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Abstra
t

In this 
ontribution, we present a novel polygonal �nite element

method applied to hyperelasti
 analysis. For generating polygonal

meshes in a bounded period of time we use the adaptive Delaunay

tessellation (ADT) proposed by Constantinu et al [12℄. ADT is an un-

stru
tured hybrid tessellation of a s
attered point set that minimally


overs the proximal spa
e around ea
h point. In this work, we have

extended the ADT to non-
onvex domains using 
on
epts from 
on-

strained Delaunay triangulation (CDT). The proposed method is thus

based on a 
onstrained adaptive Delaunay tessellation (CADT) for the

dis
retization of domains into polygonal regions. We involve the met-

ri
 
oordinate (Mals
h) method for obtaining the interpolation over


onvex and non 
onvex domains. For the numeri
al integration of the

Galerkin weak form we resort to 
lassi
al Gaussian quadrature based

on triangles. Numeri
al examples of two dimensional hyperelasti
ity

are 
onsidered to demonstrate the advantages of the polygonal �nite

element method.
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1 Introdu
tion

A large strain analysis typi
ally in
ludes both geometri
 and material non-

linearities. For many materials, linear elasti
 models do not a

urately de-

s
ribe the observed material behavior. The most 
ommon example of this

kind of material is rubber, whose stress-strain relationship 
an be de�ned as

non-linearly elasti
, isotropi
, in
ompressible and generally independent of

strain rate. Hyperelasti
ity provides a means of modeling the stress-strain

behavior of su
h materials. Filled elastomers and biologi
al tissues are also of-

ten modeled via the hyperelasti
 idealization. A hyperelasti
 material derives

the stress-strain relationship from a strain energy density fun
tion. Classi-


ally the �nite element method has been used as a tool for numeri
al hyper-

elasti
 analysis. Advan
ements in 
onstru
tions of n−gons

1

and interpolants

has helped to move beyond the limits of using simple geometri
al elements

for dis
retization. The use of n−gons provides greater �exibility in deal-

ing with arbitrary geometries. Polygonal �nite element dis
retizations are

used in many areas, a few examples in
lude: as interfa
e elements for 
on-

ne
ting dissimilar �nite element meshes [18℄, nonlinear 
onstitutive modeling

of poly
rystalline ferroele
tri
s [49℄, two �eld methods for solving di�usion

equations [23℄, analysis of solid me
hani
s problems [38℄ in
luding in
om-

pressible materials [13℄, and for topology optimization [51℄. There have been

other re
ent works on developing polygonal �nite element interpolants based

on s
aled boundary elements [10℄ and virtual nodes [53℄, obtaining higher

order p adaptive and Ck
generalized approximations for polygonal 
louds [3℄.

The re
ent fo
us has also been on generating 
onformal polygonal dis
retiza-

tions [25℄. Some re
ent works are also 
on
erned with developing numeri
al

integration s
hemes for polygonal �nite element methods either based on


onformal mapping [34℄ [35℄ or generalizing Gaussian quadrature rules for

polygons [24℄, [33℄. Sukumar et al [46℄ established the 
onne
tions between

the virtual element method (VEM) and the hourglass 
ontrol te
hniques and

showed quantitative 
omparisons of the 
onsisten
y and stabilization matri-


es in the VEM to those in the hourglass 
ontrol method. Heng et al [9℄

have given an approa
h towards the 
hallenging task of modeling nonlinear

elasti
 materials with standard �nite elements and have proposed an alterna-

tive approa
h to model �nite elasti
ity problems in two dimensions by using

polygonal dis
retization. Gianmar
o et al [32℄ worked on the new perspe
-

1

A n− sided polygon is termed as an n−gon

2
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tives on polygonal and polyhedral �nite element methods. Floater et al [31℄

have dis
ussed on gradient bounds for Wa
hspress 
oordinates on polytopes.

An approa
h regarding polygonal �nite elements approximation for mixed

formulations was given by Cameron et al. [52℄ for in
ompressible �uid �ow.

