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Abstract

Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are widely used in biotechnology due to their 

in situ crosslinking capacity and tunable physical properties. However, as with all single 

component hydrogels, the modulus of PEGDA networks cannot be tailored independently of mesh 

size. This interdependence places significant limitations on their use for defined, 3D cell-

microenvironment studies and for certain controlled release applications. The incorporation of 

secondary reactive species (SRS) into PEGDA hydrogels has previously been shown to allow the 

identification of up to 6 PEGDA hydrogel formulations for which distinct moduli can be obtained 

at consistent average mesh size (or vice versa). However, the modulus and mesh size ranges which 

can be probed by these formulations are quite restricted. This work presents an in-depth study of 

SRS incorporation into PEGDA hydrogels, with the goal of expanding the space for which 

“decoupled” examination of modulus and mesh size effects is achievable. Towards this end, over 

100 PEGDA hydrogels containing either N-vinyl pyrrolidone or star PEG-tetraacrylate as SRS 

were characterized. To our knowledge, this is the first study to demonstrate that SRS incorporation 

allows for the identification of a number of modulus ranges that can be probed at consistent 

average mesh size (or vice versa).
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1. INTRODUCTION

Hydrogels prepared from linear poly(ethylene glycol) diacrylate (PEGDA) are widely used 

in biotechnology due to their ability to be formed in situ as well as several of their unique 

physical properties.1–5 For instance, PEGDA hydrogels function as biological “blank slates” 

in that they intrinsically resist bioactive protein adsorption.6–8 This property of PEGDA 

hydrogels is significant, as most synthetic and natural biomaterial scaffolds adsorb a wide 

range of serum proteins both in vitro and in vivo. Such adsorbed proteins are often major 

determinants of cell behavior, in addition to bioactive moieties deliberately conjugated to the 

material.9–10 In contrast, the relatively inert nature of PEGDA hydrogels permits the 

controlled and defined investigation of biochemical cues on cell behavior. For controlled 

release applications, this “anti-fouling” property of PEGDA endows PEGDA hydrogel 

carriers with “stealth” properties.11 Similarly, PEGDA hydrogels are attractive materials for 

studying cell response to mechanical cues because their moduli can be tailored by varying 

PEGDA molecular weight (Mn) and precursor solution concentration.7, 12–13 Moreover, 

PEGDA hydrogels are frequently used in controlled release applications due in part to the 

ability to modify their nanoscale mesh structure by simple formulation strategies.14

Despite these advantages, a major limitation of pure PEGDA hydrogels, and indeed all 

single-component hydrogel networks, is that their modulus and average mesh size cannot be 

varied independently.15 For example, hydrogel modulus can be decreased by reducing the 

concentration of PEGDA in the hydrogel precursor solution.16–17 However, this decrease is 

associated with a simultaneous increase in average mesh size due to an overall decrease in 

the number of crosslinks between polymer chains. Similarly, modulus can be increased by 

decreasing PEGDA Mn, but this approach results in a concurrent decrease in the mesh size 

of the resulting hydrogels.12–13 Thus, if the moduli of hydrogels of varying PEGDA Mn and 

PEGDA concentration were plotted against their corresponding average mesh sizes, the 

achievable properties would be constrained to a single curve within the modulus-mesh size 

plane.14 This modulus-mesh size interdependence significantly limits the utility of in situ 

crosslinked polymer networks in the investigation of the specific effects of modulus on cell 

behavior within 3D environments.18 This is because the decrease in mesh size that 

accompanies an increase in hydrogel modulus also impacts the behavior of encapsulated 

cells via the modification of nutrient and waste exchange within the hydrogel.13, 19–21 In 

terms of controlled release, the ability to tune PEGDA hydrogel mesh structure without 

disrupting the modulus or strength of the carrier would similarly be desirable.

Several research groups have incorporated secondary reactive species (SRS) into PEGDA 

hydrogel networks in an effort to partially “decouple” the dependence between PEGDA 

hydrogel modulus and average mesh size.18, 21–24, 27–28 To be effective in our applications 

of interest, it is critical that the incorporated SRS preserve the biological “blank slate” 

character of pure PEGDA hydrogels. Thus, we will focus on SRS that are known to preserve 
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this “anti-fouling” property of PEGDA hydrogels.25–29 For instance, N-vinyl pyrrolidone 

(NVP) has recently been recognized not only as an accelerating agent,27–28 but also as an 

SRS that contributes to the physical properties of PEGDA crosslinked systems while 

maintaining their “blank slate” character.21, 30 However, only two PEGDA-NVP hydrogel 

formulations have thus far been identified which allow the examination of distinct moduli 

(namely 100 kPa and 200 kPa) at consistent average mesh size (or vice versa).21 

Furthermore, Browning et al. recently reported that the introduction of star PEG-

tetraacrylate (PEGTA) as an SRS into linear PEGDA systems resulted in the identification of 

6 hydrogel formulations possessing significantly different moduli but similar average mesh 

size (and vice versa).23 As with the NVP studies, this work demonstrated only a relatively 

restricted modulus range (~130–250 kPa) over which “constant” average mesh size could be 

achieved. This modulus range is generally considered to be outside the range of interest for 

investigating many biologically significant phenomena, such as modulus-driven lineage 

commitment of mesenchymal stem cells (~10–50 kPa)31 and soft tissue cancer cell 

metastasis (10–100 kPa).32–34 Expanding the modulus range over which consistent average 

mesh size can be achieved would significantly advance the study of mechanobiology in 

3D.22 Similarly, expanding the mesh size range over which consistent mechanical properties 

can be achieved would advance the ability to design release vehicles for applications where 

specific hydrogel modulus or strength is required.

