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Abstrat

In this ontribution, we present a novel polygonal �nite element

method applied to hyperelasti analysis. For generating polygonal

meshes in a bounded period of time we use the adaptive Delaunay

tessellation (ADT) proposed by Constantinu et al [12℄. ADT is an un-

strutured hybrid tessellation of a sattered point set that minimally

overs the proximal spae around eah point. In this work, we have

extended the ADT to non-onvex domains using onepts from on-

strained Delaunay triangulation (CDT). The proposed method is thus

based on a onstrained adaptive Delaunay tessellation (CADT) for the

disretization of domains into polygonal regions. We involve the met-

ri oordinate (Malsh) method for obtaining the interpolation over

onvex and non onvex domains. For the numerial integration of the

Galerkin weak form we resort to lassial Gaussian quadrature based

on triangles. Numerial examples of two dimensional hyperelastiity

are onsidered to demonstrate the advantages of the polygonal �nite

element method.

Keywords: Hyperelastiity, polygonal �nite element, adap-

tive Delaunay tessellation, polygonal interpolant,

∗
Assoiate Professor, Department of Civil Engineering, Indian Institute of Tehnology

Hyderabad 502205.

†
AUDI AG, Strength and Durability Group, Ingolstadt, Germany 85045

‡
Professor and Head, Chair of Applied Mehanis, University of Erlangen, Nuremberg,

Germany D91058

1

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



1 Introdution

A large strain analysis typially inludes both geometri and material non-

linearities. For many materials, linear elasti models do not aurately de-

sribe the observed material behavior. The most ommon example of this

kind of material is rubber, whose stress-strain relationship an be de�ned as

non-linearly elasti, isotropi, inompressible and generally independent of

strain rate. Hyperelastiity provides a means of modeling the stress-strain

behavior of suh materials. Filled elastomers and biologial tissues are also of-

ten modeled via the hyperelasti idealization. A hyperelasti material derives

the stress-strain relationship from a strain energy density funtion. Classi-

ally the �nite element method has been used as a tool for numerial hyper-

elasti analysis. Advanements in onstrutions of n−gons

1

and interpolants

has helped to move beyond the limits of using simple geometrial elements

for disretization. The use of n−gons provides greater �exibility in deal-

ing with arbitrary geometries. Polygonal �nite element disretizations are

used in many areas, a few examples inlude: as interfae elements for on-

neting dissimilar �nite element meshes [18℄, nonlinear onstitutive modeling

of polyrystalline ferroeletris [49℄, two �eld methods for solving di�usion

equations [23℄, analysis of solid mehanis problems [38℄ inluding inom-

pressible materials [13℄, and for topology optimization [51℄. There have been

other reent works on developing polygonal �nite element interpolants based

on saled boundary elements [10℄ and virtual nodes [53℄, obtaining higher

order p adaptive and Ck
generalized approximations for polygonal louds [3℄.

The reent fous has also been on generating onformal polygonal disretiza-

tions [25℄. Some reent works are also onerned with developing numerial

integration shemes for polygonal �nite element methods either based on

onformal mapping [34℄ [35℄ or generalizing Gaussian quadrature rules for

polygons [24℄, [33℄. Sukumar et al [46℄ established the onnetions between

the virtual element method (VEM) and the hourglass ontrol tehniques and

showed quantitative omparisons of the onsisteny and stabilization matri-

es in the VEM to those in the hourglass ontrol method. Heng et al [9℄

have given an approah towards the hallenging task of modeling nonlinear

elasti materials with standard �nite elements and have proposed an alterna-

tive approah to model �nite elastiity problems in two dimensions by using

polygonal disretization. Gianmaro et al [32℄ worked on the new perspe-

1

A n− sided polygon is termed as an n−gon
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tives on polygonal and polyhedral �nite element methods. Floater et al [31℄

have disussed on gradient bounds for Wahspress oordinates on polytopes.

An approah regarding polygonal �nite elements approximation for mixed

formulations was given by Cameron et al. [52℄ for inompressible �uid �ow.

