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keV Warm Dark Matter via the Supersymmetric Higgs Portal
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Warm dark matter (WDM) may resolve the possible conflict between observed galaxy halos and the halos

produced in cold dark matter (CDM) simulations. Here we present an extension of MSSM to include WDM

by adding a gauge singlet fermion, χ, with a portal-like coupling to the MSSM Higgs doublets. This model

has the property that the dark matter is necessarily warm. In the case where Mχ is mainly due to electroweak

symmetry breaking, the χ mass is completely determined by its relic density and the reheating temperature,

TR. For 102 GeV <
∼ TR

<
∼ 105 GeV, the range allowed by χ production via thermal Higgs annihilation, the χ

mass is in the range 0.3-4 keV, precisely the range required for WDM. The primordial phase-space density, Q,

can directly account for that observed in dwarf spheroidal galaxies, Q ≈ 5×106(eV/cm3)/(km/s)3, when the

reheating temperature is in the range TR ≈ 10− 100 TeV, in which case Mχ ≈ 0.45 keV. The free-streaming

length is in the range 0.3-4 Mpc, which can be small enough to alleviate the problems of overproduction of

galaxy substructure and low angular momentum of CDM simulations.

PACS numbers: 12.60.Jv, 98.80.Cq, 95.35.+d

Introduction: Cold dark matter (CDM) with a cosmologi-

cal constant (Λ CDM) is remarkably successful in explaining

the large scale structure of the observed universe. Numerical

simulations based on the ΛCDM model predict cusped central

densities [1]. The observational situation is less clear. It has

been suggested that observed galaxy halos have cores [2, 3],

implying that CDM has a cusp problem. However, the obser-

vational evidence has also been interpreted to support cusped

halos [4]. Here we will consider the former possibility. One

way to solve the cusp problem, should it exist, is to have dark

matter with a sufficiently large velocity dispersion, known as

warm dark matter (WDM) [5]. In addition, CDM simulations

result in overproduction of galactic substructure [6] and low

angular momentum [7], which may be alleviated by reducing

power at small scales via free-streaming of WDM.

Several candidates have been suggested to account for

WDM, notably sterile neutrinos in a minimal extension of the

Standard Model (MSM) [8, 9], and superWIMPs [10]. These

models may also account for other phenomena, such as pulsar

velocities and baryogenesis in the case of sterile neutrinos,

and can have distinctive collider phenomenology, as in the

case of a gravitino superWIMP, which requires large masses
>
∼ 500 GeV for the NLSP of the MSSM. However, the mass

of the dark matter candidate in these models is not fixed by

the model, in which case the dark matter is not necessarily

warm. The unique feature of the model we will present here

is that the dark matter candidate is fixed by its relic density to

be necessarily warm.

In the case of the MSSM, the only possible WDM candidate

is a stable gravitino [11]. (Sterile neutrinos could also play

this role in the MSSM extended to include neutrino masses.)

However, this is not compatible with the MSSM in the case of

gravity-mediated SUSY breaking as the gravitino is too heavy.

The form of SUSY breaking may be determined at the LHC

from the pattern of SUSY particle masses. Here we present a

∗Electronic address: j.mcdonald@lancaster.ac.uk
†Electronic address: n.sahu@lancaster.ac.uk

new WDM candidate, the Z2-singlino, in a portal-like exten-

sion of the minimal supersymmetric (SUSY) standard model

(MSSM) [12, 13] in which the stability of the WDM particle

is ensured by a Z2-parity. The Z2-singlino was previously in-

troduced to provide a stable dark matter candidate in R-parity

violating SUSY models [12]. Here we will show that, in a

different region of its parameter space, the model provides a

dark matter particle which is necessarily warm and with the

right properties to explain non-singular galaxy halos and to

alleviate the galaxy substructure and low angular momentum

problems of CDM models.

