Header menu link for other important links
X
Insignificant Effect of Temperature on the Structure and Angular Jumps of Water near a Hydrophobic Cation
A. Priyadarsini,
Published in American Chemical Society
2021
Volume: 6
   
Issue: 12
Pages: 8356 - 8364
Abstract
The ambiguity in the behavior of water molecules around hydrophobic solutes is a matter of interest for many studies. Motivated by the earlier results on the dynamics of water molecules around tetramethylammonium (TMA) cation, we present the effect of temperature on the structure and angular jumps of water due to hydrophobicity using first principles molecular dynamics simulations. The average intermolecular distance between the central oxygen and four nearest neighbors is found to be the highest for water molecules in the solvation shell of TMA at 400 K, followed by the same at 330 K. The hydrogen bond (HB) donor-acceptor count, HB per water molecule, and tetrahedral order parameter suggests the loss of tetrahedrality in the solvation shell. Elevated temperature affects the tetrahedral parameter in local regions. The HB jump mechanism is studied for methyl hydrogen and water molecules in the solvation shell. Observations hint at the presence of dangling water molecules in the vicinity of the hydrophobic cation, and no evidence is found for the enhanced structural ordering of nearby water molecules. © 2021 The Authors. Published by American Chemical Society.
About the journal
JournalData powered by TypesetACS Omega
PublisherData powered by TypesetAmerican Chemical Society
ISSN24701343