It has been demonstrated that a ertain lass of approximants an be devoid

of spurious modes and loking. Cameron et al. [50℄ proposed a polygonal �-

nite element proedure for topology optimization. In another reent work [52℄

integration errors in polygonal �nite element methods and its relevane for

the path test have been disussed. Arun et al. [2℄ proposed the Virtual Ele-

ment Method (VEM) for the numerial solution of boundary value problems

on arbitrary polyhedral meshes and also presented several numerial studies

in order to verify onvergene of the VEM and evaluate its performane for

various types of meshes. Khoei et al. [4℄ presented a polygonal-FEM teh-

nique for modeling of arbitrary interfaes in large deformations and applied

it to apture disontinuous deformations in non-onformal elements, whih

are ut by the interfae in a uniform regular mesh. Biabanaki et al. [5℄ pre-

sented a polygonal �nite element method for large deformation fritionless

dynami ontat-impat problems with non-onformal meshes. Sukumar et

al. [44℄ presented the development of quadrati serendipity shape funtions on

planar onvex and nononvex polygons and maximized the objetive fun-

tional subjet to the onstraints for quadrati ompleteness. A numerial

algorithm based on group theory and numerial optimization was presented

by Mousavi et al. [33℄ to ompute e�ient quadrature rules for integration

of the bivariate polynomials over arbitrary polygons. The algorithm was

used for the onstrution of symmetri and non-symmetri quadrature rules

over onvex and onave polygons. Nguyen et al. [37℄ provided an approah

towards free and fored vibration analysis using the n-sided polygonal ell-

based smoothed �nite element method. They further extended the nCS-FEM

to the free and fored vibration analyses of two dimensional (2D) dynami

problems. Hornmann et al [21℄ introdued a new generalization of baryen-

tri oordinates that stems from the maximum entropy priniples. David

et al [14℄ presented a mixed-element mesh generator based on the modi-

�ed otree approah that has been adapted to generate polyhedral Delaunay

meshes. Yijiang et al. [60℄ presented an expliit expression of two-dimensional

element ompliane matrix on the omplementary energy priniple with on-

ave polygonal meshes. Dai et al [13℄ proposed a smoothed �nite element

method (SFEM) using quadrilateral elements, whereby the method produes

very aurate stresses and desirable onvergene rate omparable to the FEM.

3
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Kraus and Steinmann [22℄ presented �nite element formulations for 3D on-

vex polyhedra in nonlinear ontinuum mehanis. An n- sided polygonal

edge - based smoothed �nite element method (nES-FEM) for solid mehan-

is problems is disussed in [37℄. Somnath et al [20℄ developed a Voronoi ell

�nite element method to solve small deformation elasti-plasti problems for

arbitrary heterogeneous materials and onduted studies to understand the

e�et of size, shape and distribution of seond phases on the averaged and

true loal responses of representative material elements. Zhang et al. [62℄

developed a parametri variational priniple based polygonal �nite element

method (PFEM) and Voronoi ell �nite element method (VCFEM) for the

numerial simulation of the elasti�plasti mehanial behavior of heteroge-

neous materials under small deformation and also gave the shape funtions

for the polygonal element. Sundararajan et al. [36℄ studied the onvergene

and auray of displaement based �nite element formulations over arbi-

trary polygons. Laplae interpolants, strain smoothing and saled boundary

polygon formulations were onsidered for the analysis. Andrew et al. [1℄

studied error estimates for generalized baryentri interpolation. An e�ient

numerial sheme for the biharmoni equation by weak Galerkin �nite ele-

ment methods on polygonal or polyhedral meshes has been proposed in [11℄.

Higher order BEM-based FEM on polygonal meshes have been studied re-

ently (see [39℄ and [40℄).

In this work we present a Galerkin method based on adaptive Delaunay

tessellation (ADT) over non-onvex geometries for solving two-dimensional

geometrially nonlinear hyperelastiity problems. Various polygonal inter-

polants available in the literature amongst others inlude Laplae, Wah-

press [55℄, Warren [57℄, and Floaters mean value interpolants [19℄. In the

present work, we make use of the metri oordinate method or rather Malsh

interpolant [30℄ for the interpolation over non-onvex polygonal domains.

