Λc), we have

Vol(R) = Vol(Λc) |Λc ∩ B(sss, r)|. (31)

Using the fact that V(Λc) ⊂ B(000, rcov(Λc)), we have

R = (Λc ∩ B(sss, r)) + V(Λc) ⊂ B(sss, r) + V(Λc)

⊂ B(sss, r) + B(000, rcov(Λc)) ⊂ B(sss, r + rcov(Λc)),

where the last step follows from triangle inequality. Conse-

quently, we have an upper bound on the volume of R,

Vol(R) ≤ Vol (B (sss, r + rcov(Λc)) ) = Vn(r + rcov(Λc))
n.

Using this result with (31) proves the lemma.

As in [9], [10], [40], we will rely on the fact that, with

very high probability, the norm of the noise zzz is not much

larger than
√

nσ2
zzz . The probability that the effective noise zzz

is ‘large’ is exponentially small in n. The proof of this result

is given below.

Lemma 4. Let xxx be uniformly distributed in V(Λc) and δ > 0
be any positive number. Then

P
(

‖zzz‖2 > nσ2
zzz(1 + δ)

)

≤ e−
n(δ−ln(1+δ))

2 + e−
nσ2δ2

4 . (32)

Proof: We will prove (32) for every fixed realization of xxx
in V(Λc), which shows that the statement of the lemma is true

for any distribution of xxx on V(Λc). In the rest of the proof we

will assume that xxx ∈ V(Λc) is an arbitrary fixed vector and nnn
is Gaussian distributed. Using ‖xxx‖2 ≤ r2cov(Λc) = n, we have

‖zzz‖2 = ‖αnnn− (1− α)xxx‖2
= α2‖nnn‖2 + (1− α)2‖xxx‖2 − 2α(1− α)xxx⊺nnn

≤ α2‖nnn‖2 + (1− α)2n− 2α(1− α)xxx⊺nnn.

Hence, P
(

‖zzz‖2 > nσ2
zzz(1 + δ)

)

is upper bounded by

P
(

α2‖nnn‖2 + (1− α)2n− 2α(1− α)xxx⊺nnn > nσ2
zzz(1 + δ)

)

.

From the definition (27) of σ2
zzz , we have nσ2

zzz(1 + δ) =
nα2σ2(1 + δ) + n(1 − α)2(1 + δ). Hence, the above upper

bound corresponds to the event

α2‖nnn‖2 + (1− α)2n− 2α(1− α)xxx⊺nnn >

nα2σ2(1 + δ) + n(1− α)2(1 + δ). (33)

The event (33) occurs only if at least one of the following two

events occurs

EA : α2‖nnn‖2 > nα2σ2(1 + δ), or (34)

EB : (1− α)2n− 2α(1− α)xxx⊺nnn > n(1− α)2(1 + δ).

Therefore,

P(‖zzz‖2 > nσ2
zzz(1 + δ)) ≤ P(EA ∪ EB) ≤ P(EA) + P(EB).

We will now individually upper bound P(EA) and P(EB), and

thereby complete the proof.

A rearrangement of terms in (34) yields P(EA) =
P
(

‖ 1
σ nnn‖2 > n(1 + δ)

)

. This is the probability that a Gaussian

vector with unit variance per dimension lies outside the sphere

of squared radius n(1 + δ). The following is a well known

upper bound on this probability (see [47])

P(EA) ≤ e−
n(δ−ln(1+δ))

2 .

The event EB is equivalent to −2α(1−α)xxx⊺nnn > n(1−α)2δ.

Using α = 1/(1 + σ2), we can show that this is same as
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xxx⊺nnn < −nδσ2/2. Since xxx⊺nnn is a zero mean Gaussian random

variable with variance σ2‖xxx‖2, we have

P(EB) = P

(

xxx⊺nnn < −nδσ2

2

)

= Q
(

nσδ

2‖xxx‖

)

,

where Q(·) is the Gaussian tail function. Using ‖xxx‖ ≤
rcov(Λc) =

√
n and the Chernoff bound Q(y) ≤ exp(−y2/2),

we arrive at

P(EB) ≤ e−
nσ2δ2

4 .

