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ABSTRACT Authentication while maintaining anonymity when availing a service over the internet is

a significant privacy challenge. Anonymous credentials (AC) address this by providing the user with a

credential issued by a trusted entity that convinces the service provider (SP) that the user is authenticated

but reveals no other information. The existing AC schemes assume a single trusted authority (certifier)

that validates all the user attributes. In practice, however, a user may require different attributes to be

attested by different certifiers. This means that the user has to get multiple credentials, increasing the

burden on the SP who has to verify each one of them. Moreover, complete anonymity can be misused.

We propose a decentralized threshold revocable anonymous credential (DTRAC) scheme over blockchains

that supports – a) attestation of attributes by multiple certifiers, and b) anonymity revocation through a set of

distributed openers, by integrating threshold opening to the state-of-the-art threshold anonymous credential

issuance scheme, Coconut [34]. DTRAC generates a single credential on attributes that are attested by

multiple certifiers, freeing the SP from the hassle of verifying multiple credentials. We analyze the security

of DTRAC formally in the universal composability (UC) framework. We also implement a prototype on

Ethereum using smart contracts and give a detailed analysis of its performance. We compare the verification

time for credentials with attributes attested by multiple certifiers in both DTRAC and Coconut and see that

in terms of execution time and gas consumption, DTRAC performs significantly better than Coconut. It also

scales better, with the performance gain of DTRAC over Coconut increasing linearly with the number of

certifiers.

INDEX TERMS Zero-knowledge proofs, threshold issuance of credentials, threshold opening of creden-

tials, multi-certifier model.

I. INTRODUCTION

With companies collecting massive amounts of personal data

and internet applications becoming increasingly pervasive,

privacy has become a major concern. The public, wary

of sharing data, wants applications and services to strictly

adhere to the data minimization principle, i.e., collect only

relevant and limited personal information. The General Data

Protection Regulation (GDPR) [37] establishes a legal frame-

work for protecting personal data across the European Union

and its compliance has increased the potential liability of

managing users’ personal data. At the same time, allowing

for anonymity with no authentication is infeasible for many

applications, especially those that provide services based

on different categories of user attributes. Also, complete

anonymity may encourage misuse of services, illegal activ-

ities and abusive behavior.

Anonymous credentials (AC) are privacy-preserving cryp-

tographic authentication mechanisms that aim to give us the

best of both worlds – authentication as well as anonymity.

These mechanisms authenticate a user while allowing her to

keep her attributes secret and issue her with a credential that

can be presented several times while remaining unlinkable

(or untraceable). Many AC schemes ( [7], [10], [12], [15],

[25]) have a centralized credential issuer who verifies the

attributes of the user and issues the user with a credential. But

the issuer can be compromised or corrupt and is a single point

of failure. Garman et al. [20] circumvents this limitation

by introducing decentralized anonymous credentials (DAC)

where the issuance of credentials happens over a distributed

ledger. But presenting a credential in their scheme is expen-
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sive due to a double discrete-logarithm proof. CanDID [27],

another credential issuance scheme, allows for a decentral-

ized committee to issue credentials and is legacy compatible.

But it uses secure multiparty computation (MPC) techniques

that are computationally intensive. Coconut [34], an efficient,

short and constant size credential scheme, over blockchains,

allows for threshold issuance in a decentralized manner. But

the security of the scheme was analyzed informally. Alfredo

et al. [31] proved the security of Coconut formally but makes

a few modifications to the scheme for that. We use this mod-

ified version for credential issuance to ensure unforgeability.

Versatile ABS [3] is an attribute-based signature scheme

that supports threshold opening to revoke the anonymity of

the user. But in this scheme every service request needs to

contain additional information to trace the user, making it

inefficient. However, none of the above support validation

of attributes by multiple certifiers in a single credential. Our

proposed scheme aims to resolve the following two gaps in

existing AC schemes.

1) The existing AC schemes assume that a single trusted

authority (certifier) – which itself can be a single entity

or a distributed set of entities – certifies/attests all the

user attributes. If a service requires different sets of user

attributes to be verified by different authorities then the

user has to get multiple ACs, one from each authority.

The service provider (SP) then must verify all these cre-

dentials before providing the service, which increases

the burden on the SP . This is the case, for instance, with

versatile ABS and Coconut where multiple credentials

have to be verified if multiple certifiers attest to different

attributes.

2) To bring accountability to anonymity, AC schemes ei-

ther look at credential revocation [8], [11], [36], [38]

or anonymity revocation/opening of a credential [3],

[10], [11]. However, all the schemes proposed for the

latter either rely on a centralized trusted entity and do

not consider the possibility of it being corrupt, i.e. they

do not support threshold opening, or they need more

information in the credential to trace the user.

We use the following use case to explain the reasoning

behind having multiple certifiers, each validating a different

subset of user attributes. Suppose Alice wants to apply for a

personal loan from a finance company, Bob. Bob can provide

a loan if the person meets certain eligibility criteria, say,

criteria related to age and income. Alice would not want to

share her personal information, her actual income details,

or where she works, with Bob. Any identity provider (IdP)

can act as a certifier and certify the identity attributes. How-

ever, this agency cannot be expected to certify the income

attributes for which we need an income certifier. For example,

after verifying the supporting documents, an employer can

provide Alice with an income certificate that certifies her

income details. Alice now has to obtain a credential based

on a set of attributes such as DoB from the identity attributes

and income from the income certificate. Thus, there are two

certificates issued by two different certifiers that Alice needs

to present to Bob, and he has to verify both. Also, Bob’s task

increases with the number of certificates.

In order to address this problem, our scheme proposes

a specially constructed digital certificate, referred to as a

verifiable certificate (Vcert), to be issued by each certifier

that attests to specific user attributes. These Vcerts hide the

attributes using cryptographic primitives, but they are still

verifiable. A secret master key is associated with all the

Vcerts of one particular user, which links all the Vcerts

of that user. In the loan application use case, the IdP pro-

vides an ID Vcert on the identity attributes and an income

certifier provides an income Vcert on the income-related

attributes. In our scheme, a set of validators distributed over

a blockchain verifies the attributes of these multiple Vcerts

during a credential request. The zero-knowledge proofs of

knowledge (ZKPoKs) of attributes are provided to the valida-

tors to convince them that the attributes were certified by the

appropriate certifiers, but they reveal no other information.

Each validator issues a partial credential on those attributes.

A threshold number (not necessarily all) of these partial

credentials are sufficient to form an anonymous credential

and it can be verified using the aggregated public key of the

validators. Our scheme, Decentralized Threshold Revocable

Anonymous Credentials (DTRAC), enables Alice to obtain a

single credential that she may use to prove to Bob that she

meets all the eligibility criteria without revealing any private

information. She is also free from the hassle of presenting

numerous credentials. Note that we can have more than two

certifiers, each attesting to their respective user attributes.

We refer to this as a multi-certifier communication model.

DTRAC extends the Coconut threshold issuance scheme [31]

to support this multi-certifier communication model and pro-

vides a single anonymous credential for attributes attested

by multiple certifiers. We analyzed the efficiency of DTRAC

and our evaluations show that DTRAC performs significantly

better than running multiple instances of Coconut. Also, this

performance gain that DTRAC has over the Coconut scheme

increases linearly as the number of certifiers increases mak-

ing DTRAC more scalable than Coconut.

The revocation of anonymity in DTRAC is broadly based

on the threshold opening scheme implemented for dynamic

group signatures [9]. However, the threshold opening scheme

in [9] works only for a single attribute, whereas credentials

typically contain more. Hence, we extend it to support mul-

tiple attributes and integrate it into our threshold issuance

scheme, allowing a designated set of distributed openers to

open an anonymous credential if at least a threshold number

of openers agree. We also provide a formal security analysis

of DTRAC (Sec. VI).

Our Contributions.

1) DTRAC supports a multi-certifier model and it issues

a single anonymous credential to a user on a set of

attributes where multiple certifiers certify/attest specific

subsets of user attributes.
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2) DTRAC enables optional revocation of anonymity that

does not rely on a centralized opener by integrating

a threshold opening scheme, previously designed for

group signatures, to the threshold credential issuance

scheme. The existing threshold opening scheme was

modified in this work to allow for multiple attributes.

3) We provide a formal security analysis of DTRAC in the

universal composability (UC) framework.

4) We provide a working PoC on the Ethereum blockchain

for the loan application use case and give a detailed

evaluation. We demonstrate that our scheme performs

significantly better than the state-of-the-art threshold

issuance scheme, Coconut in terms of execution time

and gas consumption, for credentials with attributes

attested by multiple certifiers.

Paper Organization. Sec. II introduces preliminaries of

techniques used in our scheme. We give an overview of our

approach and the building blocks that we construct as part of

our scheme in Sec. III. We describe the system architecture

in Sec. IV and the details of the actual construction in

Sec. V. The formal security analysis is done in Sec. VI. The

implementation details and the evaluation of the prototype is

provided in Sec. VII and VIII, respectively. Sec. IX describes

the related work and Sec. X contains concluding remarks.

II. PRELIMINARIES

We use Z to denote the set of integers, p for a prime number,

Zp = Z/pZ for the ring of integers modulo p and 1k for the

security parameter. For an integer n ≥ 1, [n] denotes the set

{1, . . . , n}.
We extensively use bilinear pairings in our work and they

rely on elliptic curve groups and the hardness of the discrete

logarithm problem (DLP) over elliptic curve groups. We give

a brief introduction to bilinear groups in Appendix A-A. We

use type III bilinear pairing groups [18] to build our scheme.

We represent them as (p,G, G̃,GT , e), where G, G̃,GT are

cyclic groups of prime order p and e : G × G̃ → GT is

an efficiently computable, non-degenerate, bilinear mapping.

Let G be an elliptic curve group of prime order p, DLP over

elliptic curves is defined as follows: Let P ∈ G be a point on

the curve and Q be a point in the subgroup generated by P .

DLP is the problem of finding x ∈ Z such that Q = xP . It

is assumed to be computationally hard. Note that we use the

additive notation for elliptic curve group operations.

A. ZERO-KNOWLEDGE PROOFS (ZKPS)

Zero-knowledge proof is a two-party protocol that enables a

prover to convince a verifier about the validity of a statement

without revealing any further information. For a comprehen-

sive introduction to ZKPs and ZKPoKs, one can refer to [21].

Here we outline the basic idea of Schnorr’s interactive ZKP

for discrete logarithms [32] used in our scheme. Let G be

a generator of the elliptic curve group G of prime order p
where DLP is assumed to be hard. Let Q and G be the two

publicly available elliptic curve points such that Q = xG

and x be the user’s secret. The protocol starts with the prover

(user) sending an elliptic curve point A = rG, where r is a

randomly chosen element in Zp, to the verifier. The prover

receives a random challenge c ∈ Zp from the verifier. The

prover sends z = (r + cx) mod p to the verifier and the

verifier is convinced of the user’s knowledge of the secret

x if zG = A + cQ. Schnorr’s protocol can be transformed

to the non-interactive ZKP setting using the Fiat-Shamir

heuristic [16].

For ZKPs we use notations from [13]. For example,

ZKPoK{(x1, . . . , xn) : R(x1, . . . , xn, y1, . . . ym) = true},

represents the prover’s knowledge of the secret values

(x1, . . . , xn) in zero-knowledge that satisfy a boolean rela-

tion R over the public inputs {y1, . . . ym}. The Schnorr’s

protocol described above can be represented as π =
ZKPoK{(x) : Q = xG}.

B. GENERALIZED PEDERSEN COMMITMENTS

A commitment scheme is a cryptographic algorithm that

enables a prover to commit to a message without re-

vealing it and without being able to modify it later. We

use the Pedersen commitment scheme [28] in this work

and in its generalized version, a prover can commit to

a set of messages m1, . . . ,mn ∈ Zp using a random

value r, C = Commit(m1, . . . ,mn; r) which it sends

to the verifier. C reveals no information about the mes-

sages and it is computationally hard to find another set

of messages (m′
1, . . . ,m

′
n) ̸= (m1, . . . ,mn) such that

Commit(m1, . . . ,mn; r) = Commit(m′
1, . . . ,m

′
n; r). The

construction relies on the hardness of the DLP problem.

• Setup. Pick an elliptic curve group G of prime order p
with generators G,H1, . . . , Hn where DLP is assumed

to be hard.

• Commit(m1, . . . ,mn; r) = rG+m1H1+ · · ·+mnHn.

There are efficient ZKPoK protocols that prove the knowl-

edge of the opening of a commitment that satisfy numerous

boolean relations over the commitment’s opening [2].