It has been demonstrated that a 
ertain 
lass of approximants 
an be devoid

of spurious modes and lo
king. Cameron et al. [50℄ proposed a polygonal �-

nite element pro
edure for topology optimization. In another re
ent work [52℄

integration errors in polygonal �nite element methods and its relevan
e for

the pat
h test have been dis
ussed. Arun et al. [2℄ proposed the Virtual Ele-

ment Method (VEM) for the numeri
al solution of boundary value problems

on arbitrary polyhedral meshes and also presented several numeri
al studies

in order to verify 
onvergen
e of the VEM and evaluate its performan
e for

various types of meshes. Khoei et al. [4℄ presented a polygonal-FEM te
h-

nique for modeling of arbitrary interfa
es in large deformations and applied

it to 
apture dis
ontinuous deformations in non-
onformal elements, whi
h

are 
ut by the interfa
e in a uniform regular mesh. Biabanaki et al. [5℄ pre-

sented a polygonal �nite element method for large deformation fri
tionless

dynami
 
onta
t-impa
t problems with non-
onformal meshes. Sukumar et

al. [44℄ presented the development of quadrati
 serendipity shape fun
tions on

planar 
onvex and non
onvex polygons and maximized the obje
tive fun
-

tional subje
t to the 
onstraints for quadrati
 
ompleteness. A numeri
al

algorithm based on group theory and numeri
al optimization was presented

by Mousavi et al. [33℄ to 
ompute e�
ient quadrature rules for integration

of the bivariate polynomials over arbitrary polygons. The algorithm was

used for the 
onstru
tion of symmetri
 and non-symmetri
 quadrature rules

over 
onvex and 
on
ave polygons. Nguyen et al. [37℄ provided an approa
h

towards free and for
ed vibration analysis using the n-sided polygonal 
ell-

based smoothed �nite element method. They further extended the nCS-FEM

to the free and for
ed vibration analyses of two dimensional (2D) dynami


problems. Hornmann et al [21℄ introdu
ed a new generalization of bary
en-

tri
 
oordinates that stems from the maximum entropy prin
iples. David

et al [14℄ presented a mixed-element mesh generator based on the modi-

�ed o
tree approa
h that has been adapted to generate polyhedral Delaunay

meshes. Yijiang et al. [60℄ presented an expli
it expression of two-dimensional

element 
omplian
e matrix on the 
omplementary energy prin
iple with 
on-


ave polygonal meshes. Dai et al [13℄ proposed a smoothed �nite element

method (SFEM) using quadrilateral elements, whereby the method produ
es

very a

urate stresses and desirable 
onvergen
e rate 
omparable to the FEM.

3
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Kraus and Steinmann [22℄ presented �nite element formulations for 3D 
on-

vex polyhedra in nonlinear 
ontinuum me
hani
s. An n- sided polygonal

edge - based smoothed �nite element method (nES-FEM) for solid me
han-

i
s problems is dis
ussed in [37℄. Somnath et al [20℄ developed a Voronoi 
ell

�nite element method to solve small deformation elasti
-plasti
 problems for

arbitrary heterogeneous materials and 
ondu
ted studies to understand the

e�e
t of size, shape and distribution of se
ond phases on the averaged and

true lo
al responses of representative material elements. Zhang et al. [62℄

developed a parametri
 variational prin
iple based polygonal �nite element

method (PFEM) and Voronoi 
ell �nite element method (VCFEM) for the

numeri
al simulation of the elasti
�plasti
 me
hani
al behavior of heteroge-

neous materials under small deformation and also gave the shape fun
tions

for the polygonal element. Sundararajan et al. [36℄ studied the 
onvergen
e

and a

ura
y of displa
ement based �nite element formulations over arbi-

trary polygons. Lapla
e interpolants, strain smoothing and s
aled boundary

polygon formulations were 
onsidered for the analysis. Andrew et al. [1℄

studied error estimates for generalized bary
entri
 interpolation. An e�
ient

numeri
al s
heme for the biharmoni
 equation by weak Galerkin �nite ele-

ment methods on polygonal or polyhedral meshes has been proposed in [11℄.

Higher order BEM-based FEM on polygonal meshes have been studied re-


ently (see [39℄ and [40℄).

In this work we present a Galerkin method based on adaptive Delaunay

tessellation (ADT) over non-
onvex geometries for solving two-dimensional

geometri
ally nonlinear hyperelasti
ity problems. Various polygonal inter-

polants available in the literature amongst others in
lude Lapla
e, Wa
h-

press [55℄, Warren [57℄, and Floaters mean value interpolants [19℄. In the

present work, we make use of the metri
 
oordinate method or rather Mals
h

interpolant [30℄ for the interpolation over non-
onvex polygonal domains.

Thereby we use a mapping of a star shaped polygonal physi
al element to a


anoni
al element.

In se
tion 2 we present the governing equations and weak form of hyper-

elasti
 analysis. An overview of the novel ADT hybrid polygonal meshing

te
hnique for s
attered point distribution as proposed in Constantiniu et

al. [12℄ is presented in se
tion 3. In se
tion 4 the methodology for 
omputing

Mals
h interpolants [30℄ are dis
ussed. In the last se
tion we present numer-

i
al examples in two dimensions to test the polygonal �nite element method

for hyperelasti
 materials.

4
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Figure 1: Elastostati
 boundary value problem.