This work presents an in-depth study of NVP and PEGTA incorporation as SRS into linear 

PEGDA hydrogels with the goal of significantly expanding the range over which 

“decoupled” examination of modulus and mesh size effects is achievable. These two SRS 

were selected over other potential SRS (such as PEGMA24 or internal allyloxycarbonyl 

groups18) based on the target modulus range (10–100 kPa) and/or simplicity of preparation. 

In the current study, PEGDA-SRS hydrogel “libraries” were fabricated and characterized for 

each of 4 distinct PEGDA Mn. For each library, solutions of PEGDA of a particular Mn were 

prepared at 4–8 different concentrations and were cured in the presence of either PEGTA or 

NVP (shown schematically in Figure 1). Following equilibrium swelling, the average mesh 

sizes of the prepared hydrogel formulations were determined by the diffusion of fluorescent 

dextran, while elastic moduli were assessed using tensile testing. The resulting modulus and 

mesh size data for each PEGDA-SRS library were plotted and compared against that of pure 

PEGDA hydrogel formulations to identify potential effects of SRS incorporation on the 

relationship between modulus and mesh size. Several of the resulting hydrogel libraries 

demonstrated shifts in their modulus-mesh size relationships compared to pure PEGDA 

systems, with the degree of shift depending on the SRS dose and PEGDA Mn. To our 

knowledge, this is the first study to demonstrate that SRS incorporation allows for the 

identification of a number of modulus ranges that can be probed at consistent average mesh 

size (or vice versa).

2. MATERIALS AND METHODS

2.1. Materials

All laboratory supplies were purchased from VWR International unless otherwise specified. 

Linear PEG, triethylamine, acryloyl chloride, 2,2-dimethyl-2-phenyl-acetophenone (Irgacure 
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651), fluorescein isothiocyanate-labeled dextrans (FITC-dextrans), 2-hydroxy-4′-(2-

hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) and NVP were purchased from 

Sigma Aldrich. Four-arm PEG was obtained from Jenkem Technology.

2.2. Synthesis of PEGDA and PEGTA

PEGDA was prepared according to a previously established protocol.35 Briefly, linear PEG 

(Mn = 3.4 kDa, 6.0 kDa, 10.0 kDa, 20.0 kDa) was dissolved in dry dichloromethane at a 

concentration of 0.05 mM and purged with argon. Thereafter, triethylamine was added 

slowly to the solution at a molar ratio of 2:1, followed by the drop-wise addition of acryloyl 

chloride at molar ratios of 4:1, 4:1, 8:1, or 12:1 for PEG Mn of 3.4 kDa, 6.0 kDa, 10.0 kDa, 

20.0 kDa, respectively. After 24 h of stirring at 4 °C, residual hydrochloric acid was 

removed by washing twice with 2 M K2CO3 and separating the mixture into aqueous and 

organic phases. The organic phase was subsequently dried using anhydrous MgSO4. 

PEGDA was precipitated in diethyl ether in an ice bath, filtered and dried under vacuum at 

room temperature. The extent of acrylation was determined by 1H NMR to be greater than 

92% for each PEGDA batch. PEGTA was prepared from four-arm PEG (Mw = 2.0 kDa) 

using a similar protocol as described for PEGDA, with acryloyl chloride being added at a 

molar ratio of 8:1. The extent of PEGTA acrylation was determined to be greater than 95% 

by 1H NMR.

2.3. Preparation of PEGDA-SRS Hydrogels and PEGDA Control Hydrogels

2.3.1. Preparation of PEGDA-NVP Hydrogels—PEGDA precursor solutions were 

prepared in phosphate buffered saline (PBS) at 6 to 8 different concentrations of PEGDA for 

each of the four Mn listed previously. In general, 5%, 10%, 15%, 20%, 25% and 30% w/v 

PEGDA solutions were prepared, although 6%, 8%, and 12.5% w/v solutions were also 

occasionally made, particularly for the lower Mn formulations. Photoinitiator consisting of a 

300 mg/mL solution of Irgacure 651 (I651) dissolved in NVP was added to each PEGDA 

precursor solution at 10 μL/mL. Here, the NVP contributed an equivalent of ~0.1 mmol of 

reactive vinyl groups per mL of precursor solution. The mixtures were subsequently 

vortexed and filtered using 0.22 μm filters. Thereafter, 1.5 mL of the filtered solutions were 

pipetted into 0.75–1.10 mm thick transparent rectangular glass molds and polymerized by a 

2 min exposure to long-wave ultraviolet light (~6 mW/cm2, 365 nm; Spectronics 

Corporation). The resulting hydrogels were referred to as “PEGDA-NVP/I651” 

formulations.

To confirm that the observed effects associated with NVP inclusion were not dependent on 

the chemistry of the photoinitiator (i.e. I651), another group of NVP-containing hydrogel 

formulations was prepared using Irgacure 2959 (I2959) as the photoinitiator. Briefly, 3.4 

kDa PEGDA and 10 kDa PEGDA precursor solutions were prepared over a range of 5–30% 

w/v PEGDA. Photoinitiator consisting of a 262 mg/mL solution of I2959 dissolved in NVP 

was added to each PEGDA precursor solution at 10 μL/mL (for an equivalent of ~0.1 

mmol/mL of reactive vinyl groups being contributed by the NVP). The mixtures were 

vortexed and filtered using 0.22 μm filters. Hydrogels were prepared within glass molds as 

described previously and were designated “PEGDA-NVP/I2959”.
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To assess the effects of increased NVP dose on PEGDA-NVP hydrogel properties, a separate 

group of hydrogels was prepared with 5–30% w/v 3.4 kDa PEGDA and cured in the 

presence of I651 and either 1 μL/mL NVP (for an equivalent of ~0.01 mmol/mL of reactive 

vinyl groups being contributed by the NVP) or 20 μL/mL NVP (for an equivalent of ~0.2 

mmol/mL of reactive vinyl groups being contributed by the NVP). The resulting hydrogels 

were referred to as “PEGDA-0.1×NVP/I651” and “PEGDA-2×NVP/I651” formulations, 

respectively.