This completes the proof.

B. Error probability at a single receiver

In this subsection we derive an upper bound on the decoding

error probability PSSS at a receiver (SSS, σ2) when averaged

over the ensemble of lattice codes generated by choosing GGG
uniformly over Fn×Kℓ

p and ddd uniformly over V(Λc).
The following result from [8], known as the Crypto lemma,

captures an important characteristic of random dithering.

Lemma 5 ([8]). Let ttt ∈ V(Λc) be any random vector. If ddd
is independent of ttt and is uniformly distributed over V(Λc),
then xxx = [ttt − ddd] mod Λc is independent of ttt and uniformly

distributed over V(Λc).

The property that the transmit vector xxx is statistically inde-

pendent of ttt implies that the effective noise zzz = αnnn−(1−α)xxx
is independent of the transmit message. This facilitates the

error probability analysis through the observation that the error

event (30) is statistically independent of t̃̃t̃t.
For distinct messages w̃̃w̃w to be mapped to distinct points t̃̃t̃t,

we require that GASGASGAS be full rank. Since ASASAS is full rank, this

is same as requiring that GGG be full rank. Apart from the event

E : QΛSSS
(zzz) ∈ ΛSSS\Λc, we assume that the decoder declares an

error whenever the event

G : rank(GGG < Kℓ)

occurs. Hence, the error probability PSSS at the receiver (SSS, σ2)
satisfies

PSSS = P(G ∪ E) ≤ P(G) + P(E). (35)

From (18), we already know that P(G) is exponentially small

in n.

Using the given design tolerance ǫ, we set δ = 2
ǫ
2 − 1,

which is positive if ǫ > 0. Let rzzz =
√

n(1 + δ)σ2
zzz be the

radius of the typical noise vector and Brzzz = B(000, rzzz). Then,

P(E) = P(zzz ∈ Brzzz ) P(E|zzz ∈ Brzzz ) + P(zzz /∈ Brzzz ) P(E|zzz /∈ Brzzz )

≤ P(E|zzz ∈ Brzzz ) + P(zzz /∈ Brzzz ). (36)

Lemma 4 provides an exponential upper bound on P(zzz /∈ Brzzz ).
In the following theorem we show that P(E|zzz ∈ Brzzz ) is also

exponentially small in n. The proof of this result uses the

technique of [9], [10] to bound the number of lattice points

lying in an n-dimensional ball.

Theorem 2. For any receiver (SSS, σ2) with 1
2 log

(

1 + 1
σ2

)

>
(R+ ǫ) (K − rank(SSS)), and for all large enough n,

P(E|zzz ∈ Brzzz ) ≤ 2−
nǫ
4

when averaged over the ensemble of random lattice codes.

Proof: From (30), we note that the decoder is in error

when zzz is closer to some coset t′t′t′ + Λc, with t′t′t′ ∈ ΛSSS/Λc

and t′t′t′ 6= 000, than any point in Λc. The number of competing

cosets is |ΛSSS/Λc \ {000}| = p(K−M)ℓ − 1, and we index them

using the non-zero vectors w′w′w′ ∈ F
(K−M)ℓ
p \{000}. To each w′w′w′,

we associate the coset corresponding to the coset leader

t′t′t′ =
[

BBBcp
−1g(GASw

′GASw
′GASw
′)
]

mod Λc. (37)

Since GGG is random, the coset leader t′t′t′ associated with a given

w′w′w′ is a random vector. Given that zzz ∈ Brzzz and 000 ∈ Λc, the

Euclidean distance between zzz and Λc is at the most ‖zzz−000‖ ≤
rzzz . Hence, for an error event to occur, there must exist a coset

t′t′t′ + Λc at a distance less than rzzz from zzz, i.e., |(t′t′t′ + Λc) ∩
B(zzz, rzzz)| 6= 0. Indexing the cosets by w′w′w′, we upper bound

P(E|zzz ∈ Brzzz ) using (38) given in the top of the next page.