C. PUBLICLY VERIFIABLE SECRET SHARING

A publicly verifiable secret sharing (PVSS) scheme [35]

consists of a dealer and n participants. Each participant is

associated with a public-private key pair. The dealer splits

the secret into n shares and encrypts them with the public

keys of the participants and distributes it to the participants.

Anyone with access to the public keys of the participants

can verify the correctness of the distributed shares, but they

cannot view them. PVSS prevents malicious dealers from

sending incorrect shares to the participants.

D. THRESHOLD PS SIGNATURES

PS signatures [29] are short signatures based on type III

bilinear pairings. They are randomizable in the following

way: given a signature σ for a message m, aσ for a scalar

a ̸= 0, gives us a fresh signature for m. They are constant
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in size, unlike say, CL signatures [12] where the signature

size is linear in the number of messages to be signed. A

(t, n)− threshold credential issuance scheme requires at least

t signers out of n to issue an anonymous credential. PS

signatures do not support threshold issuance. The Coconut

implementation [34] addresses this limitation and introduces

threshold PS signatures. But the authors analyze the security

informally. Alfredo et al. [31] provides a formal security

proof for a modified Coconut scheme and DTRAC uses this

version, that provides unforgeability, for credential issuance.

For credential verification, however, we use the older version

of Coconut but this does not affect the correctness or security

of our scheme.

E. THRESHOLD OPENING SCHEME

A (t, n)− threshold opening scheme reveals/opens the user’s

identity associated with an anonymous credential if at least t
openers out of the n work together. In [9], a PVSS scheme

(see Sec. II-C) is used to integrate threshold opening with

threshold issuance for group signatures. The users send the

opening information required for anonymity revocation dur-

ing credential issuance, encrypted using the public keys of

the openers. A zero-knowledge proof is also sent by the user

to convince the issuers of the correctness of the encrypted

opening information. The issuance happens through a public

ledger so that the openers can collect the opening informa-

tion. Later, while revoking the anonymity, a threshold num-

ber of openers work collaboratively to identify the user. Note

that the threshold opening scheme for group signatures [9]

supports only one attribute and in DTRAC we extend it to

multiple attributes since credentials typically contain more

than one attribute. Typically, the openers are different entities

from the issuers.

F. TAMPER-RESISTANT PUBLIC LEDGER

Blockchains are based on a synchronized distributed ledger

technology (DLT), which acts as a decentralized database,

maintaining information replication and sharing among sev-

eral nodes distributed over remote locations, with a con-

sistent view across all the nodes. A blockchain thus offers

transparent, verifiable and tamper-proof data storage. Our

system uses the blockchain as a publicly distributed append-

only ledger. It ensures all the honest validators and openers

receive the same data and this enables threshold issuance and

threshold opening of a credential. Our PoC is implemented

over the Ethereum blockchain as its smart contracts allow for

the necessary mathematical operations and enable interaction

among distributed stakeholders in a tamper-resistant and

verifiable manner.

G. UNIVERSAL COMPOSABILITY FRAMEWORK

The UC framework [14], an ideal-world/real-world

paradigm, guarantees the security of protocols that are ar-

bitrarily composed of other instances of the same or different

protocols. This is useful in showing the security of our

scheme. To show the security of a protocol Π in the real

world in the UC framework, we have to first propose an ideal

functionality F which captures the desired/ideal properties

of the system. All the parties involved send their inputs to F ,

which locally computes the outputs and hands them back.

We say that the protocol Π in the real world UC-securely

realizes an ideal functionality F if the environment Z cannot

distinguish between an adversary A interacting with the

protocol Π from a simulator S , that we construct to simulate

the ideal adversary, interacting with the ideal functionalityF .

We first design a hybrid model where the real-world protocol

Π has access to certain functionalities in the ideal world and

show that it UC-securely realizes F . This is enough to show

the security of the protocol since the UC paradigm states that

if we replace each invocation of the ideal functionalities that

Π has access to with its corresponding real-world protocols

then Π securely realizes F in the real world.

III. DTRAC MODEL AND BUILDING BLOCKS

A. STAKEHOLDERS

Fig. 1 describes the stakeholders and their interactions with

each other. The user is an entity who wishes to remain

anonymous while availing of service from a service provider.

The service provider needs to verify if the user attributes

have been attested by the certifiers and if the attributes

satisfy certain conditions before providing a service. The user

relies on multiple certifiers to certify several subsets of her

attributes. She consents to have her anonymity revoked in

certain circumstances by a designated set of openers.

A certifier (CP) is an organization that certifies specific

user attributes. The CP is trusted to certify the attributes

correctly. In our scheme, we can have multiple CPs, each at-

testing to specific user attributes. After certifying the user at-

tributes, each CP issues a specially constructed and privacy-

preserving digital certificate called a verifiable certificate

(Vcert) (see Sec. III-C1) on those attributes. The actual

certification procedure depends on the use case and is outside

the scope of this paper.

The distributed validators are an independent set of au-

thorities where each validator issues the user with a partial

credential (Pcred) after verifying the Vcerts. At least a thresh-

old number of validators have to issue Pcreds to form an

anonymous credential of the user. They do not view the actual

attributes but only the ZKPoK that the attributes were verified

by the respective certifier.

The distributed openers can open an anonymous credential

if deemed necessary. They are typically an independent set of

authorities where each opener maintains a private registry to

store their opening share corresponding to each user. At least

a threshold number of openers have to work collaboratively

to open an anonymous credential, i.e., perform an anonymity

revocation.

A service provider (SP) provides a service to an authen-

ticated user anonymously. The SP verifies that the attributes

are validated by the (distributed) validators but in the pro-
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cess learns nothing about the user attributes unless the user

decides to disclose them.

User

Service
Provider

: 
. 

: 
. 

3.Request credential 

7.Receive partial  
credentials

4. Receive  
opening  
shares

9.Request service

5. Receive  
credential  

request

6.Issue  
partial  

credentials

10.Receive  
service request

11. Provides service

Distributed Openers

Distributed Validators

Blockchain

Certifier

1. Request Vcert

  2. Issue Vcert

8. Aggregate partial  
credentials

FIGURE 1: Stakeholders of DTRAC

B. THREAT MODEL

Our threat model assumes that the certifiers will do their job

of certifying the attributes correctly. We also assume that

they will not collude with each other. If they do collude,

since the Vcerts issued by multiple certifiers are linkable,

the information of each Vcert, and thus all the attributes of

the user, will be revealed. But in our scheme even if the

certifiers collude with the SP , the credential will remain

anonymous. In fact, the SP is not trusted and can collude

with all the other entities and the credential will still remain

unlinkable. The threat model assumes users to be potentially

malicious. Let nV and tV be the total number of validators

and the corresponding threshold value, respectively, and nO

and tO be the total number of openers and the corresponding

threshold value, respectively. Integrity and availability are

guaranteed under the corruption of a subset of validators that

are less than the min(tV−1, nV−tV ) and a subset of openers

that are less than the min(tO − 1, nO − tO). That is, forging

of a credential is prevented if there are at most tV −1 corrupt

validators. DTRAC also precludes the misuse of anonymity

revocation if there are at most tO − 1 corrupt openers. We

assume that the number of dishonest validators cannot exceed

the value min(tV −1, nV −tV ). If (nV −tV ) ≥ (tV −1) then

the maximum number of dishonest validators is t̃V = tV −1.

Otherwise, t̃V = (nV −tV ) < (tV −1). A similar assumption

holds for openers while revoking the anonymity of a user. An

opener who participates in the opening protocol is assumed to

share the correct opening information with the other openers.

We assume that the blockchain infrastructure is secure and

that adversaries do not control enough resources to disrupt

the decentralized consensus of the network. The adversary

can eavesdrop on all the blockchain transactions, and we

assume there exists a secure channel for off-chain commu-

nication.

C. BUILDING BLOCKS

DTRAC comprises the following building blocks – verifi-

able certificates (Vcerts), a multi-certifier model, a threshold

issuance scheme and a threshold opening scheme. They

are built using pairings-based cryptographic primitives, a

publicly verifiable secret sharing scheme (PVSS), threshold

PS signatures, Pedersen commitments, and zero-knowledge

proofs of knowledge (ZKPoKs), all of which we briefly

describe in Sec. II. A PVSS scheme helps integrate threshold

opening with the threshold issuance scheme. The opening

information is encrypted by the user using the public keys of

the openers and is shared with all the openers. The distributed

validators verify the correctness of the opening information

as part of threshold issuance using the PVSS scheme, which

does not happen in the Coconut scheme where opening is not

a feature.

As stated before, one of the novel features of DTRAC is

that it allows multiple certifiers to attest to specific attributes,

and we explain in detail the building blocks specially de-

signed for it below.

1) Verifiable Certificates

A verifiable certificate (Vcert) is an enhanced version of an

attestation certificate. The Vcert hides the user’s attributes but

still can be used to prove their authenticity. Using Vcerts,

the validators can verify that a certifier has attested the user

attributes, without actually viewing the attributes.

The user requests for a Vcert on a set of attributes using

the Pedersen commitment to her attributes and a ZKPoK,

to prove the correctness of the commitment. The binding

property of Pedersen commitments ensures that the user

cannot modify the attributes that she has committed to. A

certifier verifies the user’s attributes corresponding to the

commitment and signs on it. The Vcert comprises a) the

commitment to the user attributes and b) the digital signature

of the certifier who verified these attributes. The construction

is explained in Section V-A.

A user can have multiple Vcerts, each for a different set of

attributes. An identity provider, for example, can be a certifier

who verifies the user’s identity attributes and provides the

user with an identity Vcert. It is trusted to do that job

properly. Except for the identity provider (IdP), every other

certifier verifies the user’s identity based on the identity Vcert

provided by the user in zero-knowledge. All the Vcerts of a

particular user are linked by a secret master key, generated

once by the user. Note that the user has to use the same

secret master key for all the certifiers if the Vcerts have to

be consolidated into a single credential.

The Vcert issuance design supports all-or-nothing non-

transferability – if the user shares any one of her Vcerts

with another user, i.e. the user shares her Vcert with the

master secret key and the attributes, then it effectively means

she is sharing all her Vcerts. This should deter any user

from sharing them. To enable this, a public repository is

maintained by each certifier where it stores the encrypted
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user attributes, which can be decrypted using the user’s secret

master key.

2) Multi-certifier communication model

One of the novel features of DTRAC is that it allows mul-

tiple certifiers to verify disjoint subsets of user attributes.

For instance, we can have an identity provider confirming

the user’s identity attributes and an employer attesting to,

say, the user’s income attributes. Each certifier provides a

verifiable certificate (Vcert) to the user after verifying the

corresponding attributes. The actual process by which the

certifier verifies will depend on the application and is beyond

the scope of this work.

The multi-certifier model enables a user to obtain Vcerts

on different sets of attributes, each verified by the respec-

tive certifier in a privacy-preserving manner. The issuance

of a Vcert uses a non-interactive ZKP protocol that hides

the user’s secret master key. The Vcerts are then presented

to a set of distributed validators to obtain an anonymous

credential.

The multi-certifier model is more efficient than running

multiple instances of a single certifier threshold issuance

scheme, such as the Coconut scheme, in parallel. This is

because our model requires verification of only a single

credential by the SP as opposed to multiple credentials in

Coconut. For example, consider the loan application use case

discussed in Sec. I. On running two instances of the Coconut

scheme, the user gets two credentials – one based on her

identity attributes and another based on her income attributes.

The SP has to verify both credentials. In our proposed

scheme, the SP needs to verify only a single credential

and it contains all the required attributes. The two certifiers

provide attestation on their respective sets of attributes in

the form of an ID Vcert and an income Vcert and the

user requests an anonymous credential from the distributed

validators in a single interaction. Since DTRAC provides

a single credential, the size of the credential is constant

irrespective of the number of attributes. This is not the case

if we have different credentials for each set of attributes. The

performance benefit of having only one credential to verify

is very significant as we will show in Sec. VIII-C, where we

will compare the PoC we develop with the Coconut scheme.

In fact, the performance gain increases linearly as the number

of certifiers increases.

IV. SYSTEM ARCHITECTURE

Here, we give the system overview of our scheme. The

working of DTRAC is divided into four phases as depicted

in Fig. 2: Registration, Issuance, Verification and Opening.

We describe each phase and its corresponding cryptographic

methods below and in Sec. V we provide more details of all

these methods.

