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1. INTRODUCTION

Metallic nanostructures supporting plasmon resonances have

been used in various applications such as SERS [1–5], bio-

sensing [6–9], plasmonic trapping [10–12], and fluorescence

enhancement [13–18]. Optimization of a plasmonic structure

for a particular application is made easier via the use of vari-

ous computational tools. Most numerical techniques such as

the FEM [19–21], the Green’s tensor approach [22–24], dis-

crete dipole approximation (DDA) [25,26], the boundary ele-

ments method (BEM) [27–30], and the surface integral

equation (SIE) [31–33] compute the response of the structure

due to an incident excitation.

In many situations, it is also beneficial or even necessary to

determine the eigenmodes of the plasmonic system. Quite a

few numerical techniques that compute the eigenmodes of

a system are available [34–42]. For example, an electrostatic

eigenmode solver based on the boundary integral equation

was used to show that the near field of the plasmonic struc-

tures could be expressed as the linear superposition of the

eigenmodes [42]. Knowledge of the modes and their relevance

to the near field provided a simple method for the identifica-

tion of hot spots necessary for plasmon enhanced spectros-

copies. This approach can be extended a step further to

control and localize hot spots in plasmonic aggregates

through knowledge of the underlying plasmonic modal struc-

ture [43]. In contrast to techniques that compute the eigenm-

odes of a plasmonic structure by full numerical calculations, it

is also possible to exploit symmetry properties by using group

theory to study the interaction of an external electric field

with the localized plasmon modes of the structure as shown

by Zhang et al. [40]. With this approach, they showed that

the selection rules for a vector field are different as compared

to the selection rules for a scalar field. Knowledge of the

eigenmodes of a plasmonic system can also be exploited

for increasing the accuracy and speed of a numerical tech-

nique [44]. However, it should be noted that the discretization

of the structure necessary for computing the eigenmodes of

the plasmonic structure using numerical techniques, even

within the electrostatic limit, makes the solvers time consum-

ing and memory intensive [41,42,45,46]. Furthermore, many of

these techniques require initial guess values of the modes for

accurate computation. On the other hand, for simple struc-

tures it is possible to exploit the symmetry of the structure

to compute the modes using the dielectric constant as the

eigenvalue of the system [40,47,48]. Even though eigenvalue

analysis in the electrostatic approximation is easier and faster,

the absence of retardation in the computation limits its appli-

cability. In this paper, we extend the Green’s tensor approach

to compute the eigenmodes of a plasmonic structure com-

posed of small nanoparticles. Our computation takes into

account the retardation present between the nanoparticles.

The developed technique is then used to analyze the eigenm-

odes of a nanoparticle monomer, dimer, and trimer.

The paper is organized as follows. In Section 2, we intro-

duce the theoretical formalism used for computing the ei-

genmodes of a plasmonic system. In the next section, we

study the eigenmodes of a single nanoparticle, a nanoparticle

dimer, and a nanoparticle trimer. Finally, in Section 4, we

present the main conclusions of the paper.

2. THEORETICAL FORMULATION

Consider a system of n nanoparticles placed in a background

medium with dielectric constant ϵB. In systems where the par-

ticle size is significantly smaller than the wavelength of light,

each nanoparticle can be represented by a single dipole with a

finite polarizability [23]. In this paper, we assume that each

nanoparticle is represented by a single dipole with an

arbitrary orientation. The response of this generalized n
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nanoparticle system can be calculated using the Green’s ten-

sor technique [22], where the field at each particle i is given by

Ei � E0

i �
Xn

j�1;j≠i

Gij · k
2

0
ΔϵjV jEj �Mi · Δϵik

2

0
Ei − Li ·

Δϵi

ϵB
Ei;

(1)

where Gij is the background Green’s tensor, k0 is the vacuum

wavenumber, Δϵi�� ϵi − ϵB� is the dielectric constant con-

trast, Li is the depolarization term, Mi is the self term, E0

i

is the incident field at dipole i, and V i is the volume of the

particle. In this equation the interaction between two interact-

ing particles, i and j, is given by the tensorGij , which depends

on k0. Since a single dipole is assigned to a single nanoparticle,

the self-consistent fields computed using Eq. (1) also corre-

spond to the dipole moments of the corresponding particles.