2.3.2. Preparation of PEGDA-PEGTA Hydrogels—To examine the impact of SRS 

chemistry on hydrogel properties, PEGTA (2.0 kDa) was added as an SRS to six different 

3.4 kDa PEGDA precursor solutions at either 10 mg/mL (for an equivalent of 0.02 mmol/mL 

of reactive acrylate groups being contributed by PEGTA) or 50 mg/mL (for an equivalent of 

0.1 mmol/mL of reactive acrylate groups being contributed by PEGTA). Photoinitiator 

consisting of a 262 mg/mL solution of I2959 dissolved in 70% ethanol was then added to 

each PEGDA precursor solution at 10 μL/mL, and the mixtures were vortexed and filtered 

using 0.22 μm filters. Hydrogels were prepared within glass molds as described previously 

and were designated “PEGDA-PEGTA” formulations.

2.3.3. Preparation of PEGDA Control Hydrogels—To confirm the quality of our 

hydrogel characterization techniques, a PEGDA hydrogel series was fabricated in the 

absence of an SRS. Briefly, PEGDA precursor solutions were prepared in PBS at 6 different 

concentrations of 3.4 kDa, 6.0 kDa, 10.0 kDa or 20.0 kDa PEGDA. Photoinitiator consisting 

of 262 mg/mL I2959 in 70% ethanol was then added to each PEGDA precursor solution at 

10 μL/mL, and the mixtures were vortexed, filtered using 0.22 μm filters and cured as 

described previously. The resulting hydrogels – designated “PEGDA Control” formulations 

– served as a baseline for statistically assessing the effects of SRS incorporation.

2.4. Characterization of PEGDA-SRS Hydrogels and PEGDA Control Hydrogels

Following fabrication, all PEGDA-SRS and PEGDA control hydrogel formulations were 

immersed in PBS for 24 h to allow for equilibrium swelling to be attained. The average 

mesh size and modulus of each formulation as well as the extent of swelling were 

subsequently characterized as follows.

2.4.1. Evaluation of hydrogel swelling in the relaxed state and at equilibrium 

swelling—Immediately following photopolymerization, the initial weights (Wi) of a subset 

of discs from each PEGDA hydrogel formulation were recorded. These discs were 

subsequently transferred to PBS for 24 h to allow for equilibrium swelling, after which they 

were transferred to fresh PBS for an additional 4 h at room temperature. The swollen weight 

(Ws) of each sample was then recorded, and the discs were then lyophilized for 24 h. 

Following recording of the dry weight (Wd) of each specimen, the volumetric swelling ratio 

in the relaxed state (Q*) was calculated for each hydrogel as: , where ρs is 

the density of the solvent and ρp is the density of PEGDA. The volumetric swelling ratio at 

equilibrium (Q) was also calculated for each hydrogel as: 
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2.4.2. Evaluation of hydrogel mesh size—Due to limitations associated with more 

standard mesh size assessment methods, we chose to characterize hydrogel mesh size via a 

series of dextran diffusion experiments based on an adaptation of the methodology of 

Watkins et al.36 For instance, PEGDA hydrogel mesh size cannot be visualized using 

conventional scanning electron microscopy (SEM) due to the collapse of the hydrogel mesh 

structure during sample drying.37 Although cryo-SEM can overcome this limitation,21 the 

technique is prohibitively expensive to run on expanded hydrogel libraries such as those 

analyzed herein. Mathematical correlations38–40 that estimate average hydrogel mesh size 

(ξ) based on the degree of hydrogel swelling (Q) in aqueous solutions lose sensitivity when 

applied to high concentration PEGDA networks.16 In contrast, the dextran diffusion method 

allows for low-cost assessment of average hydrogel mesh size over large libraries without 

extensive sample preparation and is sensitive over the range of PEGDA concentrations and 

molecular weights tested in this study.20–21, 23

Briefly, swollen hydrogel discs (8 mm diameter, 1.1 mm swollen thickness) were immersed 

at room temperature in PBS containing 0.05 mg/mL of FITC-dextran (Mw = 4 kDa, 10 kDa, 

or 20 kDa). FITC-dextran of each molecular weight was allowed to diffuse into the hydrogel 

discs for 24 h, following which each disc was gently blotted and transferred to fresh PBS. 

After 24 h, the fluorescence of the FITC-dextran that had diffused out of the hydrogels was 

measured using a fluorescence plate reader (BioTek Instruments Inc.) at excitation and 

emission wavelengths of 480 and 520 nm respectively. The fluorescence measurements were 

converted to micrograms of FITC-dextran using a standard curve.

For each hydrogel, the measured concentrations of each FITC-dextran were plotted against 

the hydrodynamic radius of the corresponding FITC-dextran (1.4 nm, 2.3 nm, and 3.3 nm 

for dextran Mw of 4 kDa, 10 kDa, and 20 kDa, respectively). The area under the resulting 

curve served as a quantitative indicator of hydrogel permissivity over the range of 

hydrodynamic radii assayed. The relative mesh size, μ, of a particular hydrogel was 

determined as the ratio of the area under the curve for that hydrogel to the area under the 

curve for a 30% 10.0 kDa PEGDA-NVP/I651 reference formulation.20 Based on an absolute 

average mesh size value of 9.5 nm for the 30% 10 kDa hydrogel PEGDA-NVP/I651,20 the 

absolute average mesh size of a particular hydrogel formulation, x, was estimated as:

2.4.3. Measurement of elastic modulus—The tensile moduli of the hydrogels were 

assessed by a previously validated ring method.41 Briefly, hydrogel rings measuring 8 mm 

outer diameter, 6 mm inner diameter and 1.1 mm post-swelling thickness were mounted 

using custom brackets onto an Instron 3342 equipped with a 10 N load cell. The rings were 

exposed to a uniaxial strain of 6 mm/min and tested until failure. Applied stress was 

calculated from the measured force by approximating the area of force application as two 

rectangles, each with sides equal to the width and wall thickness of the ring. The gauge 

length was determined to be the distance between the midpoints on diametrically opposite 

loops of the ring, i.e. 7 mm. Strain was calculated as the ratio of the displacement to the 
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gauge length. Finally, the modulus of each hydrogel was determined from the slope of the 

linear portion of the stress-strain curve.