2 Governing equations and weak form

To state the variational prin
iple in a geometri
ally nonlinear setting we refer

all quantities arising in the 
ontinuum me
hani
al des
ription to the material


on�guration B0 ⊂ ℜ3
with boundary ∂B0 and outward units normal ve
tor

N . In de�ning the motion of B0 a typi
al 
ontinuum parti
le o

upies a

su

ession of points whi
h for a �xed material point X forms the spatial

path for this 
ontinuum parti
le (see Figure 1). The position ve
tors of

parti
les in B0 are given by X, and the nonlinear deformation map

ϕ : B0 → Bt (1a)

X 7→ ϕ (X) = x (1b)

is su
h that it maps parti
les X of the material 
on�guration to parti
les

x in the spatial 
on�guration Bt. As usual ϕ is assumed to be su�
iently

smooth (C1

ontinuous) so that we de�ne the deformation gradient.

F := ∇Xϕ, FiA :=
∂ϕi

∂XA

, (2)

where we use small and 
apital indi
es whi
h refer either to the spatial or

the material 
on�guration, respe
tively. It is observed that F is a se
ond

order two point tensor that does not exhibit any symmetries. The Ja
obian

determinant is denoted by J := detF = dv/dV > 0, with dV and dv being

5
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the in�nitesimal volume elements in the material and spatial 
on�guration,

respe
tively.

2.1 Energy minimization and balan
e relations

We 
onsider a hyperelasti
 
ontinuum for whi
h the potential energy Π is

a fun
tional of the deformation, ϕ, whereas the stored energy density W0

depends on F and X, so that the fun
tional is written as

Π (ϕ) =

∫

B0

W0 (F ,X) dV +Πext(ϕ). (3)

If we assume the material to be hyperelasti
, stresses 
an be de�ned as the

derivatives of W0 with respe
t to their energeti
ally 
onjugate deformation

variables. The Piola- type ma
ro-stress P ,

P := ∂FW0. (4)

For arbitrary variations δϕ, the energy minimization takes the form

δΠ = δΠint + δΠext = 0, (5)

where

δΠext := −

∫

B0

b0 · δϕdV −

∫

∂B0

δϕ · tp0dA. (6)

In the above equation, b0 is the body for
e density a
ting on the material

domain B0 and t
p
0 is the nominal surfa
e tra
tion whi
h a
ts on the Neu-

mann surfa
e in the material 
on�guration ∂Bt
0. By appli
ation of the Gauss

theorem, we derive the equilibrium equations and Neumann- type bound-

ary 
onditions. Integrating by parts, variation of the internal energy term

be
omes

δΠint = −

∫

B0

δϕ · DivP dV +

∫

∂B0
t

δϕ · P ·N dA

Thus the variation of the total potential energy is given by

δΠ = −

∫

B0

δϕ ·DivP dV +

∫

∂Bt
0

δϕ · P ·N dA

−

∫

Bt
0

b0 · δϕdV −

∫

∂Bt
0

δϕ · tp0dA = 0,

6
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Figure 2: Delaunay and 
onstrained Delaunay tessellation: the edges e1, e2
and e3 of the initial DT(N ) are not strongly Delaunay, as with the enabled


onstraining edges eC (dotted lines) an edge �ipping is triggered. The triangle

f is then also 
onstraint Delaunay although point p is inside the 
ir
um
ir
le

c(f) but not Delaunay visible.

Following the 
ommon steps we 
an write the equilibrium equations as

DivP = −b0 in B0 (7)

with

P ·N = t
p
0 on ∂Bt

0 (8)

FIGURE 3 FIGURE 4

2.2 Constitutive assumption for stored energy density

A hyperelasti
 
onstitutive theory is 
hosen. Using this 
onstitutive assump-

tion, the stress measures are derived. For the stored energy density W0, we

assume the following hyperelasti
 Neo- Hookean 
onstitutive fun
tion

W0 (F ) =
1

2
λ ln2 J +

1

2
µ
[

F : F − ndim − 2 ln J
]

(9)

Herein, the material parameters λ and µ are the Lamé 
onstants from 
las-

si
al elasti
ity, ndim
denotes the number of dimension in spa
e. With this

7
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(b)

Figure 3: CDT and asso
iated CADT meshes on non-
onvex L-shaped do-

main (a) CDT with 1537 triangular elements, (b) CADT with 863 polygonal

elements
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Figure 4: Geometri
 measures used for polygonal interpolation : signed tri-

angle areas A, se
tion angles αI , internal polygonal angles γI and δI for node
I.


onstitutive assumption the Piola stress takes the form

P = ∂FW0 = [λ ln J − µ]F−T + µF . (10)
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Figure 5: Numeri
al integration based on partition of the 
anoni
al domain

Ω0 or the physi
al domain Ω and mapping of quadrature points from a generi


triangular domain Ω⊳.