This set of equations can be recast into the matrix form

�I − S� · E � E0; (2)

where I is the identity matrix, S is the matrix that defines the

system, and E0 and E are vectors corresponding to the

incident fields and self-consistent electric fields at the dipoles,

respectively.

The matrix S depends on the dielectric constant of the

nanoparticle, and we use the Drude model given by

ϵ � ϵ
∞
−

ω2
p

ω2 � iγω
; (3)

with ϵ
∞
� 9.5, ωp � 1.36 · 1016 rad∕s, and γ � 1.05 ·

1014 rad∕s [49]. These Drude parameters match well the

experimentally measured dielectric function of gold in the

600–900 nm wavelength range. Additionally, more realistic

models for the dielectric function that take into account

the interband transitions in gold can also be used with this

approach [50,51]. Note that the different terms of the matrix

S also depend on the wavelength of light, because of the non-

electrostatic nature of the current formalism. However, it

must be pointed out that a direct relation exists between

the dielectric function and the wavelength, and frequency,

as given by the Drude model. For eigenmode computation

of the system, we further enforce the condition that the

incident field is zero. Therefore, Eq. (2) reduces to

�I − S� · E � 0: (4)

The eigenmodes of this system can be determined by locat-

ing the parameters at which E is nonzero. Let ξ�λ� be the eigen-

value of the matrix S at a given wavelength λ. It is evident that

for ξ�λ� � 1, nonzero E is possible. The corresponding wave-

lengths are the eigenwavelengths of the system. In plas-

monics, S is a complex matrix and the equation ξ�λ� � 1 is

not satisfied for purely real λ. Therefore, in order to solve

Eq. (4) a complex wavelength, λ � λr � iλi, must be assumed.

The sign of the imaginary part of the eigenwavelengths is

chosen to be positive for obtaining temporally decaying fields.

Corresponding to this complex eigenwavelength, the complex

eigenfrequency can be calculated using ω � 2πc∕λ, where c is

the speed of light in vacuum. Such complex eigenwavelengths

or eigenfrequencies are also found in other physical systems

such as damped harmonic oscillators [52] and RLC circuits

[53]. The real and imaginary parts of the eigenwavelength

of a mode correspond to the resonance position and half-

width of the resonance, respectively [52]. The eigenvector

of the matrix S at the eigenwavelength provides the electric

field distribution for the given mode. Typical times required

for computing the eigenmodes of the structures presented

in this paper are in the range of 1 (for a nanoparticle

monomer) to 10 min (for a nanoparticle trimer) when using

a desktop computer with 4 GB memory.

3. RESULTS AND DISCUSSION

In this section, we first study the modes of a single nanopar-

ticle as a function of the system parameters and show that the

eigenmodes computed using the current formalism converge

to the well-known quasi-static limit in plasmonics for small

particles. Next, the modes of a symmetric nanoparticle dimer

are computed, and its dependence on the system parameters

investigated. Finally, we study the modes of a nanoparticle

trimer, and the effects of symmetry breaking are illustrated

via eigenmode analysis.

A. Single Nanoparticle
Consider a single gold nanoparticle embedded in a medium

with ϵB � 6.145. The refractive index of the background cor-

responds to the refractive index of TiO2 [54]. For this system

log10jξ − 1j as a function of λr and λi is shown in Fig. 1(a). It is

clearly seen that ξ � 1 is satisfied for λ � 662� 14i. Further-

more, at this wavelength the matrix S has an eigenvalue 1 with

multiplicity 3; i.e., this eigenvalue is triply degenerate. Further-

more, the dipole moments corresponding to these triply de-

generate eigenmodes are oriented along the x, y, and z

directions. The degeneracy arises because all the axes are

identical. Figures 1(b) and 1(c) show the variation of λr
and λi as a function of particle size. As the particle size is in-

creased from 4 to 30 nm, λr increases from 647 to 681 nm.