The last inequality in (38) follows from the observation

111
{ ∣

∣(t′t′t′ + Λc) ∩ B(zzz, rzzz)
∣

∣ 6= 0
}

≤
∣

∣(t′t′t′ + Λc) ∩ B(zzz, rzzz)
∣

∣ ,

where 111{·} is the indicator function. Note that the expectation

operation in (38) is with respect to the random vector t′t′t′ as

well as the effective noise zzz.

The matrix ASASAS has full column rank, and hence, ASw
′ASw
′ASw
′ 6= 000

for every w′w′w′ 6= 000. Using (37) and applying Lemma 2,

we see that t′t′t′ is uniformly distributed in p−1Λc/Λc =
p−1Λc ∩ V(Λc). Further, from Lemma 5 the distribution of

t′t′t′ is independent of zzz. Hence, the probability mass function

of t′t′t′ equals |
(

p−1Λc

)

/Λc|−1 = p−n over every element of

the set
(

p−1Λc

)

/Λc. Using this result, we further upper

bound P(E|zzz ∈ Brzzz ) as in (39) in the next page, where the

last equality follows from the fact that the set of cosets
{

aaa+ Λc|aaa ∈ p−1Λc/Λc

}

form a partition of p−1Λc. Since the

number of competing w′w′w′ in (39) is less than p(K−M)ℓ, and
∣

∣p−1Λc ∩ B(zzz, rzzz)
∣

∣ = |Λc ∩ B(pzzz, przzz)|, we obtain

P(E|zzz ∈ Brzzz ) ≤ p−np(K−M)ℓ
E
(

|Λc ∩ B(pzzz, przzz)|
∣

∣zzz ∈ Brzzz

)

.

Using Lemma 3, we bound the number of lattice points inside

the ball B(pzzz, przzz), and obtain

P(E|zzz ∈ Brzzz ) ≤ p−np(K−M)ℓ Vn

Vol(Λc)
(rcov(Λc) + przzz)

n
.

Using the bounds p(K−M)ℓ ≤ 2nR(K−M), from (13);

Vol(Λc) ≥ Vn n
n
2 2−

nǫ
4 , from (14); σzzz ≤ 2−(R+ǫ)(K−M),

from (28); and the relations rcov(Λc) =
√
n,

rzzz =
√

n(1 + δ)σ2
zzz , and 1 + δ = 2

ǫ
2 , we obtain the sequence

of equalities and upper bounds leading to (40) shown in the

next page. Since K −M ≥ 1, we have 2nǫ(K−M) ≥ 2nǫ, and

hence, the upper bound (40) can be further relaxed as

P(E|zzz ∈ Brzzz ) ≤ 2−
nǫ
2

(

1

p 2(R+ǫ)(K−M)
+ 1

)n

.

Using the inequality (12), which immediately follows from the

choice of the prime integer p, we have

P(E|zzz ∈ Brzzz ) ≤ 2−
nǫ
2 2

nǫ
4 = 2−

nǫ
4 .

Note that this upper bound holds for all sufficiently large

values of n.
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P(E|zzz ∈ Brzzz ) ≤ P







⋃

w′w′w′∈F
(K−M)ℓ
p \{000}

{ ∣

∣(t′t′t′ + Λc) ∩ B(zzz, rzzz)
∣

∣ 6= 0
}

∣

∣

∣zzz ∈ Brzzz







≤
∑

w′w′w′∈F
(K−M)ℓ
p \{000}

P
(

∣

∣(t′t′t′ + Λc) ∩ B(zzz, rzzz)
∣

∣ 6= 0
∣

∣

∣zzz ∈ Brzzz

)

≤
∑

w′w′w′∈F
(K−M)ℓ
p \{000}

E

(

∣

∣(t′t′t′ + Λc) ∩ B(zzz, rzzz)
∣

∣

∣

∣

∣zzz ∈ Brzzz

)

. (38)