Thereby we use a mapping of a star shaped polygonal physial element to a

anonial element.

In setion 2 we present the governing equations and weak form of hyper-

elasti analysis. An overview of the novel ADT hybrid polygonal meshing

tehnique for sattered point distribution as proposed in Constantiniu et

al. [12℄ is presented in setion 3. In setion 4 the methodology for omputing

Malsh interpolants [30℄ are disussed. In the last setion we present numer-

ial examples in two dimensions to test the polygonal �nite element method

for hyperelasti materials.
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Figure 1: Elastostati boundary value problem.

2 Governing equations and weak form

To state the variational priniple in a geometrially nonlinear setting we refer

all quantities arising in the ontinuum mehanial desription to the material

on�guration B0 ⊂ ℜ3
with boundary ∂B0 and outward units normal vetor

N . In de�ning the motion of B0 a typial ontinuum partile oupies a

suession of points whih for a �xed material point X forms the spatial

path for this ontinuum partile (see Figure 1). The position vetors of

partiles in B0 are given by X, and the nonlinear deformation map

ϕ : B0 → Bt (1a)

X 7→ ϕ (X) = x (1b)

is suh that it maps partiles X of the material on�guration to partiles

x in the spatial on�guration Bt. As usual ϕ is assumed to be su�iently

smooth (C1
ontinuous) so that we de�ne the deformation gradient.

F := ∇Xϕ, FiA :=
∂ϕi

∂XA

, (2)

where we use small and apital indies whih refer either to the spatial or

the material on�guration, respetively. It is observed that F is a seond

order two point tensor that does not exhibit any symmetries. The Jaobian

determinant is denoted by J := detF = dv/dV > 0, with dV and dv being

5
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the in�nitesimal volume elements in the material and spatial on�guration,

respetively.

2.1 Energy minimization and balane relations

We onsider a hyperelasti ontinuum for whih the potential energy Π is

a funtional of the deformation, ϕ, whereas the stored energy density W0

depends on F and X, so that the funtional is written as

Π (ϕ) =

∫

B0

W0 (F ,X) dV +Πext(ϕ). (3)

If we assume the material to be hyperelasti, stresses an be de�ned as the

derivatives of W0 with respet to their energetially onjugate deformation

variables. The Piola- type maro-stress P ,

P := ∂FW0. (4)

For arbitrary variations δϕ, the energy minimization takes the form

δΠ = δΠint + δΠext = 0, (5)

where

δΠext := −

∫

B0

b0 · δϕdV −

∫

∂B0

δϕ · tp0dA. (6)

In the above equation, b0 is the body fore density ating on the material

domain B0 and t
p
0 is the nominal surfae tration whih ats on the Neu-

mann surfae in the material on�guration ∂Bt
0. By appliation of the Gauss

theorem, we derive the equilibrium equations and Neumann- type bound-

ary onditions. Integrating by parts, variation of the internal energy term

beomes

δΠint = −

∫

B0

δϕ · DivP dV +

∫

∂B0
t

δϕ · P ·N dA

Thus the variation of the total potential energy is given by

δΠ = −

∫

B0

δϕ ·DivP dV +

∫

∂Bt
0

δϕ · P ·N dA

−

∫

Bt
0

b0 · δϕdV −

∫

∂Bt
0

δϕ · tp0dA = 0,

6
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Figure 2: Delaunay and onstrained Delaunay tessellation: the edges e1, e2
and e3 of the initial DT(N ) are not strongly Delaunay, as with the enabled

onstraining edges eC (dotted lines) an edge �ipping is triggered. The triangle

f is then also onstraint Delaunay although point p is inside the irumirle

c(f) but not Delaunay visible.