3 Constrained adaptive Delaunay tessellation

We 
onsider a set of nodes N = {p1,p2, . . .pM} with pI ∈ R
2
. The �rst

order Voronoi diagram V(N ) of the set N is a subdivision of the Eu
lidian

spa
e R
2
into 
onvex regions

V (pI) =
{

p ∈ R
2 : ||p− pI || < ||p− pJ || ∀ J 6= I

}


alled Voronoi 
ells, where V(N ) = ∪V (pI) [49, 51, 53�56℄. The above de�-

nition states that any point p in the Voronoi 
ell V (pI) is 
loser to node pI

than to any other node pJ . We 
an de�ne the Delaunay tessellation DT(N )
su
h that no other point of N is inside the 
ir
um
ir
le of the 
onsidered

triangle in DT(N ). In general, the Delaunay tessellation in a k-dimensional

Eu
lidian spa
e 
onsists of k-simpli
es (in 2D: triangles) 
onstru
ted as the


onvex hull of k+1 a�nely independent points. The Delaunay tessellation is

dual to the Voronoi diagram, maximizes the minimum angle of all the angles

of the triangles in the tessellation and tends to avoid skinny triangles.

Fa
tors su
h as non-uniqueness and geometri
 qualities of the Delaunay tes-

sellation are of interest. The non-uniqueness is of 
on
ern espe
ially in the

9
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ase of degenerated subsets of the point set N . Problems arise when three

points of a potential triangle are 
ollinear or four or more points are 
o-


ir
ular. This typi
ally happens in the 
ase when a set of planar points is a

subset of a re
tangular array of points. In su
h 
ases the length of a Voronoi

edge is zero, hen
e the 
orresponding Delaunay edges are missing in the dual

graph and non-simpli
ial polygons are formed. These 
an be arbitrarily tri-

angulated be
ause their topology remains unde�ned by merely stating an

empty 
ir
um
ir
le (Delaunay) 
riterion. The geometri
 qualities of su
h el-

ements strongly in�uen
e the 
ondition number of the sti�ness matrix and

the numeri
al a

ura
y of the approximation s
heme [41℄. A simple solution

for the non-uniqueness is by merging some of these 
o-
ir
ular points like

in the extended Delaunay tessellation (EDT) [7℄. Re
ently Constantiniu et

al. [12℄ have proposed the adaptive Delaunay tessellation (ADT) of degen-

erated point sets. The method is an unstru
tured hybrid tessellation of a

s
attered point set that minimally 
overs the proximal spa
e around ea
h

point. The mesh is automati
ally obtained in a bounded period of time

by using geometri
 properties of an initial Delaunay tessellation. Rigorous

proofs for the geometri
 properties of the ADT have been given by Boba
h

et al. [6℄, whi
h in
lude the uniqueness of the ADT, the 
onne
tedness of the

ADT, and the 
overage of the Voronoi tiles by adja
ent ADT tiles. These

properties indi
ate that the method is robust for appli
ation to solve elasti
-

ity problems. In the present work, the ADT proposed in [12℄ is extended to

in
lude also non-
onvex domains.

For the 
onsidered set N we denote its 
onvex hull as CH(N ), its border

as ∂CH(N ) and its asso
iated Delaunay tessellation DT(N ) := (E
DT

,F
DT

)

omposed by the a
tive edges-to-node tuple e ⊂ E

DT

∈ N
2
and assembled

triangles f ⊂ F
DT

∈ N
3
. Any triangle f having an interior angle greater than

or equal to

π
2
is obtuse. The longest edge of an obtuse triangle f>

opposite to

the obtuse angle is denoted as e>f . For a triangle f ∈ F
DT

we denote its 
ir-


um
enter of the 
ir
um
ir
le c(f) by pc(f). One 
an state that a triangle f
is deemed to be obtuse if it does not 
ontain pc(f) in its interior and pc(f) lies
on the opposite side of e>f , respe
tively (
ompare with Thales 
ir
le). With

the set E> = {e>f | f ∈ F
DT

∧e>f /∈ ∂CH(N )} of all obtuse edges, the tessella-
tion of the domain CH(N ) represented by (F

ADT

, E
DT

\ E>), where F
ADT

is

then the set of polygons generated by merging triangles with 
ommon edge

in E>
is the adaptive Delaunay tessellation ADT(N ). The ADT(N ) of a

point set is therefore the result of removing the longest edge on ea
h ob-

tuse triangle from the original Delaunay tessellation DT(N ), if this is not a

10

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



boundary edge. Sin
e no new edges are generated in ADT(N ), ea
h triangle

f ∈ F
DT

is part of some polygon g ∈ F
ADT

. For detailed studies on quality

measures and the appli
ation of the adaptive Delaunay tessellation we refer

to Constantiniu et al. [12℄.