The Model: We extend the MSSM by adding a chiral su-

perfield χ and messenger field S of mass MS. We also impose

an additional Z2 symmetry under which χ is odd, while all

other fields are even. The effective superpotential after inte-

grating out S is given by [12]

W =WMSSM +
f χ2HuHd

MS

+
Mχ0

χ2

2
. (1)

Since χ is odd under Z2, its lightest component cannot decay

to any of the MSSM fields. Therefore the fermionic compo-

nent of χ, the Z2-singlino, χ, is a good candidate for DM1. In

Eqn. (1) we have included a SUSY mass Mχ0
for χ. Since in

general the χ mass must be small relative to the weak scale

in order to account for WDM, a particularly interesting case

is where the χ mass is entirely due to the Higgs expectation

values, with Mχo
zero or negligibly small. The small χ mass

can then be understood in terms of a large value for MS com-

pared with the Higgs expectation values. The absence of a χ
mass term in Eqn.(1) is guaranteed if there is an unbroken R-

symmetry which allows the µHuHd term of the MSSM, since

in this case the R-charge of χ must be zero.

Z2-singlino dark matter is interesting as a SUSY implemen-

tation of gauge singlet dark matter. Gauge singlet scalar dark

1 The scalar partner of χ is expected to gain a large mass from SUSY break-

ing.
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matter interacting via the Higgs portal [14] was first proposed

in [15] for the case of complex scalars and in [16] for real

scalars, and was further discussed in [17, 18, 19, 20, 21]. Cou-

plings to hidden sector particles are currently of considerable

interest [22, 23, 24, 25, 26, 27, 28, 29]. The simplicity of the

terms in Eqn.(1) should allow them to easily form part of a

hidden sector dark matter model.

In the following we will calculate the relic abundance of χ
as a function of its mass and reheating temperature, TR. We

will show that in the case where the χ mass is mostly due

to the Higgs expectation value, χ is necessarily warm with

a mass in the keV range when it accounts for the observed

dark matter density. For reasonable values of TR the primor-

dial phase-space density can then account for that observed in

dwarf spheroidal galaxies (dSphs), while the free-streaming

length can damp the density perturbation on small scales and

so reduce galaxy substructure formation and angular momen-

tum loss.

Relic Abundance of χ: Production of χ will occur mainly

through thermal Higgs annihilations2. We will see that most

of the χ are produced at temperatures close to the reheating

temperature, TR. In this case we can consider the Higgs ex-

pectation values to be zero and calculate with the weak eigen-

state Higgs doublets. χ production via thermal Higgs boson

pair annihilation occurs due to the contact interaction in the

Lagrangian f χχHuHd/MS. The total rate of χ production per

Higgs pair annihilation is then

dnχ

dt
+ 3Hnχ = ΓχnH ; Γχ = 8nHσHvrel , (2)

In this nH = 2.4T 3/π2 is the number density of a complex

Higgs scalar, σH = ( f/MS)
2/16π is the cross-section for

ho
uho

d → χχ (with the same for h+u h−d → χχ) and vrel = 2 is the

relative Higgs velocity. There is an overall factor of 2 in Γχ
since each Higgs pair annihilation produces two χ particles. In

addition, there will be χ production via Higgsino-Higgs boson

annihilation to χχ0. This will increase the χ production rate

by approximately a factor of 2, which we have included in Γχ.

In terms of T we obtain

Γχ =
2.4M2

χ sbT 3

π3v4 sin2 2β
, (3)

where tanβ = vu/vd with v =
√

v2
u + v2

d = 174 GeV. Mχ sb

is the contribution to the χ mass from electroweak symme-

try breaking, Mχ sb = f v2 sin2β/MS . This relates the sym-

metry breaking contribution to the χ mass to the strength of

the χ interaction with the MSSM Higgs, f/MS. As a re-

sult, the χ relic density fixes the χ mass in the case where

it is mostly due to symmetry breaking. The total χ mass is

then Mχ = Mχ0
+Mχ sb. Since Γχ ∝ T 3 while H ∝ T 2 during

2 χ can also be produced by decay of thermal Higgs particles. However,

we find that this is negligible compared with Higgs annihilation except for

TR
<
∼ 300 GeV, where both processes give a similar contribution to nχ . We

will therefore neglect the contribution of Higgs decays in the following.