P(E|zzz ∈ Brzzz ) ≤
∑

w′w′w′

∑

aaa∈p−1Λc/Λc

P(t′t′t′ = aaa)E
(

|(aaa+ Λc) ∩ B(zzz, rzzz)|
∣

∣zzz ∈ Brzzz

)

=
∑

w′w′w′

∑

aaa∈p−1Λc/Λc

p−n
E
(

|(aaa+ Λc) ∩ B(zzz, rzzz)|
∣

∣zzz ∈ Brzzz

)

= p−n
∑

w′w′w′

∑

aaa∈p−1Λc/Λc

E
(

|(aaa+ Λc) ∩ B(zzz, rzzz)|
∣

∣zzz ∈ Brzzz

)

= p−n
∑

w′w′w′

E
(∣

∣p−1Λc ∩ B(zzz, rzzz)
∣

∣

∣

∣zzz ∈ Brzzz

)

. (39)

P(E|zzz ∈ Brzzz ) ≤ p−n 2nR(K−M) Vn

Vnn
n
2 2−

nǫ
4

(√
n+ p

√

n(1 + δ)σ2
zzz

)n

=
2nR(K−M)2

nǫ
4

n
n
2

(√
n

p
+
√

n(1 + δ)σ2
zzz

)n

=
2nR(K−M)2

nǫ
4

n
n
2

(√
n

p
+
√

n(1 + δ)2−(R+ǫ)(K−M)

)n

=
2nR(K−M)2

nǫ
4

n
n
2

n
n
2 (1 + δ)

n
2

(

1

p
√

(1 + δ)
+ 2−(R+ǫ)(K−M)

)n

≤ 2nR(K−M)2
nǫ
4 2

nǫ
4

(

1

p
+ 2−(R+ǫ)(K−M)

)n

≤ 2nR(K−M)2
nǫ
2

2n(R+ǫ)(K−M)

(

1

p 2(R+ǫ)(K−M)
+ 1

)n

=
2nR(K−M)2

nǫ
2

2nR(K−M) 2nǫ(K−M)

(

1

p 2(R+ǫ)(K−M)
+ 1

)n

. (40)

We will now combine the result of Theorem 2 with (35)

and (36), and upper bound the error probability PSSS at the

receiver (SSS, σ2) as

PSSS ≤ P(G) + P(zzz /∈ Brzzz ) + P(E |zzz ∈ Brzzz ).

Using Theorem 2, Lemma 4 and (18), we obtain

PSSS ≤ 2−
n
2 + e−

n(δ−ln(1+δ))
2 + e−

nσ2δ2

4 + 2−
nǫ
4 , (41)

for sufficiently large n. Let σmin > 0 be the least noise

standard deviation σ among the finitely many receivers in

the multicast channel. Then we have σ2δ2/4 ≥ σ2
minδ

2/4.

Also, δ − ln(1 + δ) > 0 as long as δ = 2
ǫ
2 − 1 is positive.

Consequently, the parameter

ε = min

{

1

2
, log e

(

δ − ln(1 + δ)

2

)

, log e

(

σ2
minδ

2

4

)

,
ǫ

4

}

is positive, and the value of each of the terms on the right-hand

side of (41) is at the most 2−nε. Hence the error probability

at the receiver (SSS, σ2) can be upper bounded as

PSSS ≤ 4 · 2−nε, (42)

for all sufficiently large n. We remark that the minimum

required value of n for this upper bound to hold depends only

ǫ, and is independent of the side information matrix SSS.