A 
onstrained adaptive Delaunay tessellation (CADT) of the point set

N is an extension of the ADT(N ) that also 
on�rms to 
onstraints C. In

2d, C is a given planar straight line graph whi
h 
onsists of a subset of N
with its 
onne
ting edges, 
alled 
onstraining edges eC, that 
an interse
t

other edges e only at their end points. The method is based on the 
on
epts

from 
onstrained Delaunay tessellation (CDT) that in
ludes eC whi
h meet

the Delaunay 
riterion as good as possible [42℄. Hen
e, 
onstrained edges

are not ne
essarily Delaunay edges, the triangles f also do not ne
essarily

ful�ll the empty 
ir
um
ir
le property but they ful�ll a weaker empty 
on-

strained 
ir
um
ir
le property. To state this property, it is 
onvenient to

think of 
onstrained edges as blo
king the view. Then, a tessellation is 
on-

strained Delaunay if any 
ir
um
ir
le c(f) in
ludes in its interior no other

Delaunay visible verti
es than its own, see Figure 2 [59℄. Various algorithms

are available for 
onstru
ting an CDT, these in
lude divide and 
onquer al-

gorithms [8℄, sweep line algorithms [42℄ and in
remental algorithms [61℄.

A tessellation is sought that 
ontains the verti
es in N and respe
ts the


onstraining edges eC [15℄. A triangle f(N ) is 
onstrained Delaunay, if f
respe
ts all 
onstraints C, whi
h are ful�lled if f ⊂ F

DT

, no ef does inter-

se
t any 
onstraining edge eC or is a 
onstraining edge itself, and there is a


ir
um
ir
le c(f) su
h that no other vertex of N is Delaunay visible, 
om-

pare [59, Lemma 1℄. If this is ful�lled for all f and with E>
, the tessellation

of the domain CH(N ) represented by the sets (F
CADT

, E
CDT

\ E>) is 
alled

the 
onstrained adaptive Delaunay tessellation CADT(N ), where F
CADT

is

the set of polygons generated by merging triangles with 
ommon edge in E>
.

Thus, the CADT(N ) is the result of removing from ea
h obtuse triangle

f> ∈ F
CDT

(N ) the longest edge, if this is not a boundary or 
onstrained edge.

Sin
e no new edges are generated in CADT(N ), ea
h triangle f ∈ F
CDT

is

also part of some polygon g ∈ F
CADT

. Figure 3 
ompares the initial CDT

with the �nal CADT meshes for a non-
onvex domain.

11
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4 Conforming interpolants on polygons

Here we reiterate the pro
edure for obtaining shape fun
tions on 
annoni
al

polygonal domains. These are then 
ombined with an a�ne map to evaluate

the fun
tions on 
onvex and non-
onvex polygonal physi
al domains. We


onsider a polygonal domain Ω0 ⊂ ℜ2
de�ned by the set of n nodes de�ning

the verti
es of the polygon. pK denote the Kth
node, with 
oordinates pK ≡

(xk, yk). Any point with 
oordinate p ≡ (x, y) ∈ Ω0 has a set of asso
iated

shape fun
tions φK(p). An interpolation s
heme for a s
alar-valued fun
tion

u(p) : B0 → ℜ2

an be written as:

uh(p) =
n

∑

K=1

φK(p)uK (11)

where uK are the unknowns at the n nodes of the polygon. The fun
tion

uh(p) satis�es properties su
h as partition of unity, interpolation and linear


ompleteness inside the polygon and on the boundaries. We use various

geometri
 measures like edge length, signed area, and sine or 
osine of the

angles at ea
h vertex of the polygon to 
onstru
t the interpolants as dis
ussed

below.

4.1 Mals
h Interpolant

Mals
h and Dasugupta ( [29℄ , [28℄, [30℄, [45℄) have presented a rational

pro
edure for 
onstru
ting smooth and bounded interpolants on both 
onvex

and 
on
ave polygons. The interpolant is expressed as:

φM
I (p) =

kIsI(p)
∑n

J=1
kJsJ(p)

(12)

Where sI(p) are de�ned as the helper fun
tions that a

ounts for adja
en
y

and kI is any arbitrarily 
hosen 
onstant. Appropriate 
hoi
es of the helper

fun
tion and 
onstants are made so as to ensure the interpolation require-

ments along boundaries and any interior points present within the polygonal

domain. With referen
e to Figure 4 , one 
an de�ne sI as produ
t of fun
-

tions that are zero along all the boundary segments from node I +1 to node

I − 1, that are adja
ent to node I. This 
an be written as:

sI(p) =
∏

I 6=I−1&I 6=I+1

rI+1,I−1(p) (13)
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Figure 6: a) Mals
h interpolant on a 
anoni
al hexagon b) Mals
h interpolant

on a physi
al polygon 
) Mals
h interpolant on a 
on
ave polygon

For 
onvex polygons the fun
tion rI+1,I−1(p) = A(p, pI , pI+1) and kI =
A(pI , pI+1, pI−1). For 
on
ave polygons rI+1,I−1(p) = lI+1(p) + lI−1(p) −
lI+1,I−1 and kI = 1. Here the length measure is de�ned as lI = ((x− xI)

2 +
(y − yI)

2)0.5 and lI,I+1 = ((xI − xI+1)
2 + (yI − yI+1)

2)0.5.
The Mals
h interpolation over a 
anoni
al and physi
al polygon are shown

in Figure 6a and Figure 6b. The interpolation over an 
on
ave polygon is

shown in Figure 6
.