A. REGISTRATION PHASE

The steps 1.1 and 1.2 in Fig. 2 correspond to the registration

phase where a user obtains an attestation on her attribute

from a certifier in the form of a Vcert. As depicted in Fig. 3,

the user first computes the commitment C to her attribute

m and her secret master key sku using the GenCommitment

method. Also, to prove the correctness of the commitment,

she generates a ZKPoK using the GenZKPoK method. The

user sends the generated information to a certifier and re-

quests for a Vcert which is an off-chain communication. The

certifier verifies the ZKPoK using the VerifyZKPoK method.

Once the verification is successful, the certifier signs, sign,

on the commitment using the SignCommitment method, and

sends the Vcert, (C, sign), to the user.

The user can request multiple Vcerts on different sets

of attributes from the respective certifiers. If there is no

dependency between the Vcerts, the registration phase can

be parallelized.

B. ISSUANCE PHASE

In the issuance phase (Steps 2.1 - 2.4 in Fig. 2), the user

sends a credential request containing a commitment to a set

of attributes, Vcerts and the encrypted opening shares to

the validators and the openers through the blockchain. Each

validator verifies the request and issues a partial credential to

the user. The user needs to collect a certain number of partial

credentials, the value of which is set by the application, so

that they can be aggregated to form a single anonymous

credential.

The issuance protocol follows a modified PS threshold

issuance scheme, where tV out of nV partial credentials

will be aggregated to form an anonymous credential. The

credential request is generated using the PrepareCredRequest

method and sent to the distributed validators. As depicted

in Fig. 4, the credential request contains the following in-

formation: 1) Vcerts, 2) commitment to all the attributes

(Eq. 1), 3) commitments to individual user attributes (Eq.

2), 4) encrypted opening shares of the attributes, and 5) the

ZKPoKs proving that the attributes in the credential request

are attested by the certifiers (Eq. 8). The encryption of the

opening shares is performed using the public keys of the

corresponding openers (Eq. 5) and the proofs of correctness

of these ciphertexts in zero-knowledge are also provided (Eq.

7).

On receiving the request, each validator verifies the cor-

rectness of the attributes using the signature on the Vcert and

the ZKPoK. Once the verification is successful, the validator

issues a partial credential by blind-signing the attributes

using the BlindSign method. The user uses the Unblind

method to obtain the corresponding partial credential. Once

the user has the threshold number of partial credentials, she

aggregates them to form an anonymous credential using the

AggCred method, and stores it in her local storage.

The distributed openers retrieve their respective opening

shares from the credential request and store them in their

private registry (Step 2.2 in Fig 2).
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C. VERIFICATION PHASE

The user requests a service from the service provider (SP)

through the blockchain by providing the aggregated creden-

tial (Steps 3.1, 3.2, 4 in Fig. 2). In the verification phase, the

user has to prove to the SP that certain constraints over her

attributes are satisfied. For example, in the loan application

use case, she has to prove that her age is in a certain range

and her income is above a certain value.

As depicted in Fig. 5, prior to requesting a service, the

user randomizes her anonymous credential σ to obtain a

fresh credential σ′ and decides which attributes to disclose.

She generates the ZKPoK of the undisclosed attributes (Eq.

13) using the ProveCred method. She then requests the

service through the blockchain using σ′, the ZKPoK and

Generate
commitments

User

Generate  
opening shares

Verify 
Vcerts

Request 
 Credential

Validator

Setup and key
generation

Blockchain

Verify 
proofs

Generate proofs Abort 
request
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Abort 
request
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FIGURE 4: Issuance phase

the disclosed attributes. The SP verifies the ZKPoK and the

credential using the aggregated public key of the validators

(Eq. 14). Upon successful verification, the SP grants the

service.
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D. OPENING PHASE

The opening phase is executed by a designated set of dis-

tributed openers when it is deemed necessary to open the

credential (Steps 5.1-6.3 in Fig. 2). Each opener broadcasts

its opening information through the blockchain and upon

receiving this information from at least a threshold number of

openers, the openers execute the opening protocol to revoke

the anonymity of the credential. It does this by linking the

randomized credential used for the service request with the

session in which the credential was originally issued.

As depicted in Fig. 6, each participating opener computes

the opening information (Eq. 15) using the PreOpening

method and sends it over the blockchain. They also retrieve

the opening information from the other openers through the

blockchain. After retrieving a threshold number, an opener

calls the OpenCred method that outputs the issuance session

identifier reqid associated with the user credential (Eq. 16).

Since the Vcerts are linkable, the identity Vcert correspond-

ing to the reqid can be used to identify the user.
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(Compute opening
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share (O1)
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Receive  
opening 

 share (On)

reqid

Receive  
opening 
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(Compute opening

share (On))

Opener1 Openern

 OpenCred 
(O1,...,On)

FIGURE 6: Opening phase

Note that the openers cannot block the partial credential

being issued by the validators in the issuance phase, as the

openers only collect the opening information in this phase.

Due to the consensus property of blockchains, all the honest

parties – the validators and the openers – receive the same

information. Hence the same information cannot produce

different verification results if the parties are honest.

Role of Blockchain. Blockchain, being a distributed and

tamper-resistant public ledger, enables the openers to retrieve

the appropriate opening shares in the issuance phase, as the

roles of issuers and openers are separate. It also enables the

openers to communicate during the opening protocol. An

opener sends the opening information through the blockchain

while opening a credential and this ensures that all the

other openers receive the same information. The blockchain’s

consensus property makes it a stand-in for the public ledger.

E. PRIVACY PRESERVING LOANS – A USE CASE FOR

DTRAC

Let Alice be a salaried employee who wants to avail a

personal loan from a finance company, Bob. To be eligible

for the loan, she has to satisfy certain criteria say, her age

should be between 22 to 58 years and her monthly income

should be greater than a certain value, ‘X’. DTRAC enables

her to obtain a single credential that proves she satisfies all

the eligibility criteria without revealing any specific details

such as her actual age or income and also frees her from the

hassle of showing multiple documents. Moreover, Bob has

to verify only a single credential to accept or reject the loan.

Using DTRAC, Bob processes the loan without knowing the

actual age and income of Alice.

Alice obtains an ID Vcert on her identity attributes such as

name, age and address from one of the authorized certifiers.

She also obtains an income Vcert which is an attestation of

her income details from a certifier such as her employer on

attributes such as income, designation and company. She also

generates her secret master key, sku. To get a credential for

the loan application, Alice has to generate a commitment

on the subset of her attributes – name, age and income

– and sku and also generate the corresponding ZKPoKs

that indicate that she has indeed committed to the correct

attributes. Hence, the actual attributes are hidden from the

validators using commitments. She also shares the encrypted

opening shares so that the credential can be opened later, if

necessary. Alice sends the commitments of her attributes, the

Vcerts, and the ZKPoKs as part of a credential request on the

blockchain. The Vcerts and the ZKPoKs are verified on the

blockchain. On successful verification, each validator blind

signs the commitments to form a partial credential, Pcred.

Upon receiving a threshold number of partial credentials, the

user aggregates them to obtain a credential σ. To apply for the

loan, Alice randomizes the credential as σ′ and also generates

the ZKPoKs that prove that her age is in the required range

and her income is higher than the required value. Alice

presents σ′ and the ZKPoKs to Bob. Bob verifies σ′ using the

public key of the validators, and on successful verification,

starts processing the loan.

V. DTRAC CONSTRUCTION

Here, we describe the phases and the corresponding methods

of our scheme, DTRAC, in detail.
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A. REGISTRATION PHASE

To request for a Vcert on q attributes a1, . . . , aq from a

certifier, CP , the following steps are executed.

Setup and Key Generation. The certifier, CP , generates all

the public parameters for the Pedersen commitment

scheme and a public-private key pair (pkCP , skCP) ∈
G × Zp, where G is an elliptic curve group of prime

order p with G as its generator. The user generates a

secret master key, chosen uniformly at random from Zp,

and generated once per user. Let pku = skuG be the

public master key of the user.

Request Vcert. In order to request a Vcert, the user generates

the commitment to its attributes and a ZKPoK of its

correctness as follows.

1) GenCommitment(a1, . . . , aq, sku)→ (C, r). The user

selects a random r ∈ Zp and computes the Pedersen

commitment to her attributes and secret key as C =
Commit(sku, a1, . . . , aq; r).

2) GenZKPoK(C, sku, pku, a1, . . . , aq, r) → (π). The

user constructs a ZKPoK π that convinces the cer-

tifier that the corresponding user has knowledge of

the opening of the commitment and the public key

corresponding to the secret key, sku.

π = ZKPoK{(sku, r) : C =

Commit(sku, a1, . . . , aq; r) ∧ pku = skuG }.

She requests for a Vcert from the CP using π, C, pku
and a1, . . . , aq .

Issue Vcert. On receiving the request, the CP issues the

Vcert as follows.

1) VerifyZKPoK(C, a1, . . . , aq , pku, π, pkid) →
(true/false). The CP verifies the attributes provided

to it and the ZKPoK π sent by the user. On successful

verification, the CP stores the attributes encrypted

using pku in a public repository and returns true, else

false.

2) SignCommitment(C, skCP )→ (sign). The CP signs

C using skCP to obtain sign. The CP sends the

V cert = (C, sign) to the user.

3) VerifyVcerts(V cert, pkCP ) → (true/false). The

user executes this method to verify the signature

on the Vcerts. On successful verification it returns

true, else false. Note that anyone with access to the

certifier’s public key, pkCP , can use this method to

verify the signature on the Vcerts.

Note that the key generation step is done only once and

can be used for all future communication. As stated before,

our system supports a multi-certifier communication model

where multiple certifiers issue separate Vcerts for multiple

disjoint sets of user attributes (Sec. III-C2).

B. ISSUANCE PHASE

To construct the issuance phase, we modify Coconut’s thresh-

old PS signature scheme so as to incorporate two additional

information: a) Vcerts to allow for multi-certifier communi-

cation, and b) encrypted publicly verifiable opening shares

of user attributes and proofs of correctness of the shares to

enable optional revocation of anonymity. To accommodate

this we modify the PrepareBlindSign method of Coconut

[34, Sec. III.D] which is itself modified from [31, Sec.

7]. We refer to the modified PrepareBlindSign method as

PrepareCredRequest method.

Setup and Key Generation. The key generation of the val-

idators can be done using a distributed key generation

algorithm [23] but here, we rely on a single trusted party.

1) Setup(1k) → (pp). Let (p,G, G̃,GT , e) be a type

III bilinear group. Let G, G̃ be the generators of

G and G̃, respectively. Assuming there are q user

attributes, pick q group generators H1, . . . , Hq ∈ G,

randomly. The public parameter is given by pp =
(p,G, G̃,GT , e, G, G̃, {Hj}

q
j=1). Let RO : G → G

be a random oracle that generates an element from

the user’s commitment to act as the common base

for all the validators who validate the same credential

request.

2) ValidatorKeyGen(pp, tV , nV )→ (skv, pkv). It picks

skv = (x, {yj}
q
j=1) ∈ Z

q+1
p as the aggregated secret

key of the validators and sends the corresponding

Shamir secret shares (see Sec. A-B) of skv , ski =
(xi, {yi,j}

q
j=1), i ∈ [nV ] to the i-th validator. The ag-

gregated public key is pkv = (G̃, α̃, {βj , β̃j}
q
j=1) =

(G̃, xG̃, {yjG, yjG̃}
q
j=1) and the corresponding

share, pki = (G̃, α̃i, {βi,j , β̃i,j}
q
j=1) is the public key

of the i-th validator. .

3) OpenerKeyGen(pp) → (Fk, zk). Each opener k ∈
[nO] generates a public-private ElGamal key pair (Fk,

zk) ∈ G̃×Zp and initializes an empty registry Regk.

Credential Request. The user requests for a credential on

attributes (a1, . . . , aq) specific to the service. For a sim-

pler explanation, we assume that the credential request

is made using a single Vcert.

• PrepareCredRequest(a1, . . . , aq , sku, V cert) →
({Xj}

q
j=1, Ca, {(Uk, πk)}

nO

i=1, o, {oj}
q
j=1, πs). The

V cert has the form (C, sign), where C is the com-

mitment on both the user attributes a1, . . . , aq and

the master key sku and sign is the signature of the

certifier. The user computes a commitment Ca on the

attributes, a = (a1, . . . , aq) and hashes Ca to a point

H on G,

Ca = oG+

q∑

j=1

ajHj and H = RO(Ca). (1)

The user generates random values o1, . . . , oq ∈ Zp

and computes the commitment to each individual

attribute aj , j ∈ {1, . . . , q} as

Xj = ojG+ ajH. (2)

As stated in Sec. I, we modify the threshold opening

for group signatures in [9] to allow for multiple, say
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q, attributes. To achieve this, the user first picks q
polynomials of degree tO−1, where tO is the thresh-

old number of openers needed to open the credential,

to generate the Shamir secret shares of the attributes

(Eq. 3). These Shamir shares are then used to generate

the opening share (Eq. 4) which are encrypted using

the public keys of the openers similar to what is done

in [9]. The correctness is validated using Eq. 7 as we

use a commitment (Eq. 2) to hide the user attributes

from the validators.