C. Completing the proof of the main theorem

The bound (42) shows that the error probability for a fixed

side information matrix SSS, averaged over the random code

ensemble, tends to 0 as the code dimension increases. Hence,

there exists a choice of lattice code (which is chosen for the

given side information matrix SSS) with a small error probability

at this receiver. We want to prove a slightly stronger result,

viz., there exists a lattice code such that the decoding error

probability for every possible side information matrix SSS is

small as long as the receiver SNR is large enough. In order to

prove this result, we consider a hypothetical multicast network

that consists of one receiver for each possible choice of the

matrix SSS. Note that two distinct values of the matrix SSS that

have identical row space constitute equivalent receiver side

information configurations. Hence, it is enough to consider a

multicast channel that consists of one receiver corresponding
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to each possible subspace of F
K
p , where the dimension of

the subspace can be between 0 and K − 1. A subspace of

dimension M , 0 ≤ M ≤ K − 1, can be mapped to an

M ×K matrix whose rows form a basis of the subspace. This

map embeds the set S of all non-equivalent choices of side

information matrix SSS into ∪K−1
M=0F

M×K
p , which is the set of all

matrices over Fp with K columns and at the most K−1 rows.

Hence, the number of receivers |S| can be upper bounded as

|S| ≤
K−1
∑

M=0

∣

∣F
M×K
p

∣

∣ =

K−1
∑

M=0

pMK ≤ KpK
2

. (43)

We assume that each receiver (SSS, σ2), SSS ∈ S , satisfies the

lower bound (10) on SNR and outputs an estimated message

vector ŵ̂ŵw(SSS) using its own channel observation. We say that

the multicast network is in error if any of the receivers

commits a decoding error. Using a union bound argument and

the upper bounds (42) and (43), we see that the network error

probability Pnet averaged over the random ensemble of lattice

codes satisfies

Pnet = P(network error) = P

(

⋃

SSS∈S

{ŵ̂ŵw(SSS) 6= www}
)

≤
∑

SSS∈S

P ({ŵ̂ŵw(SSS) 6= www}) =
∑

SSS∈S

PSSS

≤ 4K pK
2

2−nε, (44)

which tends to 0 as n becomes arbitrarily large. Hence, for

every sufficiently large n, there exists a lattice code such

that the network error probability is as small as desired. In

particular, this implies that there exists a choice of lattice

code such that the decoding error probability at every receiver

(SSS, σ2), SSS ∈ S , is simultaneously small. This completes the

proof of the main theorem.

D. Corollaries

1) Almost all lattice codes are good: Using standard argu-

ments based on Markov inequality [8], [9], [46], we show that

almost all codes from the random lattice code ensemble yield

a small error probability. In order to prove this, it is sufficient

to show that for almost all lattice codes the network error

probability is small over the hypothetical multicast channel

that consists of one receiver for each possible side information

matrix.

For a given dimension n, all the lattice codes in the random

code ensemble use the same coarse lattice Λc, but differ in the

choice of the fine lattice Λ and/or the dither vector ddd. Let

X(Λ, ddd) = P(network error |Λ, ddd)
denote the network error probability for a given choice of Λ, ddd
in the hypothetical multicast channel. If Λ and ddd are chosen

randomly, then X is a random variable. From (44), we know

that the expected value of X , which is equal to the average

network error rate Pnet, is small. Suppose we want a lower

bound on the fraction of random codes with error probability

at the most 2−
nε
2 . Using Markov inequality, we have

P
(

X > 2−
nε
2

)

≤ E (X)

2−
nε
2

≤ 4K pK
2

2−nε

2−
nε
2

= 4K pK
2

2−
nε
2 .

It follows that, asymptotically in n, for almost all choices of

the fine lattice Λ and dither vector ddd, the resulting lattice code

(Λ− ddd)/Λc provides an exponentially small error probability

in the multicast channel, i.e.,

lim
n→∞

P
(

X ≤ 2−
nε
2

)

= 1.

2) Goodness in single-user AWGN channel: Our model

of multicast channel includes as a special case the single-

transmitter single-receiver AWGN channel with no side infor-

mation at the receiver, i.e., number of messages K = 1, side

information matrix SSS is the empty matrix and rank(SSS) = M =
0. The decoder for this receiver uses the ℓ× ℓ identity matrix

for ASASAS and the all zero vector for vvv, see (21). Specializing

the main theorem for a single receiver with M = 0, we

immediately deduce that the ensemble of random lattice codes

achieves the capacity of the single-user AWGN channel and

hence arrive at Corollary 1.