5 Dis
retized weak form and numeri
al inte-

gration

Herein we use the polygonal interpolant both for the deformation map and

for the spa
e of admissible variations.

13
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ϕh(p) =
n

∑

k=1

φk(p)ϕk
(14)

δϕh(p) =
n

∑

k=1

φk(p)δϕk
(15)

where φk(p) and are the shape fun
tions for the node k that are asso
iated

with nodal deformations ϕk
, Herein, the nodal indi
es k a

ount for the dis-


rete values of the unknown ϕh
. These shape fun
tions have the interpolating

property. The �rst order deformation gradients are de�ned as

F h =
n

∑

k=1

ϕk ⊗∇Xφ
k

(16)

In order to obtain the dis
retized spatial equilibrium equations, re
all the

prin
iple of virtual work. Introdu
ing the interpolation for δϕ we have

δΠ(ϕh; δϕk) =

∫

B0

P (ϕh) :

[

n
∑

k=1

δϕk ⊗∇Xφ
k

]

dV (17)

+δΠext(δϕh)

The above equation 
an be rearranged for all δϕk
as

δΠ(ϕh; δϕk) =

n
∑

k=1

δϕk ·

∫

B0

[

P (ϕh) · ∇Xφ
k
]

dV (18)

+δΠext(δϕh) = 0

The dis
rete residual 
an thus be written as

Rk =

∫

B0

P (ϕh) · ∇Xφ
k(p)dV − F ext

k = 0 (19)

This represents a set of nonlinear equilibrium equations with the 
urrent

nodal deformation as unknowns. The solution of these equations is a
hieved

using a Newton Raphson iterative pro
edure. The linearized problem is given

by

n
∑

l=1

[Kkl]
[

dϕl
]

=
[

F ext
k − F int

k

]

(20)
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and is solved for iterative in
rements of ϕl
The 
omponent matri
es of the

global tangent sti�ness matrix are given by

Kkl =
∂Rk

∂ϕl

=

∫

B0

[

∂FP · ∇Xφ
k
]

· ∇Xφ
ldV (21)

where the tangent operators for the spe
i�
 
onstitutive law read as

∂FP = λF−T ⊗ F−T − [λ lnJ − µ]F−T⊗F−T + [µ] I⊗I (22)

Here Kkl is a tensor of se
ond order arranged in appropriate global lo
a-

tions to yield the global sti�ness matrix.

Numeri
al integration of the Galerkin weak form is required to be per-

formed over the polygonal domain for evaluating the integrals. Standard

Gaussian integration rule is used for �nite elements and for mesh free meth-

ods based on ba
k ground 
ells. Presently the state of the art in
ludes the

following methods for performing numeri
al integration over polygonal do-

mains:

• Integration on the physi
al polygonal element n−gon by subdividing it

in to n triangles and then using standard quadrature rule on triangles

[12℄, [48℄.

• Partitioning the 
anoni
al (regular) polygonal element n− gon into n
triangles and then performing numeri
al quadrature on triangles [48℄.

• Cubature rules for irregular n−gons [16℄ [17℄ based on triangles [54℄ [56℄

or 
onformal mapping [34℄, [35℄, [25℄.

• Generalized quadratures rules [27℄ on triangles or polygons based on

symmetry groups and numeri
al optimization [43℄, [33℄ [26℄and [58℄.

In the present work we apply for simpli
ity the �rst two approa
hes. In

performing the numeri
al integration by partitioning of the physi
al element,

the integration of a (s
alar) fun
tion ψ over Bi ( a n− gon) is written as

∫

Bi

ψdB =
n

∑

j=1

∫

B
△j
i

ψdB =
n

∑

j=1

∫ 1

0

∫ 1−ξ

0

ψ | Jj | dξdη (23)

A nsp quadrature rule on ea
h of the referen
e triangles is used to 
ompute

the last integral. In the above 
ase for a given quadrature point we determine

15
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X via : X =
∑3

i=1
φa

X
a
. Where φa

are the �nite element shape fun
tions for

a three node triangle. To 
ompute the Mals
h shape fun
tions we need the

ξ 
oordinates in the 
anoni
al element. The position in physi
al 
oordinates

are obtained by inverse mapping [47℄.
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Any N-gonal domain may be de
omposed into N pairwise disjoint trian-

gular subdomains Ω̄ and then any integration of a fun
tion ψ on a physi
al

domain Ω 
an be written as

∫

Ω

ψ dΩ =
∑

N

∫

Ω̄

ψ dΩ̄ (24)

=
∑

N

∫

Ω̄0

ψ |J | dΩ̄0 (25)

=
∑

N

∫

Ω⊳

ψ |J ||J⊳| dη̄ dξ̄ (26)

and thereby be pulled ba
k for integration either on a triangle in the 
anoni
al

domain Ω0 or a generi
 triangular domain Ω⊳. (24)-(26) may individually

be integrated with any adequate quadrature s
heme. We sele
t 
lassi
al

2D Gaussian quadrature de�ned on a generi
 triangular domain with nG⊳
quadrature points on ea
h of the N subdomain triangles. For the appli
ation

of (24) and (25) the Gauss points pG⊳ and the asso
iated weights wG 
an also

be mapped into the appropriate domains Ω or Ω0, respe
tively.