2.4.4. Validation of the mesh size and modulus characterization methods—To 

evaluate the quality of our assessment tools, we confirmed that our modulus and mesh size 

results for the PEGDA control formulations were consistent with the exponential 

relationship between modulus and mesh size predicted from Flory-Rehner theory and the 

Canal-Peppas equation under the conditions of high degrees of swelling, where chain ends 

can be considered negligible.40, 42 Specifically, Flory and Rehner developed a correlation 

linking the measurable quantity of equilibrium hydrogel swelling, Q, to the network 

structural parameter, M̄c (i.e. the average molecular weight between crosslinks), by applying 

thermodynamic arguments to crosslinked polymer networks.38 This equation was 

subsequently modified as follows by Peppas and Merrill to improve its accuracy for 

networks crosslinked in the presence of a solvent:39, 42

(1)

where, Mn is the number average molecular weight of the polymer chains in the absence of 

any crosslinking, ν̄ is the specific volume of the polymer, V1 is the molar volume of the 

solvent, ν2,s is the post-swelling equilibrium polymer volume fraction (1/Q), ν2,r is the 

polymer volume fraction in the relaxed state before swelling (1/Q*), and χ12 is the solvent-

polymer interaction parameter. Similarly, Anseth et al. utilized rubber elasticity theory to 

develop a relationship between the mechanical properties of crosslinked hydrogel networks 

and their molecular structure.43 Here, the relationship between M̄c and tensile modulus E (as 

opposed to compressive modulus)44 is given by:

(2)

where ν is Poisson’s ratio for the hydrogel, R is the ideal gas constant, ρp is the density of 

the dry polymer, and T is the temperature in Kelvin.

For high degrees of swelling (Q > 10), where chain ends are negligible, equation 1 and 

equation 2, respectively, can be approximated as:

(3)
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(4)

In addition, the mesh size of hydrogel networks can theoretically be estimated as described 

by Canal and Peppas:40

(5)

where  is the root-mean-squared end-to-end distance of the polymer chains. Since 

is proportional to M̄c, a scaling relationship between the network mesh size ξ and tensile 

elastic modulus E under conditions of high swelling can be obtained by combining equations 

(3), (4) and (5):

(6)

The above relationship was overlaid onto the E-ξ data obtained from characterization of the 

PEGDA control hydrogels which met the underlying assumptions for these approximations 

(i.e. Q > 10).

2.5. Statistical Analyses

The average mesh sizes (ξ) of the individual formulations within each hydrogel library (i.e. 

hydrogels prepared with a particular PEGDA Mn and SRS but varying PEGDA 

concentration) were plotted against their corresponding elastic moduli (E). Results are 

reported as mean ± standard deviation for n = 4 – 8 hydrogel samples for each formulation 

per characterization method. The absolute deviation of the modulus-mesh curve for each 

PEGDA-SRS library relative to the E-ξ trendline for the PEGDA controls was statistically 

evaluated using ANOVA followed by a Tukey’s post-hoc test (SPSS version 22.0, IBM), 

with a p-value < 0.05 considered significant.

3. RESULTS

3.1. Baseline Measures: Relationship between Mesh Size and Tensile Modulus for PEGDA 

Control Hydrogels

To serve as a baseline against which we could compare the modulus-mesh size relationships 

of the PEGDA-SRS hydrogels, PEGDA control hydrogels – without an SRS – were 

fabricated and characterized. The average mesh size of the resulting hydrogels was then 

plotted against the corresponding tensile modulus (Figure 2A). As expected, average mesh 

size decreased and modulus concurrently increased with an increase in precursor solution 

concentration for each of the Mn tested (Table 1). Moreover, the curves for the different Mn 

followed a common exponential trendline such that the E-ξ curve arising from any particular 
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PEGDA Mn was statistically indistinguishable from that of the remaining PEGDA Mn. This 

overlay of the modulus-mesh size curves of the PEGDA control hydrogels irrespective of 

PEGDA Mn is predicted by Flory-Rehner theory and thus served as an important validation 

of our characterization methods.45

To further evaluate the quality of our assessment tools, we confirmed that our data were 

consistent with the exponential relationship between modulus and mesh size predicted by 

Flory-Rehner theory and the Peppas-Merrill equation under the conditions of high degrees 

of swelling (Q > 10), where chain ends can be considered negligible40, 42: ξ ∝ (E)−7/12. 

(Derivation of this relationship can be found in the Materials and Methods section.) A plot 

containing only the PEGDA control formulations which meet the assumptions underlying 

the above correlation (Q > 10) is shown in Figure 2B. A trendline ξ ∝ (E)−7/12 overlaid onto 

the reduced data set shows a high degree of agreement between our data and this existing 

scaling relationship. Importantly, these control data also demonstrate the inability to 

independently examine hydrogel modulus or mesh size effects using pure PEGDA 

hydrogels. Further physical data for the PEGDA control series are presented in Table 1.

