Header menu link for other important links
X
Imidazolium cation linkers of polyoxomolybdate-polypyrrole nanocomposite electrode-based energy storage supercapacitors
P.K. Muhammed Anees, A.A. Vannathan, M.B. Abhijith, T. Kella, , S.S. Mal
Published in Elsevier Ltd
2022
Volume: 277
   
Abstract
The electrochemical properties of a new hybrid electrode, liquid-polyoxometalate-polypyrrole (BMIM-PVMo11-PPy) have been studied. The H4[PVMo11O40] (PVMo11) was combined with 1-Butyl-3-methyl-imidazolium (BMIM) ionic liquid and then doped on the polypyrrole (PPy) surface. In order to investigate the interaction between the BMIM, PVMo11, and PPy compound was characterized using various analytical techniques, such as Infrared spectroscopy, thermal stability analysis, powder X-ray diffraction, multinuclear NMR (1H and 13C), FESEM, EDX, and surface adsorption studies. The electrochemical performance of the BMIM-PVMo11-PPy composite material has been tested in an aqueous 0.25 M H2SO4 electrolytic solution. The BMIM-PVMo11-PPy composite exhibits the highest specific capacitance of 527.39 F g−1 at a current density of 1 A g−1, along with remarkable specific energy and power of 51.07 Wh kg−1 and 1078.96 W kg−1, respectively. The BMIM-PVMo11-PPy composite was observed to light up red and blue color LED bulbs for 66 and 16 s, respectively, with 84 mg of sample coated on carbon cloth, suggesting an incredible specific power of that material. © 2021 Elsevier B.V.
About the journal
JournalData powered by TypesetMaterials Chemistry and Physics
PublisherData powered by TypesetElsevier Ltd
ISSN02540584