6 Numeri
al examples

6.1 Square plate with a 
entral hole

In a square spe
imen of side length L = 2 in, an inhomogeneity is introdu
ed

by means of a 
entered 
ir
ular hole of radius r = 1 in, as shown in Figure

7. The nodes at the bottom edge of the dis
retized geometry are �xed in

verti
al dire
tion, a 
onstant displa
ement boundary 
ondition in the same

dire
tion is applied on the top nodes step wise, until the �nal length of 1.5L
is rea
hed. Lamé 
onstants of λ = 73.5 GPa, µ = 36.5 GPa , resulting in a

Poisson ratio of ν = 0.25 are 
onsidered.

The square spe
imen with 
entral hole is �rst dis
retized with randomly

generated Delaunay triangles. The proposed CADT algorithm and 
ode is

then used to generate the CADT polygonal mesh as shown in Figure 8(
).

The small amount of asymmetry in the polygonal dis
retization may be at-

tributed to the randomness in the Delaunay tessellation that is initially 
on-

sidered for CADT. For a 
omparative study the square spe
imen with hole

17
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Figure 7: Square plate with a 
ir
ular hole.

is also dis
retized using three noded triangular elements as shown in Figure

8(a). A hyperelasti
 analysis is performed and the �nal deformed meshes are

shown in Figure 8(b) and 8(d) . A quadrati
 
onvergen
e is a
hieved in both


ases. Polygonal elements with n sides o�er more �exibility than regular

three noded triangular elements espe
ially for large deformations. Further

more the advantage of a ADT mesh at large deformations is that a trian-

gular element present in an ADT mesh that tends to be too elongated 
an

be merged with other triangles to form a n sided polygon in a CADT mesh.

The stresses are 
omputed for hyper- elasti
 analysis. Stress smoothing by

nodal averaging is performed at the nodes of the polygonal elements. Figure

9(a), (b) and (
) indi
ate the stress plots σxx, σyy and σxy for the polygonal

dis
retization. It is observed from Figure 10 that at large deformations for

the same amount of applied displa
ement, the rea
tion for
e measured is less

in the polygonal �nite element method than in the 
lassi
al FEM approa
h

thus 
learly indi
ating that it is a more �exible dis
retization.

18

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



(a) (b)

(
) (d)

Figure 8: Hyperelasti
 analysis of a unit square domain with a 
entral hole

with restraint at the bottom edge and a pres
ribed displa
ement on the top

edge a) Initial 
on�guration using a FEM dis
retization based on a three

noded triangular elements b)Final 
on�guration using a FEM dis
retization

based on three noded triangular elements 
) Initial 
on�guration using a

CADT polygonal dis
retization d) Final 
on�guration using a CADT polyg-

onal dis
retization
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(a) (b) (
)

Figure 9: Stress distribution for unit square domain with a 
entral hole


orresponding to the CADT mesh (shown in Figure 8d) a) Stress σxx b)

Stress σyy 
) Stress σxy.
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Figure 10: Rea
tion for
e versus displa
ement plot for plate with a hole

example.
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6.2 L shaped domain

PSfrag repla
ements
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(a)

Figure 11: L- shaped domain
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(a) (b)

(
) (d)

Figure 12: Hyperelasti
 analysis on a L shaped domain with restraint at

the renentrant 
orner and pres
ribed displa
ements in axial dire
tion along

the two legs. a) Initial 
on�guration using a FEM dis
retization based on

three noded triangular elements b) Final 
on�guration using a FEM dis-


retization based on three noded triangular elements 
) Initial 
on�guration

using a CADT polygonal dis
retization d) Final 
on�guration using a CADT

polygonal dis
retization
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(a) (b)

(
)

Figure 13: Stress distribution for an L shaped domain. The results obtained

are for CADT mesh shown in Figure 12d. a)Stress σxx b) Stress σyy 
) Stress
σxy
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Figure 14: Rea
tion for
e versus dipla
ement plot for L-shaped example.

A L-shaped spe
imen of the dimensions as shown in Figure 11 is 
onsidered.

The spe
imen is subje
ted to a pres
ribed displa
ement in the X and Y
dire
tion along the two legs. To prevent rigid body motion all the defor-

mation degrees of freedom at the re-entrant 
orner A are additionally �xed.