Concurrently, the imaginary part of the eigenwavelength also

shows a progressive increase as a function of the particle size.

This increase in both the real and imaginary parts of the ei-

genwavelength as a function of size is due to the higher retar-

dation effects for larger particles. Note that the retardation

effects are taken into account by the presence of k0R (R is

the nanoparticle radius) terms present in the expressions

for Gij and Mi. In this paper the wavelength is taken as the

eigenvalue because of its widespread use in most plasmonic

studies. However, calculations performed using frequency as

the eigenvalue (shown in Appendix A) lead to exactly the

same results. As mentioned previously, it is also possible to

compute the dielectric constant corresponding to the eigen-

wavelength using the Drude model. This is useful since the

dielectric constant is the preferred eigenvalue in most eigen-

mode analyses performed in the electrostatic limit [27,46,49];

hence, we plot the real (Re�ϵ�) and imaginary (Im�ϵ�) parts

of the dielectric constant of gold at the eigenwavelengths

[Figs. 1(d) and 1(e)]. Both Re�ϵ� and Im�ϵ� decrease upon in-

creasing the size of the particle. Furthermore, ϵ approaches

the well-known quasi-static limit ϵ � −2ϵB in the case of

4 nm particles. Let us now consider the imaginary part of

the dielectric constant at the eigenwavelength. Recall that

the quasi-static limit arises when the denominator of the polar-

izability, which is proportional to j�ϵ − ϵB�j∕j�ϵ� 2ϵB�j, is zero.
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Unlike the case of nonlossy systems, in which the denomina-

tor is zero at ϵ � −2ϵB, in our system at the eigenvalue ϵ the

denominator can be made equal to zero if we assume an ef-

fective complex dielectric constant of the background given

by ϵeffB �� ϵeffB;r � iϵeffB;i�. Additionally, since Im�ϵ� is less than 0 in

this particular system, ϵeffB;i has to be positive. Therefore, at the

eigenwavelength the system behaves as if the background had

finite losses for larger particles. The progressive decrease in

Im�ϵ� and its negative sign upon increasing the size indicates

the increase of damping, both intrinsic and radiative, in the

system.

B. Nanoparticle Dimer
Consider a nanoparticle dimer as shown in Fig. 2(a) in which

two gold nanoparticles, each with diameter d, are separated

by a gap g. Figures 2(b) and 2(c) show the computed λr and λi
of this system for various particle sizes with the gap fixed at

4 nm gap. For any given particle size, four distinct modes can

be identified [55,56]. As the particle size is increased, the

wavelength λr of modes 1 and 2 shows a progressive increase.

In the case of modes 3 and 4, λr first shows a blueshift for d <

15 nm and then a redshift for larger values of d. The wider

spectral separation of the eigenmodes for larger particle sizes

clearly indicates the increase in the coupling between the par-

ticles due to greater field overlap. The imaginary part of the

eigenwavelength, however, shows a totally different charac-

ter. In the case of modes 1 and 3, a progressive increase is

seen, whereas for modes 2 and 4 it does not change signifi-

cantly. These differences can be understood by studying

the dipole orientations for the four modes, as shown in

Fig. 2(f). These dipole orientations were obtained using the

eigenvector of the matrix S at the corresponding eigenvalues,

and it must be mentioned here that the dipole orientations for

the modes are independent of the nanoparticle size. In the

case of modes 1 and 4, the dipole moments of the particles

align along the axis joining the two dipoles, whereas for

modes 2 and 3 the dipoles are oriented perpendicular to

the axis [55,56]. Additionally, in modes 1 and 3 the dipoles

of the two particles are parallel, whereas in modes 2 and 4

they are antiparallel. Due to the symmetry about the axis join-

ing the two particles, modes 2 and 3 are doubly degenerate.