Let Pj ∈ Zp[x] be a polynomial of degree tO−1 with

coefficients pj,1, pj,2, . . . , pj,tO−1 chosen arbitrarily

from Zp,

Pj = aj +

tO−1∑

l=1

pj,lx
l. (3)

For every opener Ok, k ∈ [nO], the user gener-

ates a Shamir secret share sk = (sk,1, . . . , sk,q)
of (a1, . . . , aq) and then calculates the k-th opening

share as

µk =

q∑

j=1

sk,j β̃j , (4)

where β̃j is a part of the public key of the validators.

The user encrypts µk with Fk, the public key of the

opener Ok, and a random rk ∈ Zp to obtain Uk, the

encrypted opening share of the opener Ok as

Uk = (Uk,1, Uk,2) = (rkG̃, rkFk + µk). (5)

These shares are sent to the public ledger along with

their ZKPoKs for which the user has to hide the

coefficients of the polynomial by constructing

Hj,l = pj,lH, j ∈ [q] and l ∈ [tO − 1]. (6)

The user generates the ZKPoK πk for each encrypted

opening share, Uk to prove the correctness of the

share as follows,

πk = ZKPoK{(rk, {oj}
q
j=1) : Uk,1 = rkG̃∧

e(H,Uk,2 − rkFk) =

q∏

j=1

e(Xj − ojG+

tO−1∑

l=1

klHj,l, β̃j)}.

(7)

The user sends the Vcerts and the request parame-

ters Λ = (Ca, {Xj}
q
j=1, {(Uk, πk)}

nO

k=1, πs) over the

ledger.

Correctness of credential issuance for the multiple

attribute extension. As stated before, the threshold

opening protocol in [9] works only for a single at-

tribute, whereas credentials typically contain more.

We have extended it to allow for multiple attributes

and we show below the correctness of this extension

w.r.t the issuance phase. That is, we show that the

construction of opening shares during the issuance

phase is correct and that it can be verified by the

pairing check we provide.

Consider the pairing equation in Eq 7. Expanding the

LHS, we get

e(H,Uk,2 − rkFk) = e(H,µk) (from Eq 5),

= e(H,

q∑

j=1

sk,j β̃j) (from Eq 4).

Expanding the RHS, we see below that we get the

same expression.

q∏

j=1

e(Xj − ojG+

tO−1∑

l=1

klHj,l, β̃j)

=

q∏

j=1

e(ajH +

tO−1∑

l=1

klHj,l, β̃j) (from Eq 2),

=

q∏

j=1

e(sk,jH, β̃j) (from Eqs 3 and 6),

=

q∏

j=1

e(H, sk,j β̃j)

= e(H,

q∑

j=1

sk,j β̃j).

Therefore, this equality check can be used to prove

that the k-th opening share is constructed correctly.

The user then generates the ZKPoK πs to prove the

authenticity of the attributes in zero-knowledge as

follows,

πs = ZKPoK{({aj}
q
j=1, o, {oj}

q
j=1, r) :

VerifyVcerts(V cert, pkCP)∧

C = Commit(a1, . . . , aq, sku; r)∧

Ca = oG+

q∑

j=1

ajHj ∧Xj = ojG+ ajH}.

(8)

Note that anyone with access to the public keys of

the openers can verify the correctness of the open-

ing shares but only the openers can decrypt it. On

successful verification of the proofs, each opener

decrypts his respective opening share and updates his

registry for the user with the session identifier reqid
as

Regk[reqid] = µk. (9)

Partial Credentials Issuance. Each validator Vi, i ∈ [nV ]
issues the blind signature σ̃i using the BlindSign method

to the user after verifying the Vcerts and ZKPoKs and

sends it through the ledger. The user retrieves this σ̃i and

unblinds it to compute Pcredi(σi) as follows.

1) BlindSign(ski, {Xj}
q
j=1, Ca, {(Uk, πk)}

nO

k=1, πs)

→ (σ̃i). Each validator computes H = RO(Ca)
and verifies the ZKPoKs, πs and πk, k ∈ [nO].
On successful verification, each validator computes

S̃i = (xiH +
∑q

j=1 yi,jXj), using its secret key
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(xi, {yi,j}
q
j=1), and sends the blind signature, σ̃i =

(H, S̃i) to the user.

2) Unblind(σ̃i, {oj}
q
j=1) → (σi). Let oj , j ∈ [q] be the

blinding factors used to build the commitment, Xj .

It parses σ̃i as (H, S̃i) and unblinds the signature to

obtain the partial credential,

σi = (H, S̃i −

q∑

j=1

oj β̃j). (10)

Credential Aggregation. Upon receiving a threshold num-

ber of Pcreds σi, i ∈ T , where T is a set of validator

indices from which the user receives the Pcred, the user

aggregates them locally using the AggCred method (Eq.

11) to form an anonymous credential σ.

• AggCred({σi}i∈T ) → (σ). Each σi is parsed as

(H,Si). The credential σ after aggregation is given

by

σ = (H,S) = (H,
∑

i∈T

wiSi), (11)

where wi is the Lagrange coefficient, defined as

wi =
∏

j∈T\{i}

j

(j − i)
mod p. (12)

C. VERIFICATION PHASE

Before verification, the service provider (SP) collects and

aggregates the verification keys of the validators to obtain

pkv as (G̃, α̃, {βj , β̃j}
q
j=1). This process happens only once

before any request.

1) ProveCred(pkv, a1, . . . , aq, σ)→ (κ, ν, σ′, πv).

Here, σ is parsed as (H,S) and pkv as (G̃, α̃, {βj , β̃j}
q
j=1).

The user chooses r, r′ ∈ Z
2
p and does the following : 1.

randomizes the credential σ to obtain σ′ = (H ′, S′) =
(r′H, r′S), 2. computes κ = α̃+

∑q
j=1 aj β̃j + rG̃ and

ν = rH ′ which are required later to verify σ′ without

disclosing the hidden attributes, and 3. generates the

ZKPoK

πv = ZKPoK{(a1, . . . , aq, r) : κ = α̃+

q∑

j=1

aj β̃j + rG̃

∧ ν = rH ′}. (13)

2) VerifyCred(pkv , σ′, κ, ν, πv ) → (true/false). Here,

σ′ is parsed as (H ′, S′) and the following checks are

done: 1. H ′ ̸= 1G, and 2. verifies πv and the following

pairing equation

e(H ′, κ) = e(S′ + ν, G̃). (14)

On successful verification it returns true, else false.

The verification process is the same as that of the

Coconut scheme and therefore we omit the proof of

correctness of the pairing check.

D. OPENING PHASE

In the opening phase, the openers are asked to revoke the

anonymity of a randomized credential σ′. The protocol is

run between all the openers, and the output is the issuance

session-id, reqid, corresponding to the session when the user

was originally issued the credential. Let O be the set of

participating openers with their respective private registries

Regk, k ∈ O. The following two methods are executed by

all the participating openers.

1) PreOpening(Regk, σ′). σ′ is parsed as (H ′, S′). To

reveal the user’s identity, each opener Ok calculates

Treqid,k = e(H ′, Regk[reqid]), (15)

for every reqid in his registry Regk. Then he broadcasts

{(reqid, Treqid,k)}reqid∈Regk to all the other participat-

ing openers.

2) OpenCred({{(reqid, Treqid,k)}reqid∈Regk}k∈O, σ
′, α̃).

The opening of a credential is essentially the verification

of a signature. Camenisch et al. [9] uses the latest

version of PS signatures [30] in his opening scheme

while the Coconut scheme uses an earlier version [29].

So we need to modify the opening equation in [9, Pt. 5,

GOpen Algorithm, Sec. 4.2] to support PS signatures of

the earlier version. (Note that the scheme in [9] uses an

additional scalar that we do not need here.) Here, σ′ is

parsed as (H ′, S′). For each reqid, the openers verify

e(H ′, α̃)
∏

j∈O

T
wj

reqid,j = e(S′, G̃), (16)

where wj =
∏

l∈O\{j}
l

(l−j) is the j-th Lagrange

coefficient. The reqid for which the above equation is

successful is the user corresponding to σ′.

Correctness of credential opening for the multiple at-

tribute extension. We now show the correctness of DTRAC’s

multiple attribute extension of threshold opening w.r.t. the

opening phase. That is, we show that the pairing check that

the openers do is valid for the reqid that needs to be revoked.
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Expanding the LHS of Eq.16, we get

e(H ′, α̃)
∏

j∈O

T
wj

reqid,j

= e(H ′, α̃)
∏

j∈O

e(H ′, Regj [reqid])
wj (from Eq 15),

= e(H ′, α̃)
∏

j∈O

e(H ′, µj)
wj (from Eq 9),

= e(H ′, α̃)
∏

j∈O

e(H ′,

q∑

i=1

sj,iβ̃i)
wj (from Eq 4),

= e(H ′, α̃)
∏

j∈O

e(H ′, wj

q∑

i=1

sj,iβ̃i),

= e(H ′, α̃)
∏

j∈O

e(H ′, wjsj,1β̃1 + · · ·+ wjsj,qβ̃q),

= e(H ′, α̃)e(H ′,
∑

j∈O

wjsj,1β̃1 + · · ·+
∑

j∈O

wjsj,qβ̃q),

= e(H ′, α̃+

q∑

i=1

aiβ̃i) (since ai =
∑

j∈O

wjsj,i),

= e(S′, G̃).

Given (H ′, S′) is a PS signature on (a1, . . . , aq), the last

equation holds since it is the verification equation of a PS

signature.

We also provide a detailed security analysis in the UC

framework in Sec. VI to ensure that the integration of

threshold opening with threshold issuance does not affect the

security and privacy of the anonymous credential scheme.

VI. SECURITY ANALYSIS IN THE UC FRAMEWORK

A. IDEAL FUNCTIONALITY FAC

We first describe the ideal functionality FAC of our scheme

that supports threshold issuance and threshold opening. For

the former, FAC interacts with the validators {V1, . . . ,VnV
}

and for the latter, FAC interacts with the openers {O1, . . . ,
OnO
}. The threshold values of the validators and openers are

tV and tO, respectively, i.e.,FAC assumes that at most tV −1
validators and at most tO − 1 openers are corrupt. The other

entities thatFAC interacts with include a user Uj , from the set

of all users U , and a service provider SP . The user takes a

pseudonym from the universe of pseudonyms, Up to present

a credential to SP , presents authenticated Vcerts from the

universe of Vcert validations, Uφ during credential issuance,

and shows a truth statement relating to attributes during

credential show from the universe of statements relating to

attributes, Uϕ. FAC stores and initializes three sets: LREQ

for credential requests, LISS for credential issuances and

LV ER for credential presentations. Each instance of FAC

is identified by a session identifier sid = (P, sid′) where

P = (V1, . . . ,VnV
,O1, . . . ,OnO

) and sid′ is a random

value that changes with each instantiation of FAC . The value

qid is used to identify messages that are being communicated

between entities. These messages are stored temporarily and

deleted soon after the simulator responds so as to avoid replay

attacks by the simulator. Since they are only temporarily

stored we do not specify exactly where these messages will

be stored. Note that when we say a fresh id is generated we

mean that the value is unique across sid, reqid, qid and vid,

where reqid and vid are session ids that uniquely identify

credential request and credential show, respectively.

Setup:

1) The validators and openers inform FAC that their

initialization is done. Each entity executes its initial-

ization as part of setup and a flag is set to indicate its

successful completion.

2) FAC verifies nV ≥ tV and nO ≥ tO.

Credential request:

1) When FAC receives the request (sid, a = (a1, . . . ,
aq), φ) from a user Uj , it creates a fresh qid and saves

(qid,Uj , a, φ).
2) FAC sends (sid, qid) to the simulator S and S sends

it back to FAC to simulate the real-world commu-

nication between the user and the validators and the

openers.

3) If φ ∈ Uφ and φ(a) = 1, i.e. if the attributes

(a1, . . . , aq) have been authenticated by the respec-

tive certifiers, FAC creates and stores a new record

(reqid,Uj , a, φ) in LREQ with a fresh reqid. This

tuple ensures that the validators and the openers can

later request theFAC to issue and open the credential,

respectively, if the attributes of Uj were authenticated

by the certifiers.

4) FAC outputs (sid, reqid, φ,Uj) to all the parties inP .