The Lamé 
onstants are taken as λ = 73.5 GPa, µ = 36.5 GPa resulting in a

Poisson's ratio ν = 0.25. The proposed CADT algorithm is then used to gen-

erate the CADT polygonal mesh as shown in Figure 12(
). For a 
omparative

study the L- shaped spe
imen is also dis
retized using three noded triangular

elements as shown in Figure 12(a). A hyper-elasti
 analysis is performed and

the �nal deformed meshes are shown in Figure 12(b) and 12(d). A quadrati



onvergen
e is a
hieved in both 
ases. Stress smoothing by nodal averaging

is performed at the nodes of the polygonal element . Figure 13(a),(b) and (
)

indi
ate the stress plots σxx, σyy and σxy for the polygonal dis
retization. It

is observed from Figure 14 that at large deformations for the same amount

of applied displa
ement, the rea
tion for
e measured is less in polygonal �-

nite element method than the 
lassi
al FEM approa
h thus 
learly indi
ating

that it is a more �exible dis
retization. This may be attributed the in
reased

number of degrees of freedom per element for polygonal FEM dis
retization

and to the �exible interpolation s
hemes used in the polygonal FEM.
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Figure 15: Square blo
k under 
ompression.

6.3 Square blo
k under 
ompression

A square blo
k of dimensions as shown in Figure 15 is subje
ted to a non

uniform 
ompression. Displa
ements are applied along DE so as to indu
e

non uniform 
ompression. Symmetri
 boundary 
onditions are applied along

AD and AB. Be
ause of the symmetry, only one-half of the blo
k is 
on-

sidered for 
onvenien
e. The proposed CADT algorithm is then used to

generate the CADT polygonal mesh as shown in Figure 16(
). For a 
om-

parative study the square blo
k under 
ompression is also dis
retized using

three noded triangular elements as shown in Figure 16(a). A hyper-elasti


analysis is performed and the �nal deformed meshes are shown in Figure

16(b) and 16(d). A quadrati
 
onvergen
e is a
hieved in both 
ases. Stress

smoothing by nodal averaging is performed at the nodes of the polygonal

elements. Figure 17(a),(b) and (
) indi
ate the stress plots σxx, σyy and

σxy for the polygonal dis
retization. It is observed from Figure 18 that at

large deformations for the same amount of applied displa
ement, the rea
-

tion for
e measured is less in the polygonal �nite element method than in

the 
lassi
al FEM approa
h, thus 
learly indi
ating that it is a more �exible

dis
retization.
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(a) (b)

(
) (d)

Figure 16: Hyperelasti
 analysis on a unit square domain subje
ted to 
om-

pression with restraint at the bottom edge and a pres
ribed displa
ement

on the top edge. a) Initial 
on�guration using a FEM dis
retization based

on three noded triangular elements b)Final 
on�guration using a FEM dis-


retization based on three noded triangular elements 
) Initial 
on�guration

using a CADT polygonal dis
retization d) Final 
on�guration using a CADT

polygonal dis
retization
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(a) (b)

(
)

Figure 17: Stress plots for the unit square domain subje
ted to 
ompression.

The results are obtained for CADT meshes (shown in Figure16d). a) Stress

σxx b) Stress σyy 
) Stress σxy

28

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



PSfrag repla
ements

Polygonal FEM

FEM

Displa
ement ×Lmm

N

o

r

m

a

l

i

z

e

d

r

e

a




t

i

o

n

f

o

r




e

a

t

A

(

N

)

0 0.1 0.2 0.3 0.4 0.5
0

0.33

0.66

1.0

Figure 18: Rea
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7 Summary and Con
lusions

In this work, we present a pro
edure for hyperelasti
 analysis using a novel

polygonal �nite element method based on Constrained Adaptive Delaunay

Tessellation (CADT). For generating polygonal meshes we use the Adaptive

Delaunay Tessellation (ADT). ADT is an unstru
tured hybrid tessellation of

a s
attered point set that minimally 
overs the proximal spa
e around ea
h

point. In this work, we have extended the ADT for non-
onvex domains

using 
on
epts from Constrained Delaunay Triangulation. We have used the

Mals
h interpolant for approximation over polygonal regions. For numer-

i
al integration of the Galerkin weak form we resort to 
lassi
al Gaussian

quadrature rules based on triangles. In the numeri
al examples, we have

implemented a plate with square hole, a L-shaped domain and a blo
k un-

der 
ompression. Polygonal elements with n sides o�er more �exibility than

regular three nodded triangular elements espe
ially for large deformations.

Also the advantage of an ADT mesh at large deformations is that a trian-

gular element present in a ADT mesh that tends to be too elongated 
an be

merged with other triangles to form n− sided polygons in a CADT mesh.

The present method 
ompares well with the results obtained from 
lassi
al

FEM, as observed in the deformation patterns that are obtained.
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