The net zero dipole moment for modes 2 and 4 prevents them

from being excited using plane wave excitation, and these

modes are referred to as “dark modes” [55,56]. This is because

the light scattered by the first particle will destructively inter-

fere with the light scattered by the second particle. On the

other hand, modes 1 and 3 exhibit a net dipole moment that

allows them to interact with the far field and are commonly

known as “bright modes.” In contrast to modes 2 and 4, where

destructive interference occurs, for modes 1 and 3 the par-

ticles scatter light in phase and we observe constructive inter-

ference. The imaginary part of the eigenwavelength, which

corresponds to the half-width of the plasmon resonance, con-

tains contributions from intrinsic damping (mainly caused by

ohmic losses for gold) and radiative damping (due to the
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Fig. 1. (a) log10jξ − 1j plotted as a function of the real and imaginary
parts of wavelength, λ, for a 20 nm gold particle. (b) Real and (c) imagi-
nary parts of the eigenwavelength for a single nanoparticle as a func-
tion of the particle size d. (d) Real and (e) imaginary parts of the
dielectric constant of gold at the corresponding eigenwavelength as
a function of the size d. The dashed lines in (d) and (e) indicate
the plasmon resonance in the electrostatic limit. The dielectric con-
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Fig. 2. (a) Schematic of the nanoparticle dimer. (b) Real and
(c) imaginary parts of the eigenwavelengths as a function of particle
size d. (d) Real and (e) imaginary parts of the dielectric constant of
gold at the eigenwavelength. (f) Dipole orientations in the particles for
the four distinct eigenmodes depicted in (b). The direction of the ar-
row indicates the dipole orientation with the blue head pointing to-
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ϵB � 6.145.
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radiation of light into the far field). Since modes 1 and 3 are

radiative, they exhibit a much higher value of λi as compared

to modes 2 and 4 for large particle sizes (d > 15 nm). This is

further substantiated by the fact that as the particle size is

reduced, thereby reducing the radiative damping, the values

of λi for the modes become similar.

Figures 2(d) and 2(e) show Re�ϵ� and Im�ϵ� at the various

eigenwavelengths as a function of the particle size. Re�ϵ� and

Im�ϵ� show trends analogous to those of λr and λi, respec-

tively. The Im�ϵ� for modes 1 and 3, the bright modes, progres-

sively becomes more negative as the particle size is increased.

On the other hand, for modes 2 and 4, the Im�ϵ� is positive and

close to zero for all particle sizes. For modes 3 and 4 the in-

trinsic damping for a given particle size is similar due to the

proximity of their eigenwavelengths. However, the total

damping for the two modes as shown by the value of λi is very

different. This difference is due to the presence of radiative

damping in the case of mode 3, which significantly increases

the value of λi for larger particles as compared to mode 4. As

explained in the case of a single nanoparticle, the imaginary

part of the dielectric constant at the eigenwavelength can be

understood as the effective background possessing a finite

loss if Im�ϵ� < 0. Applying a similar argument, we see that only

in the case of modes 1 and 3 does the dielectric constant

possess a negative value of Im�ϵ�, and correspondingly the

background acts as a lossy medium, which can extract light

from these two modes at the eigenwavelengths. However, the

positive Im�ϵ� for modes 2 and 4 shows that for these two

modes, the effective background acts like a gain medium

and therefore cannot act as a sink for light.

We now study the effect of varying the gap size in the case

of a dimer made up of 20 nm particles. Figure 3 shows the

eigenwavengths and the corresponding epsilon as a function

of the inter particle gap. First, the splitting between the vari-

ous modes, i.e., λr and Re�ϵ�, decreases upon increasing the

gap because of reduced coupling. For gaps close to 60 nm, λr
and Re�ϵ� approach the values of an isolated 20 nm particle.

As mentioned previously, modes 1 and 3 exhibit a negative

value of Im�ϵ� for all values of the gap. However, Im�ϵ� of

modes 2 and 4 crosses zero at 30 and 48 nm gaps, respectively.

This means that beyond these gap values the modes start

radiating due to retardation effects. Consequently the

background starts acting like a lossy medium.