radiation-domination, the production of χ will occur mostly at

the highest temperature during radiation-domination, which

is the reheating temperature, TR. (The temperature can be

higher during the inflaton-dominated era before reheating, but

since H ∝ T 4 during this era, its contribution to χ produc-

tion is small compared with production at reheating.) We

define the thermalization temperature Tth by the condition

Γχ = H ≡ kT T 2/MPl , where kT = (4π3g(T )/45)1/2 and g(T )
is the number of relativistic degrees of freedom. Therefore

Tth =
kT π3v4 sin2 2β
2.4M2

χ sbMPl

. (4)

Assuming g(T ) is constant, Eqn. (2) can be written as

d

dT

( nχ

T 3

)

=−
1

Tth

nH

T 3
, (5)

where we have used the relation Γχ/HT = 1/Tth, which is

generally true during radiation-domination. Integrating this

from TR to T , and noting that nH/T 3 = 2.4/π2 is a constant,

we obtain

nχ

T 3
=

2.4(TR −T)

π2Tth

. (6)

Clearly most of the production of the comoving χ density

occurs at T ≈ TR. Including an entropy dilution factor for

the change of g(T ) from TR to the present CMB temperature,

Tγ = 2.4× 10−13 GeV, we find for the present χ number den-

sity,

nχ(Tγ) =
2.4T3

γ

π2

g(Tγ)

g(TR)

TR

Tth

. (7)

Using Eqn.(4) to eliminate Tth, the relic abundance of χ from

Higgs annihilations is then given by

Ωχ =
4(1.2)2

π5

(

Mχ sb

Mχ

)2
g(Tγ)

g(TR)

TRT 3
γ

kT v4 sin2 2β

M3
χMPl

ρc

, (8)

where ρc = 8.1×10−47h2 GeV4 is the critical density. There-

fore

Mχ = 1.92

(

Mχ

Mχ sb

)2/3(Ωχh2

0.113

)1/3

×

(

1 TeV

TR

)1/3

sin2/3 2β keV , (9)

where we have used g(Tγ) = 2 and g(TR) = 228.75, corre-

sponding to the MSSM degrees of freedom, and we have

expressed Ωχ relative the observed dark matter abundance,

Ωχh2 = 0.1131± 0.0034 [30].

From Eqn. (9) we see that in the case where the χ mass is

due to symmetry breaking, Mχ is automatically close to a keV.

As a result, the dark matter in this model is necessarily warm.

The relationship between Mχ and TR for different values

of tanβ is shown in Fig.1 for the case Mχ sb = Mχ. From
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FIG. 1: Contours of Ωχh2 = 0.1131±0.0034 are shown in the plane

of Mχ versus TR for different values of tanβ. The χ mass is set to its

value from symmetry breaking, Mχ = Mχ sb.

this we find that the range of χ mass is tightly constrained.

TR
<
∼ 106GeV is necessary in order to avoid thermal gravitino

overproduction (for the case with hadronic gravitino decay

modes) [31] while TR
>
∼ 102 GeV in order to have the ther-

mal Higgs necessary to produce the χ density. In the case

where the χ mass is due to spontaneous symmetry breaking,

Mχ sb = Mχ, the χ mass is in the range

0.19 sin2/3 2β keV <
∼ Mχ

<
∼ 4.1 sin2/3 2β keV . (10)

Moreover, TR < Tth is necessary in order to keep χ out of ther-

mal equilibrium, which is assumed in Eqn.(2). This gives

Mχ >
∼ 0.3 keV. Thus for reasonable values of sin2β we ex-

pect 0.3 keV <
∼ Mχ

<
∼ 4 keV. The corresponding range of re-

heat temperature is 102 GeV <
∼ TR

<
∼ 105 GeV.