Following the ommon steps we an write the equilibrium equations as

DivP = −b0 in B0 (7)

with

P ·N = t
p
0 on ∂Bt

0 (8)

FIGURE 3 FIGURE 4

2.2 Constitutive assumption for stored energy density

A hyperelasti onstitutive theory is hosen. Using this onstitutive assump-

tion, the stress measures are derived. For the stored energy density W0, we

assume the following hyperelasti Neo- Hookean onstitutive funtion

W0 (F ) =
1

2
λ ln2 J +

1

2
µ
[

F : F − ndim − 2 ln J
]

(9)

Herein, the material parameters λ and µ are the Lamé onstants from las-

sial elastiity, ndim
denotes the number of dimension in spae. With this
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Figure 3: CDT and assoiated CADT meshes on non-onvex L-shaped do-

main (a) CDT with 1537 triangular elements, (b) CADT with 863 polygonal

elements
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onstitutive assumption the Piola stress takes the form

P = ∂FW0 = [λ ln J − µ]F−T + µF . (10)

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



PSfrag replaements

1

1

1

1

ξ̄

η̄

pG⊳

pG0

pG

ξ

η
Ω⊳

Ω0

Ω

x

y

J⊳

J

J⊳J
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3 Constrained adaptive Delaunay tessellation

We onsider a set of nodes N = {p1,p2, . . .pM} with pI ∈ R
2
. The �rst

order Voronoi diagram V(N ) of the set N is a subdivision of the Eulidian

spae R
2
into onvex regions

V (pI) =
{

p ∈ R
2 : ||p− pI || < ||p− pJ || ∀ J 6= I

}

alled Voronoi ells, where V(N ) = ∪V (pI) [49, 51, 53�56℄. The above de�-

nition states that any point p in the Voronoi ell V (pI) is loser to node pI

than to any other node pJ . We an de�ne the Delaunay tessellation DT(N )
suh that no other point of N is inside the irumirle of the onsidered

triangle in DT(N ). In general, the Delaunay tessellation in a k-dimensional

Eulidian spae onsists of k-simplies (in 2D: triangles) onstruted as the

onvex hull of k+1 a�nely independent points. The Delaunay tessellation is

dual to the Voronoi diagram, maximizes the minimum angle of all the angles

of the triangles in the tessellation and tends to avoid skinny triangles.

Fators suh as non-uniqueness and geometri qualities of the Delaunay tes-

sellation are of interest. The non-uniqueness is of onern espeially in the

9
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ase of degenerated subsets of the point set N . Problems arise when three

points of a potential triangle are ollinear or four or more points are o-

irular. This typially happens in the ase when a set of planar points is a

subset of a retangular array of points. In suh ases the length of a Voronoi

edge is zero, hene the orresponding Delaunay edges are missing in the dual

graph and non-simpliial polygons are formed. These an be arbitrarily tri-

angulated beause their topology remains unde�ned by merely stating an

empty irumirle (Delaunay) riterion. The geometri qualities of suh el-

ements strongly in�uene the ondition number of the sti�ness matrix and

the numerial auray of the approximation sheme [41℄. A simple solution

for the non-uniqueness is by merging some of these o-irular points like

in the extended Delaunay tessellation (EDT) [7℄. Reently Constantiniu et

al. [12℄ have proposed the adaptive Delaunay tessellation (ADT) of degen-

erated point sets. The method is an unstrutured hybrid tessellation of a

sattered point set that minimally overs the proximal spae around eah

point. The mesh is automatially obtained in a bounded period of time

by using geometri properties of an initial Delaunay tessellation. Rigorous

proofs for the geometri properties of the ADT have been given by Bobah

et al. [6℄, whih inlude the uniqueness of the ADT, the onnetedness of the

ADT, and the overage of the Voronoi tiles by adjaent ADT tiles. These

properties indiate that the method is robust for appliation to solve elasti-

ity problems. In the present work, the ADT proposed in [12℄ is extended to

inlude also non-onvex domains.