C. Nanoparticle Trimer
Let us now consider a nanoparticle trimer made up of 20 nm

particles as shown in Fig. 4(a). In the case of an equilateral

structure (Δx � 0 nm) the gap between the particles is

4 nm. Figures 4(b)–4(d) show the variation of λr as a function

of the displacement Δx of the top particle (P1) in the horizon-

tal direction. As expected at most nine modes are seen for a

given Δx [57]. The colored dots in Fig. 4 depict the excitation

strengths of the various modes upon illumination with a po-

larized plane wave. For example, Fig. 4(b) shows the excita-

tion strength of the modes due to a plane wave propagating in

the z direction and polarized along the x axis. The excitation

strengths are computed by the summation of the overlap of

the incident field with the field of a given mode. The summa-

tion is performed over all the dipoles in the system. Similarly,

Figs. 4(c) and 4(d) show the excitation strength for plane

waves propagating along the z and x directions, respectively,

and polarized along y and z, respectively. As Δx is increased

from 0 to 12 nm, the spectral splitting between the modes (in-

plane or out-of-plane modes) increases due to increased cou-

pling. Maximum coupling is observed around Δx � 12 nm

when the structure closely resembles a right-angled trimer.

This is because for Δx � 12 nm the separation between par-

ticles P1 and P2 is minimized resulting in a greater field over-

lap. Upon further increasing Δx the splitting between the

modes reduces as the separation between particles P1 and

P3 becomes larger. In addition to the spectral splitting, the

excitation strengths are also strongly dependent on Δx. For

example, the excitation strength of the mode at the highest

wavelength (mode 1) progressively increases upon increasing
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Δx in the case of an x polarized plane wave. In contrast, for y

polarized plane wave excitation, this mode is best

excited at Δx � 12 nm.

To better understand the behavior of this system we corre-

late the excitation strengths of the various modes with their

dipole distributions. The field distributions of the modes of an

equilateral trimer,Δx � 0 nm, are shown in Fig. 5(a). This sys-

tem has six modes with the dipoles oriented in the plane of the

structure (modes 1, 2, 3, 6, 7, and 9), whereas for three modes

the dipoles are oriented perpendicular to the plane of the

structure (modes 4, 5, and 8). Furthermore, due to the sym-

metry of the structure it has three pairs of doubly degenerate

modes [modes (2,3), (4,5), and (6,7)]. Clearly, modes 1, 4, 5,

and 9 have a zero net dipole moment and cannot be excited

using plane wave excitation. This is also evident from

Figs. 4(b)–4(d) whereby the excitation strength of these

modes is zero regardless of the light polarization. On the other

hand, modes 2, 3, 6, and 7 possess a net dipole moment in

the xy plane and can be excited using an x or y polarized plane

wave. Mode 8, however, exhibits a net dipole moment along

the z direction and can only be excited using a plane wave

polarized along the z direction. Note that modes 2, 3, 6,

and 7 cannot be excited with a z polarized plane wave and

are thus “dark modes” for this given polarization. This is also

depicted in Fig. 4(d), where these modes exhibit a zero exci-

tation strength. Analogously, since mode 8 cannot be excited

using an x or y polarized plane wave, it acts like a “dark mode”

for these polarizations and shows a zero excitation strength

[Figs. 4(b) and 4(c)].

As the particle P1 is displaced in the x direction, the sym-

metry of the structure breaks and consequently we observe

that the degeneracy of the modes, present in case of the equi-

lateral structure, is lifted. As mentioned previously the spec-

tral separation between the in-plane modes (1, 2, 3, 6, 7, and 9)

and out-of-plane modes (4, 5 and 8) increases for Δx < 12 nm

and then decreases. For example, the mode 2 and 3 (for

Δx � 0 nm) splits into two modes (leading to modes 20 and

40 for a structure with Δx � 12 nm). Each of these split modes

shows different excitation strengths for different values ofΔx.