In this we have used the observed abundance of dark mat-

ter as an input, which then determines the mass of the dark

matter particle to be of the order of a keV. In doing so, we

have implicitly tuned the mass of the dark matter particle for

a given TR. To put this tuning in perspective, we can compare

the present model with the most popular dark matter scenario,

that of thermal relic weakly interacting dark matter. In this

case, the dark matter density is broadly of the correct order of

magnitude when the dark matter particle mass and its inter-

action strength are determined by the weak scale. However,

although phenomenologically encouraging, theoretically this

amounts to an implicit tuning of the physics of thermal freeze-

out against the completely unrelated physics of baryogene-

sis in order to obtain abundances of baryons and dark matter

which are within a factor of 6. In other words, the interaction

strength, which is determined by its mass scale, must be tuned

in order to obtain the correct dark matter abundance relative

to the baryon density. Similarly, in our model we are tuning

the interaction strength, which is now determined by the dark

matter particle mass, to obtain the correct dark matter abun-

dance relative to the baryon density. In the thermal relic case

the output is an interaction mass scale of the order of the weak

scale. In our case the output is a mass for the dark matter par-

ticle of the order of a keV. Therefore, from a theoretical point

of view, the two models are not dissimiliar in their need for

tuning. Such tuning is a generic problem for any dark mat-

ter model which does not directly address the baryon-to-dark

matter ratio.

The Phase-Space Density of χ: Dark matter with a finite

phase-space density may be able to explain the finite density

of galaxy cores [32]. The coarse-grained phase-space density

is defined by Q ≡ ρχ/σ3
χ, where the 1-D velocity dispersion

is σχ =
√

(1/3)〈~P2
χ/M2

χ〉 [32]. If Q is finite then there is a

limit on how large ρ can be for a given velocity dispersion,

which prevents the formation of singular galaxy cores. Q can

be expressed in terms of the distribution of χ produced by

thermal Higgs annihilation [33]

Q ≡
33/2M3

χρχ

〈~P2
χ 〉

3/2
=

33/2M3
χΩχρcJ3/2

T 3
d

, (11)

where Td = (g(Tγ)/g(TR))
1/3Tγ for a decoupled density cre-

ated at TR and J =
R ∞

0 y2 f (y)dy/
R ∞

0 y4 f (y)dy. Here f (y) is the

distribution function for production of χ from thermal Higgs

annihilation, where y = |~Pχ|/Td is the comoving momentum.

Therefore

Q = 5.6× 107

(

Ωχh2

0.113

)

(

Mχ

1 keV

)3(
J

0.1

)3/2
eV/cm3

(km/s)3
.

(12)

The distribution function due to thermal Higgs annihilation

is not known at present. However, J may be estimated by

assuming that the momentum of the χ at TR is equal to the

mean momentum of the thermal Higgs particles, p ≈ 3T , in

which case f (y) = δ(y− 3). This gives J = 1/y2 = 1/32 =
0.11. This is in good agreement with the value obtained in the

case of thermal Higgs decay, J = 0.12 [34].

Q is conserved for an adiabatically contracting collision-

less gravitational system [32]. More generally, Q can only

decrease from its primordial value during relaxation in col-

lisionless systems. Simulations of structure formation have

shown that the phase-space density can decrease by a factor

102 to 103 [35].

If the distribution of dark matter in dwarf spheroidal galax-

ies (dSphs) is cored, then a synthesis of recent photometric

and kinematic dSph data [3], which indicates a mean density

∼ 5GeV/cm3 and central velocity dispersion ∼ 10km/s, im-

plies that [33]

QdSph ≈ 5× 106 eV/cm3

(km/s)3
. (13)

Eqn. (12) then provides an upper limit on Mχ in the case with

an explicit SUSY χ mass. If we assume a dynamical sup-

pression of Q by at most a factor 103, then the largest value

of Q consistent with observations is ≈ 1010eV/cm3/(km/s)3.