Note that a is always kept secret from the validators

and the openers.

5) FAC deletes the record (qid,Uj , a, φ) after all the val-

idators and the openers have received the credential

request.

Credential issuance:

1) Each validator now has (sid, reqid, φ,Uj) of the user,

Uj . It sends (sid, reqid) to FAC . If a request with

reqid is not present in LREQ, FAC aborts.

2) FAC creates a fresh qid and stores (qid,Uj , a, φ,Vi,
reqid) to indicate that Vi wishes to issue a partial

credential to Uj on attribute a.

3) FAC sends (sid, qid) to the simulator S and S sends

it back to FAC to simulate the real-world communi-

cation between the validator Vi and the user Uj .

4) FAC stores (reqid,Uj , a,V ∪ Vi,O) in LISS which

indicates that the user now has partial credentials

from the set of validators, V ∪ Vi.
5) FAC outputs (sid, a, φ,Vi) to Uj .

6) FAC deletes the record (qid,Uj , a, φ,Vi, reqid) to

indicate that Vi has issued the credential request.

Update information of openers:

1) Each opener now has (sid, reqid, φ,Uj) of the user,
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Uj . It sends (sid, reqid) to FAC . If a request with

reqid is not present in LREQ, FAC aborts.

2) FAC stores (reqid,Uj , a,V,O ∪Ok) in LISS which

indicates that the opener Ok has now updated its

private registry corresponding to reqid.

Presenting the credential (Credential Show) to SP:

1) When FAC receives the service request (sid, a =
(a1, . . . , aq), ϕ, P,SP) from a user Uj with a

pseudonym P , it creates a fresh qid and saves

(qid, ϕ,SP, a, P ).
2) FAC sends (sid, qid) to the simulator S and S sends

it back to FAC to simulate the real-world communi-

cation between the user Uj and the SP .

3) If P ∈ Up and a record (reqid,Uj , a,V,O) is stored

such that |V| ≥ tV if Uj is honest, or |V| ≥ t′V
if Uj is corrupt, where t′V = tV − t̃V (t̃V is the

number of corrupt validators), and ϕ(a) = 1, i.e. the

attributes a1, . . . , aq satisfy the service policy, FAC

creates and stores a new record with a fresh vid,

(vid, a) in LV ER. This tuple uniquely identifies a

credential show.

4) FAC outputs (sid, ϕ, vid, P ) to SP .

5) FAC deletes the record (qid, ϕ,SP, a, P ) to indicate

that the service request has been taken care of.

Opening the credential:

1) Suppose FAC receives an open request (sid, vid)
from an opener Ok. If there is a credential with vid
in LV ER, FAC stores the record (vid,O′ ∪Ok). This

indicates that the set of openers, O′ ∪Ok, has agreed

to open the credential.

2) FAC sends (sid, vid) to all the other openers and

S to simulate the real-world communication of the

openers.

3) FAC (and thus Ok) waits until the condition |O′| ≥
tO is true, i.e. until a threshold number of openers

agree.

4) If a record (Uj , reqid
′, a,V,O) is present in LREQ

such that |O ∩ O′| ≥ tO, i.e. if the threshold number

of openers have updated their private registry corre-

sponding to attribute a, set reqid = reqid′ else set

reqid = ⊥.

5) FAC outputs (sid, vid, reqid) to Ok.

FAC guarantees the following security properties.

1) Unforgeability. FAC ensures that the attributes a =
a1, . . . , aq that satisfy ϕ have to be validated by at least

tV validators, i.e. at most one honest validator has to

issue a partial credential.

2) Authenticity and Blindness. A validator never gets to see

the attributes a = a1, . . . , aq and only learns that the

attributes satisfy φ ensuring authenticity and blindness.

3) Optional Unlinkability. FAC does not impose any re-

striction on the value of the pseudonym when the user

presents the credential to the SP which allows for

optional unlinkability. If different pseudonyms are used

then it provides unlinkability, else no.

4) Accountability and Unanimity. When at least a threshold

number of openers agree, then the reqid is revealed by

the FAC , thus providing accountability. All the openers

open to the same reqid which ensures unanimity.

B. REAL-WORLD PROTOCOL ΠAC

We define the real-world protocol ΠAC corresponding to

the ideal functionality FAC . ΠAC makes use of the follow-

ing ideal functionalities: FKG for key generation of valida-

tors and key registration of openers, FBC for broadcasting

messages, FAUT H for transmitting authenticated messages,

FNYM for pseudonymous communication and FRO for

random oracle functionality, to securely realize FAC in the

hybrid-world. These ideal functionalities are described in

more detail in Appendix B. We assume that every entity in

the system implicitly queries FKG to retrieve the public keys

of the validators and the openers. ΠAC uses five types of

storages: LUj ,REQ for each user Uj to store the information

in the credential request which is to be used later by Uj after

receiving the blind signatures from the validators, LVi,REQ

and LOk,REQ for each validator Vi and each opener Ok,

respectively, to store the successful credential requests, LISS

for each user to store the credentials, and LV ER for the SP
to store the service requests.

Setup:

1) A validator Vi obtains their signing key pair (ski, pki)
and the public key pk for credential verification from

FAC .

2) An opener Ok generates its public-private key pair

(opkk, oskk) and requests FAC to register its public

key.

3) The setup flag is set to true to indicate that all the

validators and the openers have executed their setup

initialization.

Credential request:

1) A user Uj with attributes a = (a1, . . . , aq) computes

a commitment on the attributes, Ca (Eq. 1).

2) The user Uj then sends Ca to FRO and receives H
(Eq. 1), where FRO ensures that the validators agree

on a common randomness H .

3) Uj computes the commitment Xj on the individual

attribute aj (Eq. 2) which is used by the validators to

blind sign the user attributes.

4) Uj also computes the opening shares for the openers

and encrypts the k-th opening share for eachOk using

the public key of the k-th opener(Eq. 5).

5) Uj computes {Hj,l}j ∈ [q], l ∈ [tO − 1] and πk to

help verify the validity of the k-th encrypted opening

share, Uk (Eqs. 6, 7).

6) Uj picks reqid
$
← Zp, stores (sid, a, o1, . . . , oq,Λ =

(Ca, {Xj}j ∈ [q], H), φ, reqid) in LUj ,REQ, where

q is the number of attributes, oj is a blinding factor

(Eq. 2) used in the commitment Xj and Λ is a tuple

that contains the commitments and H .

7) Uj sends (⟨Λ, πs, {(Uk, πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1],
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φ, reqid⟩,P), a credential request, to FBC that sends

the request to all the validators and openers.

8) Each validator Vi and opener Ok receives (⟨Λ, πs,
{(Uk, πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1], φ, reqid⟩,Uj ,
P) from FBC , where the set P convinces the val-

idators that all the openers were sent the credential

request.

9) They send Ca to FRO and receives H ′.

10) If H ′ = H and the ZKPoKs sent πs and {πk}k∈[nO]

are valid, Vi stores (sid,Uj , reqid, Ca, {Xj}j∈[q], H,
Vi) in LVi,REQ and Ok stores (sid,Uj , reqid,H,
Uk,Ok) in LOk,REQ to indicate that the credential

request has been successfully verified.

Credential issuance:

1) Each validator Vi now has (sid,Uj , reqid, Ca,
{Xj}j∈[q], H,Vi) in LVi,REQ for a user, Uj .

2) Vi computes the blind signature σ̃i using H and

{Xj}j∈[q] (see BlindSign method in Sec. V-B).

3) Vi sends (⟨reqid, σ̃i⟩,Uj) to FAUT H.

4) Uj receives (⟨reqid, σ̃i⟩,Vi)) from FAUT H and un-

blinds σ̃i to σi (Eq. 10).

5) Uj updates the entry (reqid, a,V ∪ (Vi, σi), σ) in

LISS , where V is initialized to ∅ and σ is initialized

with ⊥.

6) If |V| ≥ tV , Uj computes the credential σ using

the AggCred method and σi‘s as input (Eq. 11) and

updates the above entry to (reqid, a,V, σ).

Update information of openers:

1) Each opener Ok now has (sid,Uj , reqid,H,Uk,Ok)
in LOk,REQ from a user, Uj .

2) Ok decrypts the k-th opening ciphertext Uk to ob-

tain µk and appends its local registry as follows:

Regk[reqid] = µk (see Eq. 9).

Presenting the credential (Credential Show) to SP:

1) Uj now has a record (reqid, a,V, σ) that contains the

credential, σ.

2) Uj randomizes the credential σ as σ′ and computes κ
and ν (see ProveCred method in Sec. V-C).

3) Uj generates the ZKPoK πv ( Eq. 13) that convinces

the verifier of Uj’s knowledge of the attributes a =
(a1, . . . , aq).

4) Uj picks a pseudonym P and sends the service re-

quest (⟨σ′, ϕ, κ, ν, πv⟩, P,SP) to FNYM that sends

the request to SP .

5) SP on receiving (⟨σ′, ϕ, κ, ν, πv⟩, P ) from FNYM

verifies σ′ using κ, ν and the public key of the

validators, pk (Eq. 14).

6) If the ZKPoK πv is valid, SP picks a fresh vid
to uniquely identify the credential presentation and

records (vid, σ′) in LV ER.

Opening the credential:

1) Each opener Ok is asked to revoke the anonymity of

the user corresponding to the session given by vid.

2) Ok finds the corresponding σ′ in LV ER and com-

putes Treqid,k (Eq. 15) for every reqid stored in

Ok’s private registry, Regk. This helps to revoke the

anonymity for a particular credential usage.

3) Ok sends the opening information to the other open-

ers by sending ({Treqid,k}reqid∈Regk ,O \ Ok) to

FBC .

4) Ok waits till it receives (⟨{Treqid,l}reqid∈Regl⟩,Ok,
O\Ok) from at least tO−1 number of openers, where

l ̸= k.

5) If the opening information for any reqid satisfies Eq.

16, Ok outputs reqid, otherwise outputs ⊥.

C. SIMULATOR DESIGN

We design a simulator S which interacts with an adversary

A that controls tO − 1 openers and tV − 1 validators.

The simulator, S is an algorithm that simulates both the

honest parties that interact with a real-world adversary, A
and the ideal world adversary that interacts with the ideal

functionality, FAC . We go on to show that the real-world

adversary’s view can be simulated by S . The honest entity

interaction with other honest entities is captured by the ideal

functionality FAC . We now describe the interaction between

an honest entity and a corrupt entity. A simulator S does the

setup by receiving the signing keys of the validators from

FKG and generates the keys of the openers and registers the

public keys of the openers with FKG . The corrupt entities

(adversaries) collect their respective keys from the simulator

S .

Honest Uj requests a credential from a corrupt Vi. When

FAC sends (sid, qid) to S in the credential request,

S sends (m,Uj ,P) to A, where m is the credential

request message that the honest Uj sends to the val-

idators and the openers. When FAC sends (sid, reqid,
φ,Uj) to a corrupt validator Vi, S runs a copy of

Uj with the input (sid, a′, φ) where a′ is either set

to a, if Uj stores a tuple (sid, a, o1, . . . , oq,Λ, {(Uk,
πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1], φ, reqid), else a′ is

chosen at random. S computes the simulated proofs

πs and {πk}k∈[nO], stores the tuple (sid, a, o1, . . . ,
oq,Λ, {(Uk, πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1], φ, reqid)
and sends the message (⟨Λ, πs, {(Uk, πk)}k∈[nO],
{Hj,l}j∈[q],l∈[tO−1], φ, reqid⟩,P) to FBC . When FBC

sends (⟨Λ, πs, {(Uk, πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1],
φ, reqid⟩,Uj ,P), S forwards that message to A.

Honest Uj sends opening information to corruptOk. Here,

the simulator S acts similar to “Honest Uj requests

a credential from a corrupt Vi”. But here FAC sends

(sid, reqid, φ,Uj) to the corrupt opener Ok instead of

a corrupt validator Vi.
Corrupt Uj requests a credential from an honest Vi.

When an adversary A sends (⟨Λ, πs, {(Uk, πk)}k∈[nO],
{Hj,l}j∈[q],l∈[tO−1], φ, reqid⟩,P) to FBC , S runs

FBC with that message. FBC sends (⟨Λ, πs, {(Uk,
πk)}k∈[nO], {Hj,l}j∈[q],l∈[tO−1], φ, reqid⟩,A,P) to Vi.
If A had already sent that message then S retrieves

the stored tuple (sid, ⟨Λ, {(Uk, πk)}k∈[nO], φ, reqid⟩,
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⟨a1, . . . , aq, o, o1, . . . , oq⟩). Otherwise, S performs the

following steps.