3.2. Effects of NVP as an SRS: Relationship between Mesh Size and Tensile Modulus for 

PEGDA-NVP Hydrogels

Next, we extended these characterization tools to hydrogels prepared from 3.4 kDa, 6 kDa, 

10 kDa or 20 kDa PEGDA and cured in the presence of ~0.1 mmol/mL of NVP using the 

photoinitiator I651. For these hydrogels, the moduli values ranged between 15 and 454 kPa, 

while the corresponding mesh size values ranged from 6.6 to 37.8 nm over the array of 

concentrations and Mn of PEGDA tested (Figure 3). These modulus and mesh size ranges 

are similar to those observed for the PEGDA control hydrogels fabricated in the absence of 

an SRS (Figure 2A). However, unlike the PEGDA control hydrogels, the E-ξ curves for 

PEGDA-NVP/I651 hydrogels of varying Mn did not overlay onto a single trendline. Table 2 

lists the mean lateral distances between the PEGDA control trendline and the corresponding 

PEGDA-NVP/I651 hydrogel series trendline as a function of PEGDA Mn. Notably, as 

PEGDA Mn decreased, the deviation of the PEGDA-NVP/I651 modulus-mesh curves from 

the PEGDA control trendline became more pronounced (Figure 3). Specifically, the 3.4 kDa 

and 6.0 kDa PEGDA-NVP/I651 hydrogels showed statistically significant deviations (p < 

0.001) from the PEGDA control trendline, although the 10.0 kDa and 20.0 kDa PEGDA-

NVP/I651 curves were statistically indistinguishable from the PEGDA control trendline. 

Further data on the physical properties of PEGDA-NVP/I651 hydrogel formulations are 

presented in Table 3.

To ensure that the observed shifts in the E-ξ curves were a result of the NVP rather than the 

selected photoinitiator (i.e. I651), 3.4 kDa PEGDA-NVP hydrogels (shift anticipated) and 

10.0 kDa PEGDA-NVP hydrogels (no significant shift anticipated) were prepared using a 

different photoinitiator (I2959). As with the PEGDA-NVP/I651 hydrogels, the E-ξ curve for 

the 3.4 kDa PEGDA-NVP/I2959 hydrogels displayed a significant deviation from the 

PEGDA control trendline (p < 0.001), but the 10.0 kDa PEGDA-NVP/I2959 hydrogels did 

not (Figure 4A). In addition, the magnitude of the shift in the E-ξ curves (relative to the 

PEGDA control trendline) was the same for the PEGDA-NVP/I2959 hydrogels as for the 
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corresponding PEGDA-NVP/I651 hydrogels (Figure 4A). These data indicate that the NVP 

was responsible for the deviations in E-ξ curves observed with the PEGDA-NVP/I651 

hydrogels. To examine the dose dependence of the effect of NVP on PEGDA-NVP hydrogel 

properties, 3.4 kDa PEGDA-NVP hydrogels were prepared with ~0.01 mmol/mL of NVP 

(0.1×NVP) as well as 2 mmol/mL NVP (2×NVP). In contrast to 1×NVP, 0.1×NVP was 

insufficient to result in a statistically significant shift in the modulus-mesh curves relative to 

the control trendline (Figure 4B). However, 2×NVP did not yield further shifts in the E-ξ 
curve relative to the 3.4 kDa PEGDA-1×NVP hydrogels (Figure 4B), indicating that 

increases in NVP dose beyond a certain level do not substantially impact average network 

structure. This latter result may be due to kinetic limitations on the incorporation of NVP 

within PEGDA networks.30

To further examine the impact of PEGDA Mn on the degree of shift in the PEGDA-NVP 

modulus-mesh curves relative to PEGDA controls, a PEGDA-NVP hydrogel series was 

prepared with 2.0 kDa PEGDA and 1×NVP. The resulting data confirm and extend upon the 

previous observations with 3.4 kDa and 6.0 kDa PEGDA-NVP hydrogels and demonstrate 

that the degree of shift in PEGDA-NVP modulus-mesh curves relative to PEGDA controls 

increases with decreasing PEGDA Mn (Figure 5B). Cumulatively, the PEGDA-NVP and 

PEGDA control hydrogel data indicate that numerous modulus ranges can be probed without 

significant changes in average mesh size, including ~200–340 kPa all the way down to ~10–

75 kPa (Figure 5B). Importantly, these lower modulus ranges are of significant interest in 

soft tissue mechanobiology.18, 3132–34 Similarly, mesh size ranges which can be investigated 

without substantially impacting elastic modulus include 7.5–11.0 nm all the way to 23.0–

40.0 nm. That said, PEGDA hydrogels are heterogeneous systems – i.e. two PEGDA 

hydrogels with similar average mesh sizes may not share a similar mesh size distribution. 

Thus, we further examined the dextran diffusion curves for a subset of the hydrogels for 

which similar average mesh size, but distinct moduli, were identified (Figure 6). Recall that 

the mesh structure of each hydrogel network was characterized by the diffusion of three 

dextrans of distinct hydrodynamic radii (1.4 nm, 2.3 nm, and 3.3 nm) and that the diffusion 

of each of these dextrans into the network structure was used to calculate an average mesh 

size. In Figure 6(A, C, E), the dextran diffusion curves for PEGDA control hydrogel 

formulations which span the upper, intermediate, and lower modulus ranges identified in 

Figure 5B are shown. In Figure 6(B, D, F), dextran diffusion curves for PEGDA and 

PEGDA-NVP hydrogel formulations which span the same modulus range are shown. For 

each modulus range, the inclusion of NVP allowed not only greater agreement in average 

mesh size among hydrogel formulations, but also increased agreement in mesh size 

distribution relative to the PEGDA control hydrogel formulations.