From Eqn.(12) the largest mass compatible with this is Mχ ≈
6 keV. This is not much larger than the mass range 0.3-4 keV

implied by the relic density in the case with Mχ ≈Mχ sb. Since

there is no reason to expect a SUSY mass for χ in the keV
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range, it is more natural to assume that Mχ0
is zero or neg-

ligible, with the small χ mass then generated by electroweak

symmetry breaking together with MS ≫ v.

Using Eqn. (9) to eliminate Mχ from Eqn.(12), the phase

space density of χ as a function of TR is given by

Q = 4.0× 108 sin2 2β
(

Mχ

Mχ sb

)2

×

(

Ωχh2

0.113

)2
(

1 TeV

TR

)(

J

0.1

)3/2
eV/cm3

(km/s)3
. (14)

Comparing with Eqn. (13), we see that the value of Q can

be equal to or larger than QdSph for reasonable values of TR.

From Eqn. (14) the required reheating temperature is

TR ≈ 80 sin2 2β
(

QdSph

Q

)(

Mχ

Mχ sb

)2

TeV . (15)

Thus in the case where the χ mass is mostly from the Higgs

expectation value and the phase-space density of dSph cor-

responds to the primordial phase-space density without sup-

pression, 10 TeV <
∼ TR

<
∼ 100 TeV is typically required, de-

pending on sin2β. From Eqn.(9) the corresponding χ mass

is Mχ ≈ 0.45 keV. If the primordial phase space density

is suppressed during formation of dSphs, then larger Q and

lower TR are required. In general, for sin 2β >
∼ 0.1 and

102 GeV <
∼ TR

<
∼ 105 GeV, Q due to χ dark matter is in the

range 105 − 1010 eV/cm3/(km/s)3.

Free-streaming length of χ: The free-streaming length,

λfs, below which primordial perturbations are suppressed, is

roughly equal to the horizon when the χ particles become non-

relativistic. In general, for a distribution of relativistic decou-

pled particles, λ f s is given by [36]

λ f s ≈ 1.2 Mpc

(

1 keV

Mχ

)(

10.75

g(TR)

)1/3( 〈p/T 〉

3.15

)

, (16)

where 〈p/T 〉 is the mean momentum over T of the initial rel-

ativistic χ distribution. Since the χ are produced by annihi-

lation of thermal Higgs at T ≈ TR, we expect that their mean

momentum will be approximately equal that of the thermal

Higgs at TR, such that 〈p/T 〉 ≈ 3. Thus with g(TR) = 228.75

and 0.3 keV <
∼ Mχ

<
∼ 4 keV, λ f s is in the range 0.3 - 4 Mpc.

(Smaller values are possible if the mean momentum of the χ
distribution is less than thermal.) The lower end of this range

is comparable with the scale of galaxies and so may alleviate

the problems of overproduction of substructure and low angu-

lar momentum observed in CDM simulations [6, 7].

Lyman-α constraints: Observation of Lyman-α absorp-

tion spectra constrains the matter power spectrum on small-

scales and so provides a lower bound on the WDM par-

ticle mass given its momentum distribution [37]. Lower

bounds on the mass of sterile neutrino WDM were obtained

in [38, 39, 40]. In [41], lower bounds were obtained for

WDM momemtum distribution functions which are general-

izations of the Fermi-Dirac distribution. In the case of thermal

relics which decoupled while relativistic, a lower bound of 1.7

keV (95% c.l.) was obtained, while for non-resonantly pro-

duced sterile neutrinos (less-than-equilibrium density but with

a thermal momentum distribution) the corresponding lower

bound was 9.5 keV [41].