1) S verifies πs and {πk)}k∈[nO] using φ, pk, and

(Ca, {Xj}j∈[q], H, {Uk}k∈[nO]). Abort if any of the

proofs are not correct.

2) S runs an extractor algorithm for the ZKPoK, πs to

extract the witness (a1, . . . , aq, o, o1, . . . , oq).
3) If there is a tuple (sid, ⟨Λ = (C ′

a, {X
′
j}j∈[q],

H ′), {(Uk, πk)}k∈[nO], φ, reqid⟩, ⟨a
′
1, . . . , a

′
q, o

′, o′1,
. . . , o′q⟩) stored such that C ′

a = Ca but (a′1, . . . ,
a′q) ̸= (a1, . . . , aq), S outputs failure.

4) Otherwise, S stores the tuple (sid, ⟨Λ = (Ca,
{Xj}j∈[q], H), πs, {(Uk, πk)}k∈[nO], φ, reqid⟩, ⟨a1,
. . . , aq, o, o1, . . . , oq⟩) and sets a← (a1, . . . , aq).

5) S sends (sid, a, φ) to FAC . When FAC sends (sid,
qid), S sends (sid, qid) back to FAC .

Honest Vi issues a credential to a corrupt Uj . When FAC

sends (sid, qid) during the credential issuance phase,

S sends (m,Uj) to A, where m is the blind signature

message that the honest Vi sends to the user, Uj . When

FAC sends (sid, a, φ,Vi) to Uj , S finds the stored tuple

(sid, ⟨Λ = (Ca, {Xj}j∈[q], H), πs, {(Uk, πk)}k∈[nO],
φ, reqid⟩, ⟨a1, . . . , aq, o, o1, . . . , oq⟩) with a = (a1,
. . . , aq). S computes the blind signature σ̃i, stores

the tuple (sid, a1, . . . , aq, φ,Vi) and sends the message

⟨reqid, σ̃i⟩ to A.

Corrupt Vi issues a credential to an honest Uj . When

an adversary A sends the message (⟨reqid, σ̃i⟩,Uj), S
runs FAUT H with that message. When FAUT H sends

(⟨reqid, σ̃i⟩,Vi,Uj)), S runs the copy of Uj with reqid.

When the copy of Uj outputs (sid, a, φ,Vi), S sends

(sid,Uj , reqid) to FAC . When FAC sends (sid, qid), S
forwards it to FAC .

Honest Uj shows a credential to a corrupt SP . When FAC

sends (sid, qid), S leaks the length of m to A, where

m = ⟨σ′, ϕ, κ, ν, πv⟩ is the message sent by an honest

Uj to SP . WhenFAC sends (sid, ϕ, vid, P ) to a corrupt

SP , S sets the message to be sent to A as follows.

1) S picks random t1
$
← Zp, t2

$
← Zp and t3

$
← Zp and

computes σ′ ← (t1G, (t1t2)G), κ← (t2+t3)G2 and

ν ← (t1t3)G. S generates a simulated proof πv .

2) S sends the message (⟨σ′, ϕ, κ, ν, πv⟩, P,SP) to A.

Corrupt Uj shows a credential to an honest SP . When

an adversary A sends the message (⟨σ′, ϕ, κ, ν, πv⟩, P,
SP), S runs FNYM on that message. When FNYM

leaks the length of the tuple, l(⟨σ′, ϕ, κ, ν, πv⟩), S for-

wards it to A. When FNYM sends (⟨σ′, ϕ, κ, ν, πv⟩, P,
SP), S verifies σ′ and the proof πv and proceeds as

follows.

1) S runs the extractor algorithm to extract the witness

(a1, . . . , aq, r) from the proof πv .

2) S parses σ′ as (H ′, S′) and runs the verification

equation e(H ′, α̃ +
∑q

j=1 aj β̃j) = e(S′, G̃). If the

verification fails, S outputs failure.

3) S checks that there are at least tV −t̃V tuples (sid, a1,
. . . , aq, φ,Vi) stored for tV − t̃V different validators,

where t̃V is the number of corrupt validators. If not,

S outputs failure.

4) S sends (sid, ϕ, P,SP) to FAC . When FAC sends

(sid, qid), S forwards it to FAC .

HonestOk sends opening information to a corrupt opener

Ol. When FAC sends (sid, vid), S sends (vid,m,
O \ Ok) to FBC and A, where m is a message that

contains the opening information that an honest opener

sends to a corrupt opener. When FAC sends (sid, vid)
to a corrupt opener Ol, S runs a copy of the opener

Ok on the input (sid, vid). When the copy of Ok

sends the message (⟨{Treqid,k}reqid∈Regk⟩,O \ Ok) to

FBC , S runs FBC on that message. When FBC sends

(⟨{Treqid,k}reqid∈Regk⟩,Ok,O \ Ok), S forwards it to

A.

Corrupt Ok sends opening information to an hon-

est opener Ol. When A sends the message

(⟨{Treqid,k}reqid∈Regk , vid⟩,O \ Ok), S runs FBC on

that message. When FBC sends (⟨{Treqid,k}reqid∈Regk ,
vid⟩,Ok,O \ Ok), S sends it to A. When adversary A
responds, S sends (sid, vid) to FAC . When FAC sends

(sid, vid), S sends (sid, vid) back to FAC .

Theorem VI.1. When a subset of validators up to tV −1 and

a subset of openers up to tO − 1 are corrupt, ΠAC securely

realizes FAC in the (FKG , FBC , FAUT H, FNYM, FRO) -

hybrid model if a) the non-interactive zero-knowledge proofs

of knowledge scheme is weakly simulation extractable, b) the

PS signature scheme is unforgeable, and c) the commitment

and encryption schemes are hiding and binding.

Proof. We show through a series of hybrid games that the

environment Z cannot distinguish the real world from the

ideal world. We denote the probability that Z distinguishes

Game i from the real-world protocol as Pr[Game i].
Game 0: This is the real-world protocol. Therefore,

Pr[Game 0] = 0.

Game 1: This game proceeds as Game 0, except that

Game 1 runs the extractors for the non-interactive proofs

of knowledge πs, {πk}k∈[nO] and πv . Under the weak sim-

ulation extractability property of NIZK proof system, we

have that |Pr[Game 1] − Pr[Game 0]| ≤ AdvextA , where

AdvextA represents the adversary’s advantage of breaking

the weak simulation extractability property. Weak simulation

extractability [1] implies that if an adversary generates a

new NIZK proof which it has not seen previously then the

extractor, an efficient algorithm, can extract the witness. That

is, an adversary cannot generate new proof unless he knows

a witness.

Game 2: This game proceeds as Game 1, except that

Game 2 outputs failure if two request messages were re-

ceived with commitments C ′
a and Ca, and proofs π′

s and

πs such that C ′
a = Ca but after extraction of the witnesses

from π′
s and πs, (a′1, . . . , a

′
q) ̸= (a1, . . . , aq). Under the

binding property of the commitment scheme, we have that
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|Pr[Game 2] − Pr[Game 1]| ≤ AdvbinA , where AdvbinA

represents the adversary’s advantage of breaking the binding

property.

Game 3: This game proceeds as Game 2, except that,

after extracting the witness (a1, . . . , aq, r) from the proof πv ,

Game 3 outputs failure if σ′ is not a valid signature. But

σ′ is always a valid PS signature on (a1, . . . , aq) and thus

|Pr[Game 3]− Pr[Game 2]| = 0.

Game 4: This game proceeds as Game 3, except that

Game 4 outputs failure if the adversary was not issued at

least tV − t̃V signatures on the messages (a1, . . . , aq). Under

the unforgeability property of PS signatures in the random

oracle model, we have that |Pr[Game 4] − Pr[Game 3]| ≤

AdvunfA · (nV −t̃V )!

(tV −1−t̃V )!·(nV +1−tV )!
, where AdvunfA represents

the adversary’s advantage of forging the PS signatures in the

RO model (see [31, Th. 4]).

Game 5: This game proceeds as Game 4, except that in

Game 5 the ZKPoKs πs, {πk}k∈[nO] and πv that are sent

to the adversary are replaced by simulated proofs. Under

the zero-knowledge property, we have that |Pr[Game 5] −
Pr[Game 4]| ≤ AdvzkA , where AdvzkA represents the adver-

sary’s advantage of breaking the zero-knowledge proofs.

Game 6: This game proceeds as Game 5, except that

in Game 6 the values {Xj}j∈[q] and {Uk}k∈[no] in each

request are replaced by random elements in G and G̃ × G̃.

At this point, the proofs πs and πk’s are simulated proofs of

false statements. Since the values {Xj}j∈[q] and {Uk}k∈[no]

are randomly distributed, this change does not alter the

view of the environment. Thus we have |Pr[Game 6] −
Pr[Game 5]| = 0.

Game 7: This game proceeds as Game 6, except that in

Game 7 the commitments to the attribute a = (a1, . . . ,
aq) are replaced by commitments to random messages and

the corresponding ElGamal encryption of opening shares

are generated. Since the Pedersen commitment scheme and

ElGamal encryption scheme are information-theoretically

hiding, we have that |Pr[Game 7]− Pr[Game 6]| = 0.

Game 8: This game proceeds as Game 7, except that in

Game 8, the values σ′, κ, and ν are computed as follows.

Pick random t1
$
← Zp, t2

$
← Zp and t3

$
← Zp. Set σ′ ←

(t1G, (t1t2)G), κ ← (t2 + t3)G2 and ν ← (t1t3)G. These

values follow the same distribution as the ones computed by

the honest user in the real-world protocol. Therefore, we have

that |Pr[Game 8]− Pr[Game 7]| = 0.

Game 9: This game proceeds as Game 8, except that

Game 9 outputs failure if the openers either do not output

a reqid or output more than one reqid.

Case 1: If the openers do not open the credential to any

reqid, it implies the openers do not have the corresponding

shares to open the credential. As every genuine credential

request is issued by honest validators and the corresponding

opening information is stored by the openers, the user must

have used a credential that was not issued by honest valida-

tors.

Case 2: If the openers open a credential to multiple

TABLE 1: Software specifications of PoC

Particulars Specification Version

Blockchain Ethereum 1.0

Ethereum emulator Ganache 2.5.4

Smart contracts Solidity 0.5.16

Cryptographic library py_ecc 5.2.0

reqid’s, it implies the opening shares satisfy attributes of

multiple sessions. As every credential is identified by a

unique set of attributes, the adversary to succeed should gen-

erate a new signature (m′, σ′), given the message-signature

pair (m,σ′).

Therefore, in both cases, the distinguishable probability

of Game 9 from Game 8 is the advantage of the ad-

versary winning a forgery game. Under the unforgeabil-

ity property of PS signatures in the random oracle model,

we have that |Pr[Game 9] − Pr[Game 8]| ≤ AdvunfA ·
(nV −t̃V )!

(tV −1−t̃V )!·(nV +1−tV )!
, where AdvunfA represents the adver-

sary’s advantage of forging the PS signatures in the RO

model.

VII. IMPLEMENTATION

DTRAC uses the Ethereum blockchain for a tamper-resistant

ledger. Table 1 shows the details of the experimental setup of

our PoC implementation using Ganache, a private blockchain

node for Ethereum application development. The smart con-

tract library is implemented using Solidity v0.5.16. The client

uses web3.py as the Python interface to interact with the

blockchain. The underlying cryptographic elliptic curve li-

brary used is py_ecc due to its support of alt_bn128, a type III

pairing curve available on Ethereum through a precompiled

contract.

Smart Contract deployment. The smart contracts in

Ethereum have a limitation that their maximum size has to be

24KB, beyond which it runs out of gas. DTRAC, therefore,

uses five smart contracts – Params, Request, Issue, Verify,

and Opening – to support all the required functionalities. The

smart contracts Params, Request, and Issue are deployed by

the validators, Verify is deployed by the SP , and Opening is

deployed by the openers. The Params smart contract stores

the public keys of the validators, certifiers, and openers, and

can be accessed by other smart contracts. A credential request

is made by the user through the Request smart contract using

the RequestCred method that verifies the credential request.

As the credential request is verified using a smart contract

method and not done off-chain, only genuine credential re-

quests are sent to the validators and the BlindSign method

need not verify the ZKPoK of the credential request. The

validators send the blind signature to the user through the

Issue smart contract using the SendBlindSign method. The

Verify smart contract allows all the blockchain nodes to verify

the service request of the user using the VerifyCred method.