For an x polarized plane wave, both the split modes show

comparable excitation strengths for Δx < 12 nm, but for

larger values of Δx mode 40 is excited more efficiently

[Figs. 4(b) and 5(b)]. This is because in the case of mode 20

as the particle P1 is displaced, its dipole moment along the

x axis progressively increases. In addition, the dipole of

particle P1 is aligned opposite to the dipoles of particles P2

and P3, which reduces the net dipole moment and lowers

the excitation strength of the mode. In the case of mode 40

the dipoles of particles P1 and P3 are predominantly excited

and they are always in phase considering the x axis; therefore

this mode exhibits larger excitation strengths even for larger

values of Δx [Figs. 4(b) and 5(b)]. In contrast for y polarized

light mode 40 demonstrates a higher excitation strength as

compared to mode 20 forΔx < 12 nm [Fig. 4(c)]. Larger values

of Δx lead to comparable excitation strengths of modes 20 and

40. This behavior can again be traced back to the field distri-

butions. Mode 20 shows a near-zero dipole moment along the y

direction and consequently a near-zero excitation strength

[Fig. 5(b)]. Similar mode splittings are also observed in the

case of modes (4,5) and modes (6,7) of the equilateral struc-

ture upon displacement of particle P1. Figure 5(b) shows the

field distributions for a particular symmetry broken nanopar-

ticle trimer with Δx � 12 nm, which manifests maximal cou-

pling in the system. In this case, none of the modes are

degenerate and the system has nine distinct modes. In this

case, all the in-plane modes, 10, 20, 40, 60, 80, and 90, show a non-

zero dipole moment along both the x and y axes and a nonzero

excitation strength [Figs. 4(b) and 4(c)]. These modes can

thus be excited using a plane wave with polarization in the

plane of the structure. On the other hand, the out-of-plane

modes, modes 30, 50, and 70, show a net nonzero dipole

moment along the z axis and thus can be excited using a z

polarized plane wave. However, even in this case, the in-plane

Fig. 5. (a) Field distribution of the various eigenmodes of an equilateral trimer (Δx � 0 nm). Degenerate eigenmodes have been clubbed together
for clarity. The number of the modes is also shown in Fig. 4(b) for clarity. (b) Field distribution of the various eigenmodes of a trimer (Δx � 12 nm).
The numbers of the modes are also shown in Fig. 4(b) for clarity. The direction of the arrow indicates the electric field orientation with the blue
head pointing toward the negative charge. A solid blue circle indicates the electric field pointing in the�z direction, and a hollow blue circle with a
red dot indicates the electric field pointing in the −z direction.

Fig. 6. log10jξ − 1j plotted as a function of the real and imaginary
parts of the normalized frequency ω∕ωp.
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modes are “dark modes” for a z polarized plane wave, and the

out-of-plane modes are “dark modes” for x or y polarized

plane waves.

4. CONCLUSION

A method based on the Green’s tensor technique for comput-

ing the eigenmodes of a plasmonic system composed of nano-

particles has been developed. Using examples of monomers,

dimers, and trimers, we have shown that the modes exhibit

complex eigenwavelengths. The effect of various geometrical

parameters on the complex eigenwavelengths has been stud-

ied in detail. In the case of a dimer, it was shown that the

imaginary part of the dielectric constant of the plasmonic

metal at the eigenwavelengths indicates the contributions

of radiative and intrinsic damping in that mode. Finally, the

effect of symmetry breaking was studied for the case of a

nanoparticle trimer by monitoring both the eigenwavelengths

and the excitation strengths of the modes by various incident

conditions. The different resulting modes were classified in

terms of their net dipole moment, thereby providing indica-

tions on which modes can be excited under specific illumina-

tion conditions.

APPENDIX A

In this appendix we briefly show that the same results are

obtained when performing the eigenmode analysis using

the frequency as the eigenvalue, instead of the wavelength,

as done in the main text. Figure 6 shows the variation of

log10jξ − 1j as a function of Re�ω∕ωp� and Im�ω∕ωp� for a

20 nm gold nanoparticle suspended in a medium with

ϵB � 6.145. As explained previously, the equation ξ�ω� � 1

is satisfied for ω � �0.2091–0.0045i�ωp, which is the eigenfre-

quency of the single particle. Correspondingly, λ � 662� 14i,

which is exactly the same eigenwavelength as computed

earlier. Thus, eigenmode analysis with frequency as the eigen-

value is identical to the analysis performed using wavelength

as the eigenvalue.
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