For the onsidered set N we denote its onvex hull as CH(N ), its border

as ∂CH(N ) and its assoiated Delaunay tessellation DT(N ) := (E
DT

,F
DT

)
omposed by the ative edges-to-node tuple e ⊂ E

DT

∈ N
2
and assembled

triangles f ⊂ F
DT

∈ N
3
. Any triangle f having an interior angle greater than

or equal to

π
2
is obtuse. The longest edge of an obtuse triangle f>

opposite to

the obtuse angle is denoted as e>f . For a triangle f ∈ F
DT

we denote its ir-

umenter of the irumirle c(f) by pc(f). One an state that a triangle f
is deemed to be obtuse if it does not ontain pc(f) in its interior and pc(f) lies
on the opposite side of e>f , respetively (ompare with Thales irle). With

the set E> = {e>f | f ∈ F
DT

∧e>f /∈ ∂CH(N )} of all obtuse edges, the tessella-
tion of the domain CH(N ) represented by (F

ADT

, E
DT

\ E>), where F
ADT

is

then the set of polygons generated by merging triangles with ommon edge

in E>
is the adaptive Delaunay tessellation ADT(N ). The ADT(N ) of a

point set is therefore the result of removing the longest edge on eah ob-

tuse triangle from the original Delaunay tessellation DT(N ), if this is not a

10
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boundary edge. Sine no new edges are generated in ADT(N ), eah triangle

f ∈ F
DT

is part of some polygon g ∈ F
ADT

. For detailed studies on quality

measures and the appliation of the adaptive Delaunay tessellation we refer

to Constantiniu et al. [12℄.

A onstrained adaptive Delaunay tessellation (CADT) of the point set

N is an extension of the ADT(N ) that also on�rms to onstraints C. In

2d, C is a given planar straight line graph whih onsists of a subset of N
with its onneting edges, alled onstraining edges eC, that an interset

other edges e only at their end points. The method is based on the onepts

from onstrained Delaunay tessellation (CDT) that inludes eC whih meet

the Delaunay riterion as good as possible [42℄. Hene, onstrained edges

are not neessarily Delaunay edges, the triangles f also do not neessarily

ful�ll the empty irumirle property but they ful�ll a weaker empty on-

strained irumirle property. To state this property, it is onvenient to

think of onstrained edges as bloking the view. Then, a tessellation is on-

strained Delaunay if any irumirle c(f) inludes in its interior no other

Delaunay visible verties than its own, see Figure 2 [59℄. Various algorithms

are available for onstruting an CDT, these inlude divide and onquer al-

gorithms [8℄, sweep line algorithms [42℄ and inremental algorithms [61℄.

A tessellation is sought that ontains the verties in N and respets the

onstraining edges eC [15℄. A triangle f(N ) is onstrained Delaunay, if f
respets all onstraints C, whih are ful�lled if f ⊂ F

DT

, no ef does inter-

set any onstraining edge eC or is a onstraining edge itself, and there is a

irumirle c(f) suh that no other vertex of N is Delaunay visible, om-

pare [59, Lemma 1℄. If this is ful�lled for all f and with E>
, the tessellation

of the domain CH(N ) represented by the sets (F
CADT

, E
CDT

\ E>) is alled

the onstrained adaptive Delaunay tessellation CADT(N ), where F
CADT

is

the set of polygons generated by merging triangles with ommon edge in E>
.

Thus, the CADT(N ) is the result of removing from eah obtuse triangle

f> ∈ F
CDT

(N ) the longest edge, if this is not a boundary or onstrained edge.

Sine no new edges are generated in CADT(N ), eah triangle f ∈ F
CDT

is

also part of some polygon g ∈ F
CADT

. Figure 3 ompares the initial CDT

with the �nal CADT meshes for a non-onvex domain.
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4 Conforming interpolants on polygons