3.3. Effects of PEGTA as an SRS: Relationship between Mesh Size and Tensile Modulus for 

PEGDA-PEGTA Hydrogels

To further examine the impact of SRS chemistry and dose on hydrogel properties, PEGTA 

was added as an SRS at a concentration of either 10 mg/mL or 50 mg/mL to six different 

PEGDA precursor solutions. The PEGDA-1×NVP E-ξ curves for 3.4 kDa PEGDA yielded 

intermediate levels of shift from the PEGDA control trendline. Therefore, 3.4 kDa PEGDA 

was used to test the effect of PEGTA incorporation in this set of experiments. The 50 mg/mL 
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of PEGTA was calculated to yield an equimolar concentration of reactive groups as the 

1×NVP (namely, 0.1 mmol/mL of reactive groups), while the 10 mg/mL concentration of 

PEGTA (0.02 mmol/mL of reactive groups) was employed to determine the degree to which 

lower SRS doses impacted the PEGDA-PEGTA E-ξ curves.

As expected, the E-ξ curve of the 3.4 kDa PEGDA-PEGTA hydrogels cured in the presence 

of 50 mg/mL of PEGTA demonstrated a significant deviation from the trendline for the 

PEGDA control hydrogels (Figure 7). Importantly, the E-ξ curve of the 3.4 kDa PEGDA-

PEGTA hydrogels containing 50 mg/mL of PEGTA (0.1 mmol/mL of reactive acrylate 

PEGTA groups) was statistically indistinguishable from the E-ξ curve of the 3.4 kDa 

PEGDA-1×NVP/I651 hydrogels (~0.1 mmol/mL of reactive vinyl NVP groups). These data 

suggest that NVP and PEGTA may function in a similar manner in modifying the PEGDA 

network structure. In contrast, the E-ξ curve for the 3.4 kDa PEGDA-PEGTA hydrogels 

containing 10 mg/mL of PEGTA (0.02 mmol/mL of reactive acrylate PEGTA groups) was 

not significantly shifted from the PEGDA control trendline (Figure 7). This result indicates 

that there is a minimum dose of SRS needed to observe a substantial shift in the modulus-

mesh curve of PEGDA-PEGTA hydrogels, in agreement with the PEGDA-NVP data.

4. DISCUSSION

The ability to examine the impact of microenvironmental stiffness in 3D contexts, decoupled 

from changes in mesh size over a range of stiffness values, would represent a significant 

advance for mechanobiology. Similarly, the ability to tune hydrogel mesh size while 

minimally impacting hydrogel mechanical properties would be useful in the design of 

controlled release vehicles. Therefore, the overarching goal of this study was to expand the 

E-ξ space available with PEGDA hydrogels towards permitting a greater degree of 

“decoupling” between modulus and average mesh size than is currently achievable. Towards 

this end, PEGDA hydrogels of varying concentrations and molecular weights were prepared 

in the presence NVP and PEGTA, two SRS that maintain the “blank slate” character of pure 

PEGDA hydrogels.25–29 The modulus and average mesh size of the resulting hydrogels were 

then characterized.

The incorporation of sufficient NVP or PEGTA into PEGDA hydrogels resulted in 

significant deviations of their E-ξ curves from the PEGDA control trendline at lower 

PEGDA Mn (Figures 3, 5, 7). These shifts allowed for the identification of a number of 

modulus ranges which could be probed at consistent average mesh size (or vice versa, Figure 

5B). As noted in the Introduction, previous work has identified limited “decoupling” 

following the incorporation of NVP – 2 hydrogel formulations, one with modulus of 100 

kPa and the other at 200 kPa with similar average mesh sizes.21 In addition, Browning et al. 

reported that the addition of PEGTA to PEGDA hydrogels resulted in the emergence of a 

modulus range (130–250 kPa) over which minimal changes in mesh size were observed and 

a mesh size range (50–100 nm) over which approximately constant modulus could be 

maintained.23 In contrast to the restricted ranges identified in these previous reports,2123 the 

present results identify a number of modulus ranges (between ~200–350 kPa down to ~10–

75 kPa) that can be probed at consistent average mesh size. Similarly, mesh size ranges 
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which can be investigated without substantially impacting elastic modulus include 7.5–11.0 

nm all the way to 23.0–40.0 nm.

To gain insight into potential mechanisms by which these SRSs influence hydrogel structure, 

the modulus and mesh data points for the 3.4 kDa PEGDA control hydrogels were plotted 

relative to the corresponding data points for the 3.4 kDa PEGDA-NVP/I651 formulations 

(Figure 8A). Dashed arrows “link” PEGDA control formulations to PEGDA-NVP 

formulations containing the same concentration of PEGDA. The magnitude and angle of 

these connecting arrows give an indication of the degree of change in modulus and mesh 

size following NVP addition. Similar plots were prepared for the 6.0 kDa, 10.0 kDa, and 

20.0 kDa hydrogel series (Figure 8B–D). For 10 kDa and 20 kDa PEGDA, the addition of 

NVP to low concentration (< 10% w/v) solutions of PEGDA resulted in shifts in average 

mesh size that were more pronounced than the corresponding shifts in modulus. In contrast, 

the addition of NVP to 3.4 kDa and 6 kDa PEGDA hydrogels resulted in shifts in modulus 

that were similar to or greater than the corresponding shifts in mesh size throughout the 

PEGDA concentration range probed. We showed earlier that the shifts in the E-ξ curve 

relative to the PEGDA control trendline were statistically significant for the 3.4 kDa and 6.0 

kDa PEGDA-NVP hydrogel series, but not for the 10 kDa and 20 kDa PEGDA-NVP 

hydrogels (Figure 3). Thus, the data in Figures 3 and 8 indicate that the most significant 

deviations in the E-ξ curves of PEGDA-NVP hydrogels from the PEGDA control trendline 

were observed when the modulus effects of NVP balanced or exceeded its mesh size effects 

in the lower concentration PEGDA hydrogels.