In the opening phase, each opener sends the opening infor-

16

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3225439

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



T. V. Pavan Kumar B et al.: Threshold Opening and Threshold Issuance of Anonymous Credentials for a Multi-certifier Communication Model

TABLE 2: Parameters for loan application use case

Category Value

Certifier 2

Validators (total, threshold) (4,3)

Openers (total, threshold) (4,3)

Identity attributes Name, Age, Address

Income attributes Income, Role, Company

Credential attributes Name, Age, Income

mation to the other openers through the SendOpeningInfo

method of the Opening smart contract.

Optimizations. The precompiled smart contract in EVM 1

that performs pairing checks and elliptic curve operations on

alt_bn128, does not support addition and scalar multiplica-

tions in G̃, where (p,G, G̃,GT , e) is the bilinear group that

we use in our scheme. Coconut has implemented a smart

contract library for these operations, but it is computationally

expensive and impractical on Ethereum due to the block gas

limit. In our scheme, a scalar multiplication in G̃ is replaced

with a scalar multiplication in G and a pairing check, all of

which consume less gas. For instance, let G ∈ G, G̃ ∈ G̃ and

r be randomly chosen from Zp. Instead of calculating rG̃ on

the smart contract, R = rG̃ and r are given as inputs to the

smart contract so that it can verify e(G,R) = e(rG, G̃) to

confirm whether R = rG̃ or not. This reduces the gas cost at

the expense of increasing the input size.

Mitigating potential attacks. Ethereum transactions are

vulnerable to replay attacks and an adversary can access the

service by replaying the transaction. To mitigate this we use

a timestamp as a public input in the ZKPoK generation as

part of the ProveCred method. Our scheme is secure against

Sybil attacks because the Vcerts are linkable. A man-in-the-

middle attack will not succeed because it is almost impossible

for an eavesdropper to generate a valid ZKPoK for a fresh

randomized signature. DDoS attacks are possible but expen-

sive because of the Ethereum transaction fee. Impersonation

attacks are possible if the certifier is malicious but difficult in

the multi-certifier model with honest certifiers. We describe

these attacks in detail in Appendix C.

PoC implementation. The feasibility of DTRAC is vali-

dated by considering the loan use case described in Sec. IV-E.

Table 2 depicts the parameters configured for the loan use

case. The certifiers, IdP and the employer provide an ID

Vcert and an income Vcert, respectively. The user has to

obtain the credential on a subset of attributes such as name

and DoB from the set of identity attributes and income from

the income Vcert. We consider four distributed validators and

four distributed openers over the Ethereum blockchain with

the threshold parameter set to three for both.

1EVM (Ethereum Virtual Machine) is a sandbox attached within each
Ethereum full node for executing a smart contract bytecode

TABLE 3: Gas consumptions in smart contract deployment

Smart contract Gas consumption Who deploys

Params 943,665 Validator(s)

Request 4,151,748 Validator(s)

Issue 223,994 Validator(s)

Verify 2,400,412 Service Provider

Opening 277,563 Opener(s)

VIII. EVALUATION

The experiments were performed on Ubuntu Linux LTS

20.04 desktop computer with an Intel Xeon W-2133

CPU@3.60 GHz processor having 6 cores, 12 threads and

32GB RAM. We use the following two metrics to measure

the performance overhead.

1) Gas refers to the fee to be paid by a user when executing

a transaction on the Ethereum blockchain and it depends

on the complexity of the operations involved. Every

block in Ethereum has a gas limit (30M as of May 2022)

which determines the number of transactions in a block.

2) Execution time refers to the time required to run each

off-chain method in our system.

We evaluated our system for the loan application use case

and bench-marked a) the deployment gas costs for the five

smart contracts, b) the average gas costs for the execution

of the smart contract methods, and c) the average execution

times of the cryptographic primitives of all the four phases.

A. DEPLOYMENT OVERHEAD OF SMART CONTRACTS

Table 3 depicts the deployment gas consumption of Params,

Request, Issue, Verify and Opening smart contract, deployed

on a Ganache private node and also gives details of who

pays for the deployment gas cost. This deployment is done

only once for the loan application use case. Ideally, all the

validators should collectively pay the gas fee for deploying

the Params, Request and Issue smart contracts and all the

openers should collectively pay for deploying the Opening

smart contract, but the current implementation allows only

one of the validators and one of the openers to pay the fee.

B. EXECUTION OVERHEAD OF CRYPTOGRAPHIC

PRIMITIVES

Tables 4, 5, 6 and 7 depict the average execution time of the

cryptographic primitives involved in various phases of the

system over 20 iterations. Table 4 depicts the execution times

of cryptographic primitives in the registration phase for the

ID Vcert and income Vcert requests. One can see that there

is a large gap between the execution times of GenZKPoK

and VerifyZKPoK of the ID Vcert and income Vcert. This is

due to the additional overhead for the employer in verifying

the ID Vcert in zero-knowledge. Tables 5 and 6 measure the

excecution times for the issuance and verification phase, re-

spectively. In Table 5, the aggregation time measures the time

to aggregate three partial credentials. For the opening phase,

Table 7 shows the average execution time of comparing a

credential against each record in the opener’s registry. The

execution time grows linearly with the number of users as
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the opener has to check the credential against all the reqid’s

in the system until he finds the correct user.

TABLE 4: Execution time for methods in the Registration phase

ID Vcert (ms) Income Vcert (ms)

Method name Mean Std Mean Std

GenCommitment 65.15 3.21 89.47 0.30

GenZKPoK 45.01 0.85 124.66 6.66

VerifyZKPoK 92.27 0.33 249.33 12.81

SignCommitment 22.01 1.68 21.26 2.04

VerifyVcerts 44.97 0.27 45.01 0.25

TABLE 5: Execution time for methods in the Issuance phase

Method name Mean (ms) Std (ms) Location

PrepareCredRequest 8,911.58 58.05 Local

RequestCred 35,275.06 518.63 On-chain

BlindSign 159.11 1.34 Local

Unblind 22.05 4.79 Local

AggCred 23.40 0.25 Local

TABLE 6: Execution time for methods in the Verification phase

Method name Mean (ms) Std (ms) Location

ProveCred 1,219.55 26.21 Local

VerifyCred 5,286.08 55.48 On-chain

TABLE 7: Execution time for methods in the Opening phase

Method name Mean (ms) Std (ms) Location

PreOpening 3,048.28 35.67 Local

OpenCred 6,380.44 28.57 Local

Table 8 depicts the average gas consumption for the exe-

cution of smart contract methods over 20 iterations. For mea-

suring the average gas consumption of the SendOpeningInfo

method we consider the broadcasting of opening information

of a single user/record in the opener’s registry and this

increases linearly with the number of users/records.

We have evaluated how the gas consumption of the Re-

questCred method varies with the number of openers, certi-

fiers and attributes and how that of the VerifyCred method

varies with the number of disclosed attributes. This evalua-

tion is based on a set of random attributes and we give our

observations below.
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Cred vs Number of attributes in the creden-

tial request

• Number of openers vs Gas consumption. Fig. 7 depicts

how the gas consumption of the RequestCred method

increases linearly with the increase in the number of

2 3 4 5 6
Number of certifiers

10M

10.5M

11M

11.5M

12M

12.5M

Ga
s c

on
su

m
pt

io
n

Mean
Median
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Cred vs Number of certifiers
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FIGURE 10: Gas consumption of Verify-

Cred vs Number of disclosed attributes

openers. Here we consider 2 certifiers, 4 validators and

4 openers with the threshold value set to 3 for both,

3 attributes in the credential and 3 attributes to be

verified by each certifier. We observe that the mean is

greater than the median and is close to the minimum gas

consumption. i.e., for most of the transactions, the gas

costs lie close to the minimum value.

• Number of attributes vs Gas consumption. Fig. 8 depicts

how the gas consumption of the RequestCred method

increases linearly with the increase in the number of

attributes on which the credential is requested. In this

setup, we consider 2 certifiers, 4 validators and 4 open-

ers each with the threshold value set to 3 for both and 3
attributes to be verified by each certifier. We observe that

the mean is greater than the median and is close to the

minimum gas consumption. i.e., for most transactions,

the gas costs lie close to the minimum value.

• Number of certifiers vs Gas consumption. Fig. 9 depicts

how the gas consumption of the RequestCred method

increases with the increase in the number of certifiers. In

this setup, we consider 4 validators and 4 openers each

with the threshold value set to 3 for both, 6 attributes for

the credential request and 3 attributes to be verified by

each certifier. We observe that the mean is greater than

the median and close to the minimum gas consumption

inferring that in most of the transactions the gas costs lie

close to the minimum value.

• Number of disclosed attributes vs Gas consumption.

Fig. 10 depicts how the gas consumption of the Veri-

fyCred method increases linearly with the increase in

the number of disclosed attributes. In this setup, we

vary the number of disclosed attributes from 1 to 5 by

keeping the number of attributes in a credential fixed,

equal to 5. We observe that the standard deviation of the

distribution of the gas consumption is very low. i.e., for

most of the transactions the gas costs lie close to the

mean.

C. COMPARISON WITH MULTIPLE COCONUT

INSTANCES

We consider a service request that requires the user to present

a credential, with multiple attributes certified by different

certifiers, to a service provider. To achieve this functionality

using the Coconut scheme, the user has to present multi-
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TABLE 8: Gas consumption for execution of Smart contract methods

Method Name Gas consumption Smart Contract Executed by Frequency

RequestCred 6,089,587 Request User once for every credential request

VerifyCred 1,099,204 Verify User once for every service request

SendBlindSign 32,445 Issue Validator once for every credential request

SendOpeningInfo 41,599 Opening Opener once for every opening of a credential

ple credentials, one corresponding to each certifier, to the

service provider, which implies running multiple instances

of the Coconut scheme. However, in DTRAC, the user has

to present only one credential to the SP . Note that within

the same instance, the verification process is the same for

both DTRAC and the Coconut scheme. We present a detailed

evaluation and comparison of the gas costs and execution

times of the verification process of running one instance

of DTRAC versus running multiple instances of Coconut

for a) the loan application use case described in Sec. IV-E,

and b) three scenarios we custom build: Scenario 1: two

certifiers each attesting three randomly generated attributes,

Scenario 2: three certifiers each attesting three random at-

tributes, and Scenario 3: four certifiers each attesting three

random attributes. The gas costs are compared when the

service request is verified on-chain using smart contracts and

the execution times are compared when the SP verifies the

service request off-chain. For any service request, credential

verification typically involves verifying 1) the signature of

the validators on the credential (Eq. 14), and 2) the ZKPoK

of the correctness of the undisclosed attributes (Eq. 13).

From Fig. 11, it is clear that DTRAC consumes signif-

icantly less gas to verify the service request compared to

multiple instances of Coconut on the Ethereum blockchain.

To understand why, we need to first understand how the

verification of a service request happens over Ethereum.

For a type III bilinear pairing group, (p,G, G̃,GT , e), as

explained in Sec. VII, the precompiled contracts in Ethereum

do not support operations in G̃, and we have to replace

them with operations in G followed by a pairing check. This

occurs in both the steps – signature verification and ZKPoK

verification – of the service request verification. When we run

multiple instances of Coconut, the two steps of verification,

with the corresponding G operations and pairing checks, are

performed for every instance, whereas in DTRAC, they are

done only once. If we increase the number of instances by

keeping the total number of attributes constant (which means

we have more certifiers attesting the attributes), then the

number of pairing operations and, accordingly, the ratio of

the gas costs increase linearly.

Fig. 12 depicts that off-chain too the situation is similar –

DTRAC takes significantly less execution time than Coconut

to verify a service request of a credential that has attributes

attested by multiple certifiers. This is again due to the pairing

check operation, which is computationally intensive. Since

DTRAC always has to verify only one credential, irrespective

of the number of certifiers that attest to the attributes, it

executes much faster than Coconut, which has to verify

multiple credentials. Both the results show that DTRAC is

more scalable as opposed to having multiple instances of

Coconut and the performance gain increases linearly with

the number of instances. Note that during the issuance phase

when we have multiple certifiers attesting to multiple sets

of attributes, the execution time of DTRAC is more since

multiple Vcerts corresponding to each certifier have to be

issued. But credential issuance typically happens only once

per application while verification of a credential happens

more frequently.
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IX. RELATED WORK

‘Anonymous credentials’ was first coined by D.Chaum [15].

Idemix [4], based on CL signatures [12], is a well-known

AC scheme but its size increases linearly with the number

of attributes. PS signatures [29] resolves this issue with

credentials that are constant and short-sized irrespective of

the number of attributes involved. Garman et al. [20] ad-

dresses the limitation of a single trusted credential issuer

by introducing decentralized anonymous credentials (DAC)

where the issuance of credentials happens through a dis-

tributed ledger. It is computationally expensive due to its

large proof size. Crypto-Book [26] provides threshold is-

suance of credentials but requires verification of t signatures,

where t is the threshold parameter, by the service provider.