It is well known that (nested) lattice codes, and lattice

constellations in general, can achieve the capacity of the point-

to-point AWGN channel [7]–[11]. Our corollary to the main

theorem provides an alternate proof of this result which is

based only on simple counting arguments.

The proof technique presented in this paper relies on lattices

obtained by applying Construction A to random linear codes

over a large enough prime field Fp. This technique was

introduced by Loeliger in [40] and used in [8]–[10] to prove

the goodness of lattice codes in AWGN channel. Each of these

results requires a different choice of the prime p and places

different requirements on the characteristics of the coarse

lattice Λc. The following are some of the properties that have

been used in the literature:

• Rogers-good: the ratio of covering radius rcov(Λc) to the

effective radius reff(Λc) of the lattice must be close to 1,

see (8). Such a lattice is also said to be good for covering.

• MSE-good: the value of the lattice parameter

1

nVol(Λc)1+
2
n

∫

V(Λc)

‖xxx‖2dxxx,

known as the normalized second moment, is close to

1/2πe, see [45]. Every Rogers-good lattice is also MSE-

good, and hence, this is a weaker requirement.

• Poltyrev-good: such a lattice, when used as an infinite

constellation, achieves the capacity of an AWGN channel

in which the transmitter has no power constraints [45],

[47]. These lattices are resilient against additive white

Gaussian noise.

The achievability result of [8] requires Λc to be simulta-

neously Rogers-good and Poltyrev-good, and uses p = 2nR,

i.e., the prime field Fp used for Construction A varies with

the dimension of the lattice code and the size of the field

increases exponentially in n. The random code ensemble of [9]

uses an MMSE-good lattice for Λc, lets p grow as n1.5, and

can accommodate a wide class of channel noise statistics,

including white Gaussian noise. The code construction of [10]

requires p to be at least n0.5, needs no dithering operation, i.e.,

uses ddd = 000, but is known to achieve capacity only if SNR > 1.

In comparison, our proof method uses a fixed (albeit large)
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value of p and holds for any SNR > 0, while requiring that

Λc be Rogers-good.

V. CONCLUSION

We have showed that lattice codes are optimal for com-

mon message broadcast in Gaussian channels where receivers

have side information in the form of linear combinations

of source messages. We used random lattice ensembles ob-

tained by applying Construction A to linear codes over ap-

propriately large prime fields Fp. The lower bound p ≥
max

{

22KR, (2
ǫ
4 − 1)−12−R

}

on the value of p does not

necessarily pose a limitation in communication applications.

For instance, in the relay network of Example 1, the first

phase of the protocol, namely compute-and-forward [15], only

requires that n
p → 0 as n → ∞, which can be met by our

scheme by varying p with the dimension n: for instance, by

choosing p to be the smallest prime greater than or equal

to nβ for a fixed β > 1. This will also ensure that the

inequality p ≥ max
{

22KR, (2
ǫ
4 − 1)−12−R

}

holds for all

sufficiently large values of n. Similarly, with Example 2, where

the broadcast signal supplements a wired multicast network, it

is known that wireline network codes meeting the max-flow
bound exist over every large enough finite field [26]. Hence,

we can choose p to be sufficiently large to simultaneously

optimize both the wired and wireless parts of the hybrid

network. On the other hand, designing lattice strategies for

a fixed small size of the finite field, especially sizes that are

powers of two, may have greater practical significance.

The capacity of the Gaussian broadcast channel with re-

ceiver side information under general message demands, such

as with private message requests, is known only for some

special cases [29], [48], [49]. The proofs for achievability in

these cases utilize ensembles of codebooks generated using

the Gaussian distribution together with dirty-paper and super-

position coding. It will be interesting to examine if the lattice

structure of the codes proposed in this paper can be exploited

to derive new capacity results beyond the known cases.

APPENDIX

CAPACITY OF THE COMMON MESSAGE GAUSSIAN

BROADCAST CHANNEL WITH CODED SIDE INFORMATION

Consider the problem setup with a single transmitter and N
receivers (SSS1, σ

2
1), . . . , (SSSN , σ2

N ) as described in Section II-A.