Since the distribution function from thermal Higgs anni-

hilation is not expected to be of Fermi-Dirac form, we can-

not directly apply the results of existing Lyman-α analyses3.

However, as the χ density from thermal Higgs annihilation is

less than the thermal equilibrium density but the mean χ mo-

mentum is of the order of the thermal Higgs momentum at

T ≈ mH , we expect the Lyman-α lower bound on the χ to lie

between the lower bounds of [41], which may allow a window

below the 4 keV upper bound from the χ relic density.

In addition, Lyman-α observations can easily be consistent

with WDM in the case where there is a significant ( >
∼ 40%)

component of CDM [41]. Since the neutralino is a CDM can-

didate in our model in the case where there is an unbroken

R-parity, mixed dark matter is a possibility. This does not

diminish the advantage of a dark matter candidate which is

necessarily warm.

Discussion and Conclusions: We have shown that the Z2-

singlino can account for the observed phase-space density of

dwarf spheroidal galaxies, which may be evidence of non-

singular cores. In the case where the χ mass comes entirely

from the Higgs expectation value, Mχ is fixed by the χ relic

density. The observed abundance of dark matter implies that

Mχ is in the range 0.3-4 keV, which coincides exactly with

the range required for χ to act as WDM. Therefore dark mat-

ter is necessarily warm in this model. The model can directly

account for the phase-space density of dwarf spheroidal galax-

ies when TR ≈ 10−100 TeV, while dynamical suppression of

the primordial phase-space density allows smaller values of

TR to be consistent with dSphs. The free-streaming length is

in the range 0.3-4 Mpc, the lower end of which may reduce

the overproduction of satellites and loss of angular momen-

tum observed in CDM simulations of galaxy formation. The

small mass of χ can be understood in terms of a large mes-

senger mass, MS ≈ 1010 GeV. Such a heavy S field might be

identified with the messenger sector of gauge mediated SUSY

breaking models. We will return to this possibility in a future

study [43].

Depending on TR and sin2β, a range of primor-

dial phase-space densities can be generated, with

Q ≈ 105 − 1010 eV/cm3/(km/s)3 when sin2β >
∼ 0.1

and 102 GeV <
∼ TR

<
∼ 105 GeV. This may allow the

wide range of observed values of Q, ranging from order

106 eV/cm3/(km/s)3 in dSphs to 104 eV/cm3/(km/s)3 or

less in normal spiral galaxies [44], to be understood, for

example by having the values of Q in dSphs close to their

primordial values and the values in normal spirals suppressed

by non-adiabatic evolution during structure formation. It has

3 Similarly, constraints on the WDM particle mass from globular cluster-

based observations of the phase space density of the Fornax dwarf galaxy

[42] cannot be directly applied to the present model.
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been suggested that too many dSphs may be generated when

the mean primordial Q is equal to that in dSphs [11, 45].

In that case a possible solution might be to have a mean

primordial Q much smaller than that observed in dSphs,

with dSphs then forming from a high phase-space fraction of

the χ particles in the low momentum tail of the distribution

[11, 45].

In addition, strong constraints on χ dark matter may be ex-

pected from Lyman-α observations. However, existing con-

straints on WDM masses cannot be directly applied as the χ
momentum distribution function due to thermal Higgs anni-

hilation differs from those considered in existing studies. We

will return to these issues in a future study [43].

If R-parity is unbroken in the MSSM then the model can be

extended to a mixed dark matter model, with the R-stabilized

MSSM LSP providing CDM in addition to the Z2-stabilized

χ WDM. In this case WDM should easily be compatible with

Lyman-α constraints.

Testing the model at colliders will be challenging due to the

small effective coupling of χ to the Higgs bosons, with the hχχ
coupling being of the order of v/Ms ≈ 10−8. However, the

simple form of the superpotential may allow the model to form

part of a more complete model which could have distinctive

collider signatures.
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