The changes noted above in the manner in which NVP impacts network structure as PEGDA 

concentration and Mn are altered can perhaps best be understood by further examining the 

correlations in equations (4) and (6) in the Materials and Methods section. These equations 

link modulus and average mesh size to the molecular weight between crosslinks Mc̄, which 

is inversely proportional to the more easily conceptualized parameter, crosslink density ρx. 

For hydrogel formulations with Q > 10, average mesh size ξ decreases exponentially with an 

increase in ρx of the polymer network according to ξ ∝ (ρx)−7/12. In contrast, modulus E 

increases exponentially with an increase in ρx : E ∝ (ρx)
6/5. Accordingly, the rate of change 

of mesh size with increasing crosslink density is: , whereas the rate of 

change of modulus with increasing crosslink density is: . Thus, 

, and the change in mesh size associated with an incremental increase in ρx 

due to incorporation of an SRS will be greater than the corresponding change in modulus for 

ρx values less than 1 mol/L. However, as ρx increases due to increasing PEGDA 

concentration or decreasing PEGDA Mn, further incremental shifts in ρx will begin to have a 

greater impact on modulus than on average mesh size. In support of this theory, we observe 

that the 3.4 kDa and 6.0 kDa PEGDA-NVP/I651 formulations, which displayed significant 

shifts in their E-ξ curves, have estimated ρx values near to or exceeding 1 (Tables 1, 3).

The introduction of NVP and PEGTA appear to have similar net effects on the observed 

degree of “decoupling” (i.e., the magnitude of the shifts in the 3.4 kDa PEGDA-NVP and 
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3.4 kDa PEGDA-PEGTA curves relative to the PEGDA control trendline were statistically 

indistinguishable), suggesting that the two SRS interact with the PEGDA hydrogel structure 

in a similar fashion. Recent small-angle X-ray scattering data of PEGDA hydrogels cured by 

free radical polymerization have revealed that these hydrogels form as nanostructures 

composed of PEG macromer chains spaced between high functionality crosslinked domains, 

as shown schematically in Figure 9A.46 In light of the present data, we hypothesize that the 

SRS (i.e. NVP, PEGTA) participate in the crosslink junctions in the dense PEGDA regions 

and perhaps contribute to increased PEGDA densification in these nanostructures (Figure 

9B). Such incorporation would result in a denser network in the PEGDA nanostructures, 

thus enhancing the elastic modulus of the hydrogels and reducing the bulk average mesh 

size. When the SRS impacts modulus to a greater, or at least similar degree, as mesh size, 

significant shifts in the E-ξ curve from that of pure PEGDA controls may be observed.

In summary, the results from this study open the possibility of identifying a range of 

PEGDA hydrogels with similar mesh size but distinct moduli (or vice versa), even at 

intermediate modulus and mesh size conditions. These results should enable controlled 

mechanobiology studies investigating specific effects of modulus on cells cultured within 3D 

environments. In addition, the current results should advance the design of drug delivery 

hydrogels in cases where specific mechanical properties must be maintained. Future studies 

will focus on confirming the mechanism by which NVP and PEGTA interact with the 

PEGDA hydrogel structure to result in the observed shifts in the PEGDA-SRS hydrogel 

modulus-mesh curves.

5. CONCLUSIONS

This study demonstrated that inclusion of NVP or PEGTA at sufficient levels can result in 

the emergence of a number of PEGDA hydrogel modulus ranges over which consistent mesh 

size is achieved (and vice versa). In contrast to previous studies that have investigated only a 

limited set of SRS-incorporated hydrogel formulations, the extensive libraries examined in 

the current work (encompassing over 100 distinct hydrogel formulations) indicate that a 

number of modulus ranges between ~200–350 kPa all the way ~10–75 kPa can be probed 

without significant changes in the average mesh size. Similarly, mesh size ranges which 

could be investigated without substantially impacting elastic modulus include 23.0–40.0 nm 

all the way down to 7.5–11.0 nm. Finally, both NVP and PEGTA resulted in this broadening 

of the PEGDA hydrogel properties while maintaining the biological “blank slate” character 

of pure PEGDA hydrogels and, in the case of PEGTA, with minimal alteration in hydrogel 

chemistry relative to pure PEGDA hydrogels.
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HIGHLIGHTS

• We examined the effects of the incorporation of NVP and PEGTA as 

secondary reactive species (SRS) within PEGDA hydrogel networks

• NVP and PEGTA both caused in substantive shifts in the modulus-mesh size 

curves of PEGDA hydrogels, resulting in apparent decoupling between 

modulus and mesh size over a number of physical property ranges

• The effects of both NVP and PEGTA on apparent decoupling were dose 

dependent
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Figure 1. 

Chemical structure of poly(ethylene glycol) diacrylate (PEGDA) and the secondary reactive 

species (SRS) used in this study namely, namely N-vinyl pyrrolidone (NVP) and star 

poly(ethylene glycol) tetraacrylate (PEGTA).
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Figure 2. 

(A) Plot of mesh size versus modulus of PEGDA control hydrogels. (B) Plot of mesh size 

versus modulus for a subset of PEGDA control hydrogel formulations with Q > 10. The 

trendline ξ α E−7/12 predicted by Flory-Rehner Theory and Canal and Peppas is overlaid 

onto the Q > 10 data. Data values are reported as average ± standard deviation for n = 4 

independent samples per formulation.
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Figure 3. 

Influence of NVP on the E-ξ curves for PEGDA-NVP hydrogels of varying PEGDA Mn and 

concentration. Data values are reported as average ± standard deviation for n = 4–8 

independent samples per formulation. An asterisk indicates significant differences between 

the 3.4 kDa PEGDA-NVP/I651 and the PEGDA control trend line (p < 0.001), while a 

pound symbol indicates significant differences between 6.0 kDa PEGDA-NVP/I651 and the 

PEGDA control trendline (p < 0.001).
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Figure 4. 