Also, Crypto-Book is limited to identity authentication. The

Coconut scheme [34] has a short-sized credential scheme and

also supports threshold PS signatures over blockchains. But

in the multi-certifier model, Coconut resorts to issuing multi-

ple credentials and as we saw before that makes credential

verification expensive. Versatile ABS scheme [3] supports

multiple attribute providers, but, just like Coconut, provides

multiple credentials on user attributes attested by different

providers making credential verification expensive. CanDID
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[27] has the same goal as this work but uses a different

approach – the user is given a master credential using a

decentralized mechanism from legacy credential systems,

such as government identity providers, banks, etc. But it does

not support threshold issuance.

There are several AC works [8], [11], [27], [36], [38], [39]

that focus on credential revocation as opposed to anonymity

revocation which is what DTRAC does. For example, Can-

DID refers to and matches the credential with a public revo-

cation list using secure MPC techniques with fuzzy matching

which are computationally intensive. An identity escrow

scheme [24] allows the identity to be revealed by a trusted

opener, but not all AC schemes support this, and typically

the openers in such schemes are not distributed [10], [11].

Versatile ABS scheme [3] supports threshold opening of an

anonymous credential, but in this scheme, every service re-

quest needs to contain additional opening information which

makes credential verification inefficient. DTRAC enables

anonymity revocation through a distributed set of openers in

which less than a threshold number of openers can be corrupt.

X. CONCLUSION

We propose a decentralized threshold revocable anonymous

credential scheme (DTRAC) that enables threshold credential

issuance to support a multi-certifier communication model,

i.e. having multiple certifiers validate disjoint sets of user

attributes. To this threshold issuance scheme we integrate,

for the first time, a threshold opening scheme that allows

for the opening of a credential with multiple user attributes.

We give a formal security analysis of this integration in the

UC framework. We also provide a PoC implementation of

our scheme over the Ethereum blockchain, making it the first

threshold issuance scheme over Ethereum. We also present a

detailed evaluation of the performance to show the feasibility

of our scheme. We show that DTRAC significantly reduces

the credential verification cost for the service provider and

is more scalable than the state-of-the-art threshold issuance

scheme, Coconut.
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APPENDIX A BACKGROUND

Here we review the necessary background information for the

protocols described in Sec II-D and II-E.

A. BILINEAR GROUPS

The advent of pairings-based cryptography (PBC) [5], [22]

led to short, efficient signatures with many versatile fea-

tures. The randomizable signatures mentioned in Sec. II-D

– PS signatures – rely on bilinear pairings, and we give an

overview of the concept here.

Definition A.1 (Bilinear group). Let G, G̃ and GT be cyclic

groups of prime order p. A bilinear map e is a function e :
G× G̃→ GT , satisfying the following properties.

1) Bilinearity. For all P ∈ G, Q ∈ G̃ and a, b ∈ Zp,

e(aP, bQ) = e(P,Q)ab.

2) Non-degeneracy. For all P ∈ G, Q ∈ G̃ such that P ̸=
1G, Q ̸= 1

G̃
and e(P,Q) ̸= 1GT

.

3) Computability. The map e is efficiently computable.

A bilinear group is the set comprising of G, G̃,GT along with

e that satisfies the above properties.

There are three types of pairings, and they differ in the

structure of the underlying groups [18]. They are namely,

type I where G = G̃; type II where G ̸= G̃ but there

exists an efficiently computable homomorphism, φ between

G and G̃; and type III where G ̸= G̃ and there is no

efficiently computable homomorphism between G and G̃ in

either direction. Type I pairings were used in the older PBC

schemes and have now been mostly replaced by type III

pairings because they are more efficient and are compatible

with several computational hardness assumptions such as the

decisional Diffie-Hellman assumption in G or G̃ called the

XDH assumption [6].

There are two versions of PS signatures. The security of

the earlier version relies on the PS assumption to prove the

EUF-CMA security of the scheme, which is an interactive

assumption [29]. Due to rising concerns about interactive

assumptions in the cryptographic community, the authors

reassessed the security assumptions and slightly modified

the signature scheme so that the security relies on q-type

(q-MSDH) assumptions [30]. The earlier version of PS sig-

natures is EUF-wCMA under the q-MSDH assumption, but

the later version is EUF-CMA secure under the q-MSDH

assumption. The Coconut threshold issuance scheme uses the

earlier version of PS signatures.

B. SHAMIR SECRET SHARING

A secret sharing scheme, introduced by Shamir [33], is used

to secure a secret in a distributed manner. In (t, n)-Shamir

secret sharing, the original secret is split into n shares, out of

which t or more shares are needed to reconstruct the secret.

It is based on polynomial interpolation over finite fields. It

satisfies the following two properties.

1) Recoverability. The secret can be reconstructed effi-

ciently with the knowledge of at least t shares.

2) Secrecy. The secret is completely undetermined without

the knowledge of at least t shares.

To generate the Shamir shares of a secret m ∈ Zp, we first

generate a polynomial P of degree t − 1 whose coefficients

are chosen randomly from Zp (see Eq. 3). The n shares,

called Shamir shares, are generated by evaluating the poly-

nomial at values 1 to n as si = P(i), i ∈ [n]. Later any t of

those shares can be used to reconstruct the original secret m
using Lagrange coefficients. Let T be the set of indices of the

shares which are used in the reconstruction protocol. Then

the original secret can be reconstructed using Σj∈Twjsj ,

where wj is the j-th Lagrange coefficient (see Eq. 12).

The Shamir secret sharing scheme is used twice in our

proposed scheme: 1) the key generation phase of the thresh-

old PS signature scheme (Sec. II-D) and 2) the generation of

opening information (Sec. V-D).

APPENDIX B IDEAL FUNCTIONALITIES

In this section we present a brief overview of the ideal

functionalities that are required to analyze the security of our

scheme.

1) Ideal Functionality, FKG : The ideal functionality FKG

supports secure key generation for the validators V =
{V1, . . . ,VnV

} and public key registration for the open-

ers O = {O1, . . . ,OnO
}. FKG assumes the security

parameter k.

Key generation of validators : When a validator Vi re-

quests for keys, FKG generates a signing key pair

{(ski, pki)}i∈[nV ] for the validators and a public key
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pk for credential verification to support threshold

issuance. FKG sends (sid, {pki}i∈[nV ], pk) to the

simulator S to simulate the communication during

key generation. When S prompts FKG , it outputs

(sid, {(ski, pki)}i∈[nV ], pk) to the validator Vi.
Registration of Openers keys: When an opener, Ok

registers its public key opkK ,FKG sends (sid,Ok, opkk)
to the simulator S to simulate the communication

during key registration. When S prompts FKG , it

sends the notification of successful registration toOk.

Retrieval of public keys: When a party P queries for

the public keys, FKG sends (sid, {(ski, pki)}i∈[nV ],
pk, {opkk}k∈[nO]) to the simulator S and the party

P .

The FKG described above is different from FKG in [31]

in one way – here, along with the key generation of the

validators, the openers register their public keys as well.

2) Ideal Functionality, FBC : The ideal functionality FBC

supports an ideal authenticated broadcast message trans-

mission. When a sender T sends (sid,m,R), where

m is the message and R is a set of receivers, to FBC ,

it sends (sid,m, T,R) to the simulator S and all the

entities in the set R. FBC is different from the FBC in

[19] in the following way: here, along with the message

m, the information regarding who are the receivers, i.e.

elements ofR, are also sent to all the receivers.

3) Ideal Functionality, FNYM : The ideal functionality

FNYM [31] supports a secure idealized pseudonymous

communication.

Sending a message: When a sender T sends (sid,m, P,R),
where m is the message, P is a pseudonym, and R is

a receiver to FNYM, it leaks the message length to

S to capture the information that is leaked during

the communication between T and R, and sends

(sid,m, P ) to R. FNYM hides the sender T from

the receiver R.

Replying with a message: When R replies with (sid,
m,R, P ) to FNYM, it leaks the message length to

the simulator S for the same reason and sends (sid,
m, P ) to T .

4) Ideal Functionality, FAUT H : The ideal functionality

FAUT H [14] supports an ideal authenticated message

transmission. When a sender T sends (m,R), where m
is the message and R is a receiver, to FAUT H, it sends

(m,T ) to the simulator S and the receiver R.

5) Ideal Functionality, FRO : The ideal functionality

FRO [31] supports an ideal hash function. When a party

P sends a message m, if (sid,m,H) is not stored, i.e.

FRO has not seen that message previously, it generates

a fresh H and stores (sid,m,H). FRO then outputs H
to P .

APPENDIX C ATTACK MODEL

In order to demonstrate the security of the proposed scheme,

we determine the capabilities and possible actions of an

adversary. We consider the following attacks that lead to

privacy leakage, credential misuse, service unavailability, etc.

1) Impersonation Attack. A certifier receives all the user

attributes in the registration phase. A malicious certifier

can make a new Vcert using these attributes and im-

personate a user, and this cannot be prevented in our

scheme. But if more than one certifier is required to

issue an anonymous credential, this attack is unlikely as

the malicious certifier will have to obtain valid Vcerts

from all the other certifiers to be able to impersonate the

user. Thus impersonation attacks can be mitigated in the

proposed multi-certifier model.

2) Man in the Middle Attack. An adversary can eavesdrop

on service requests over a blockchain which means

the adversary has access to the randomized credential

and the ZKPoK of the user’s private data. Although an

adversary can succeed in creating a new randomized

signature from this information, he cannot generate a

new ZKPoK corresponding to the fresh signature.

3) Sybil Attack. A user can request multiple credentials

in an attempt to construct fake credentials. But as the

certifier verifies each user before providing a Vcert and

the Vcerts are linkable, such fake credential requests

will be detected by the scheme.

4) Denial of Service Attack. Our scheme allows a user to

request service as many times as she wants and this can

be used by an adversary to cause a system shutdown.

But Ethereum’s transaction fees ensure that such an

attack will be expensive.

5) Replay Attack. Since the requests to the SP are through

the blockchain, the transaction data can be replayed

and an adversary can gain access to the service. This

attack can be prevented by adding a timestamp to the

ZKPoK associated with the service request. This times-

tamp expires after a certain window and this window is

determined by the SP [17]. The smart contract performs

the proof execution only if the request is within this time

period.

APPENDIX D ASYMPTOTIC ANALYSIS OF PHASES

We provide an asymptotic analysis of our scheme, with

respect to the number of attributes, number of validators and

number of openers. Table 9 depicts an analysis of the regis-

tration phase as a function of the number of attributes verified

by each certifier, given by attr. Note that the analysis of

the GenZKPoK and VerifyZKPoK methods are done assuming

that the certifiers are independent. If a certifier requires that

the ZKPoK of attributes of other Vcerts have to be verified

then the complexity increases linearly with the number of

attributes in the corresponding Vcerts.

Table 10 depicts the complexity analysis of the other

phases as a function of the number of openers nO, the

number of validators nV and the total number of attributes

verified by all the certifiers, say totalattr. The complexity

of the PreOpening and OpenCred methods are for a single

credential and it increases linearly with the number of users.
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TABLE 9: Computational complexity in the Registration phase

Method name Complexity

GenCommitment O(attr)M1 +O(attr)A1

GenZKPoK O(1)M1 +O(1)A1

VerifyZKPoK O(attr)M1 +O(attr)A1

SignCommitment O(1)M1 +O(1)A1

VerifyVcerts O(1)M1 +O(1)A1

A1 and M1 represents the addition and scalar mul-
tiplication operations in G1 respectively.

TABLE 10: Computational complexity for the Issuance, Verification and Opening phases

Method name Average execution time

PrepareCredRequest O(nOtotalattr)M1 + O(totalattr)A1 +
O(nOtotalattr)M2 +O(nOtotalattr)A2

RequestCred O(nOtotalattr)M1 + O(totalattr)A1 +
O(nOtotalattr)BP

BlindSign O(totalattr)M1 +O(totalattr)A1

Unblind O(1)M1 +O(1)A1

AggCred O(nV )M1 +O(nV )A1

ProveCred O(1)M1 + O(totalattr)M2 +
O(totalattr)A2

VerifyCred O(totalattr)M1 + O(1)A1 + O(1)A2 +
O(totalattr)BP

PreOpening O(nO)BP
OpenCred O(nO)E

A1, A2 represent addition operations in G1 and G2, respectively
and M1, M2 represent the scalar multiplications in G1 and G2,
respectively. BP represents the pairing operation and E represents the
exponentiation operation in GT .
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