We now provide a sketch of the proof that C, defined in (4),

is the capacity of this channel.

A. Converse

Suppose there exists a coding scheme that achieves rate

R in the multicast channel with vanishing decoding error

probability at all the receivers. Let the scheme transmit one

realization of (w1, . . . , wK) for every κ channel uses, i.e.,

R = 1
κ log2 p. From (1) the conditional entropy of each

realization of (w1, . . . , wK) at the ith receiver (SSSi, σ
2
i ), given

the corresponding coded side information, is (K−Mi) log2 p.

The per-channel use conditional entropy of the message is thus

(K −Mi) log2 p

κ
= (K −Mi)R.

In order to guarantee reliable communication it is necessary

that the mutual information between the channel input at the

transmitter and the channel output at the ith receiver be greater

than the conditional entropy (K − Mi)R. Since the input

power is constrained to be at the most 1 and the noise variance

at the ith receiver is σ2
i , the maximum mutual information is

1
2 log2

(

1 + 1
σ2
i

)

, and hence we have

(K −Mi)R <
1

2
log2

(

1 +
1

σ2
i

)

, or equivalently,

R <
1

(K −Mi)
· 1
2
log2

(

1 +
1

σ2
i

)

.

Considering all the N receivers we immediately deduce that

R < C.

B. Achievability

The proof of achievability closely follows the proof of

Theorem 6 of [17] and the standard textbook argument used

for the achievability of the capacity of single-user AWGN

channel. Let ǫ > 0 be any constant. For a given code length

n choose the message length ℓ as the largest integer such that

the rate R = ℓ
n log2 p satisfies

R < min
i∈{1,...,N}

1

(K −Mi)
· 1
2
log2

(

1 +
1− ǫ

σ2
i

)

− 3ǫ.

As n → ∞, it is straightforward to show that R converges

to the right-hand side of the above inequality. For each of

the 2nKR message vectors www = (www⊺

1 , . . . ,www
⊺

K)
⊺ ∈ F

Kℓ
p ,

associate a codeword xxx(www) ∈ R
n each of whose components

are generated independently using the Gaussian distribution

with zero mean and variance (1 − ǫ). These 2nKR vectors

constitute the randomly-generated n-dimensional codebook X .

Encoding: If the source message is www, the transmitter

broadcasts the vector xxx(www) over n channel uses.

Decoding: Consider the ith receiver (SSSi, σ
2
i ) that ob-

serves the channel output yyyi and the side information
∑K

k=1 s
(i)
m,kwwwk = uuu

(i)
m , m = 1, . . . ,Mi, where SSSi = [s

(i)
m,k].

As in (3), the receiver determines the subcode Xsub =
X (SSSi,uuu

(i)
1 , · · · ,uuu(i)

Mi
) of the codebook X that corresponds to

the set of all message vectors www which are consistent with

the observed coded side information. Among the codewords

in Xsub, the decoder chooses the vector that is jointly (weakly)

ǫ-typical with yyyi. If there exists a unique such codeword xxx(ŵ̂ŵw)
that additionally satisfies the power constraint ‖xxx(ŵ̂ŵw)‖2 ≤ n,

the receiver declares ŵ̂ŵw as the decoded message. Otherwise the

receiver declares a decoding error.

Given that Xsub consists of 2n(K−Mi)R vectors generated

independently using the Gaussian distribution with zero mean

and variance (1− ǫ) and

(K −Mi)R <
1

2
log2

(

1 +
1− ǫ

σ2
i

)

− 3ǫ,

it is routine to show that the probability of decoding error

at the ith receiver, averaged over the ensemble of codebooks,

decays exponentially with code length n [50, proof of Theo-

rem 10.1.1]. It follows that the probability that any of the N
receivers commits a decoding error is also exponentially small
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in n. Hence, there exists at least one codebook X that transmits

each message at rate R with the decoding error probability at

all the receivers as small as desired. Letting n → ∞ and

ǫ → 0, we observe that any rate R < C is achievable.
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