(A) Effect of photoinitiator chemistry on the E-ξ curves for the 3.4 kDa and 10.0 kDa 

PEGDA-NVP series. Note that the 3.4 kDa and 10 kDa PEGDA-NVP/I2959 data points are 

overlaid onto the line-fits for the corresponding E-ξ curves for PEGDA-NVP/I651 data. (B) 

Effect of 0.1×NVP and 2×NVP on the E-ξ curve for the 3.4 kDa PEGDA–NVP series. The 

3.4 kDa PEGDA-2×NVP/I651 data points are overlaid onto the line-fit for the E-ξ curve for 

PEGDA-1×NVP/I651 data and the 3.4 kDa PEGDA-0.1×NVP data are overlaid onto the 

line-fit for the E-ξ curve for 3.4 kDa PEGDA control data. Data values are reported as 

average ± standard deviation for n = 4 independent samples per formulation
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Figure 5. 

(A) PEGDA-NVP/651 modulus-mesh size curves, including a 2.0 kDa PEGDA curve, which 

shows increased divergence from the PEGDA control trendline. “$” indicates significant 

differences between the 2.0 kDa PEGDA-NVP/I651 and the PEGDA control trend line (p < 

0.001). (B) Constant average mesh size ranges and constant modulus ranges achievable with 

the analyzed PEGDA-NVP/I651 hydrogels. Upper, intermediate, and lower boundaries of 

modulus ranges which can be investigated while maintaining consistent average mesh size 

are shown in blue. Upper, intermediate, and lower boundaries for mesh size ranges which 

can be probed at constant elastic modulus are shown in green.
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Figure 6. 

Dextran diffusion curves for various hydrogel formulations demonstrating the capacity of 

NVP incorporation to enable specific modulus ranges to be examined with increased 

homogeneity in mesh size relative to pure PEGDA hydrogels alone. (A, B) Modulus Range 

1: 10–40 kPa; Dextran diffusions curves for (A) PEGDA control hydrogel formulations and 

(B) PEGDA and PEGDA-NVP hydrogel formulations spanning a modulus range of 10–40 

kPa. (C, D) Modulus Range 2: 40–130 kPa; Dextran diffusions curves for (C) PEGDA 

control hydrogel formulations and (D) PEGDA and PEGDA-NVP hydrogel formulations 

spanning a modulus range of 40–130 kPa. (E, F) Modulus Range 3: 190–380 kPa; Dextran 

diffusions curves for (A) PEGDA control hydrogel formulations and (B) PEGDA and 

PEGDA-NVP hydrogel formulations spanning a modulus range of 190–380 kPa.
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Figure 7. 

Effect of the incorporation of PEGTA on the E-ξ curve for the 3.4 kDa PEGDA hydrogel 

series. Note that the 3.4 kDa PEGDA-PEGTA (50 mg/ml) data points overlay onto the line-

fit for the E-ξ curve for PEGDA-1×NVP/I651 data, whereas the 3.4 kDa PEGDA-PEGTA 

(10 mg/ml) data points overlay onto the line-fit for the E-ξ curve for the 3.4 kDa PEGDA 

control hydrogels. Data values are reported as average ± standard deviation for n = 4 

independent samples per formulation.
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Figure 8. 

Deviations in mesh size and modulus upon the introduction of NVP within (A) 3.4 kDa 

PEGDA hydrogels, (B) 6.0 kDa PEGDA hydrogels, (C) 10.0 kDa PEGDA hydrogels and 

(D) 20.0 kDa PEGDA hydrogels. In each panel, dashed arrows “link” PEGDA control 

formulations to PEGDA-NVP formulations containing the same concentration of PEGDA.
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Figure 9. 

Schematic representation which indicates the hypothetical manner in which secondary 

reactive species (SRS) may interact with the PEGDA hydrogel network structure at the 

nanoscale. (A) A schematic representation of a pure PEGDA hydrogel network, with 

nanoscale regions of PEGDA densification which include crosslink junctions (adapted from 

Waters et al., 2010); (B) We hypothesize that the SRS participate in the crosslink junctions 

in the dense PEGDA regions and perhaps contribute to increased PEGDA densification. In 

pure PEGDA hydrogels, the acrylate groups (hydrophobic regions of the PEGDA molecules) 

bend the PEGDA chains, creating micelles. The grouped acrylate moieties then participate in 

the formation of crosslink junctions. Given the fact that the acrylate groups will have higher 

affinity for NVP or the dense, tetraacrylated molecule PEGTA than for water molecules, the 

presence of these SRS molecules can serve as a nucleation points, bringing additional 

PEGDA chains in close proximity and increasing the density of the polymer within the 

nanoscale aggregates. The inset in (C) shows a magnified schematic of a nanoscale PEGDA 

aggregate in a PEGDA control hydrogel and the inset in (D) shows a nanoscale aggregate in 

which the SRS (red) has increased the density of the PEGDA chains (blue) at the crosslink 

junctions.
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Table 2

Mean lateral distance between the PEGDA control trendline and the corresponding PEGDA-NVP/I651 

hydrogels series trendline as a function of molecular weight

Hydrogels Series Mean Distance [kPa]

PEGDA Control 9.2 ± 7.6

20.0 kDa PEGDA-NVP/I651 4.5 ± 1.8

10.0 kDa PEGDA-NVP/I651 18.4 ± 11.8

6.0 kDa PEGDA-NVP/I651 32.2 ± 11.7a,b

3.4 kDa PEGDA-NVP/I651 57.4 ± 22.6 a,b,c,d

a
significantly different from PEGDA control series, p < 0.001;

b
significantly different from 20.0 kDa PEGDA-NVP/I651, p < 0.001;

c
significantly different from 10.0 kDa PEGDA-NVP/I651, p < 0.05;

d
significantly different from 6.0 kDa PEGDA-NVP/I651, p < 0.05.
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