Here we reiterate the proedure for obtaining shape funtions on annonial

polygonal domains. These are then ombined with an a�ne map to evaluate

the funtions on onvex and non-onvex polygonal physial domains. We

onsider a polygonal domain Ω0 ⊂ ℜ2
de�ned by the set of n nodes de�ning

the verties of the polygon. pK denote the Kth
node, with oordinates pK ≡

(xk, yk). Any point with oordinate p ≡ (x, y) ∈ Ω0 has a set of assoiated

shape funtions φK(p). An interpolation sheme for a salar-valued funtion

u(p) : B0 → ℜ2
an be written as:

uh(p) =
n

∑

K=1

φK(p)uK (11)

where uK are the unknowns at the n nodes of the polygon. The funtion

uh(p) satis�es properties suh as partition of unity, interpolation and linear

ompleteness inside the polygon and on the boundaries. We use various

geometri measures like edge length, signed area, and sine or osine of the

angles at eah vertex of the polygon to onstrut the interpolants as disussed

below.

4.1 Malsh Interpolant

Malsh and Dasugupta ( [29℄ , [28℄, [30℄, [45℄) have presented a rational

proedure for onstruting smooth and bounded interpolants on both onvex

and onave polygons. The interpolant is expressed as:

φM
I (p) =

kIsI(p)
∑n

J=1
kJsJ(p)

(12)

Where sI(p) are de�ned as the helper funtions that aounts for adjaeny

and kI is any arbitrarily hosen onstant. Appropriate hoies of the helper

funtion and onstants are made so as to ensure the interpolation require-

ments along boundaries and any interior points present within the polygonal

domain. With referene to Figure 4 , one an de�ne sI as produt of fun-

tions that are zero along all the boundary segments from node I +1 to node

I − 1, that are adjaent to node I. This an be written as:

sI(p) =
∏

I 6=I−1&I 6=I+1

rI+1,I−1(p) (13)
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Figure 6: a) Malsh interpolant on a anonial hexagon b) Malsh interpolant

on a physial polygon ) Malsh interpolant on a onave polygon

For onvex polygons the funtion rI+1,I−1(p) = A(p, pI , pI+1) and kI =
A(pI , pI+1, pI−1). For onave polygons rI+1,I−1(p) = lI+1(p) + lI−1(p) −
lI+1,I−1 and kI = 1. Here the length measure is de�ned as lI = ((x− xI)

2 +
(y − yI)

2)0.5 and lI,I+1 = ((xI − xI+1)
2 + (yI − yI+1)

2)0.5.
The Malsh interpolation over a anonial and physial polygon are shown

in Figure 6a and Figure 6b. The interpolation over an onave polygon is

shown in Figure 6.

5 Disretized weak form and numerial inte-

gration

Herein we use the polygonal interpolant both for the deformation map and

for the spae of admissible variations.
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ϕh(p) =
n

∑

k=1

φk(p)ϕk
(14)

δϕh(p) =
n

∑

k=1

φk(p)δϕk
(15)

where φk(p) and are the shape funtions for the node k that are assoiated

with nodal deformations ϕk
, Herein, the nodal indies k aount for the dis-

rete values of the unknown ϕh
. These shape funtions have the interpolating

property. The �rst order deformation gradients are de�ned as

F h =
n

∑

k=1

ϕk ⊗∇Xφ
k

(16)

In order to obtain the disretized spatial equilibrium equations, reall the

priniple of virtual work. Introduing the interpolation for δϕ we have

δΠ(ϕh; δϕk) =

∫

B0

P (ϕh) :

[

n
∑

k=1

δϕk ⊗∇Xφ
k

]

dV (17)

+δΠext(δϕh)

The above equation an be rearranged for all δϕk
as

δΠ(ϕh; δϕk) =

n
∑

k=1

δϕk ·

∫

B0

[

P (ϕh) · ∇Xφ
k
]

dV (18)

+δΠext(δϕh) = 0

The disrete residual an thus be written as

Rk =

∫

B0

P (ϕh) · ∇Xφ
k(p)dV − F ext

k = 0 (19)

This represents a set of nonlinear equilibrium equations with the urrent

nodal deformation as unknowns. The solution of these equations is ahieved

using a Newton Raphson iterative proedure. The linearized problem is given

by

n
∑

l=1

[Kkl]
[

dϕl
]

=
[

F ext
k − F int

k

]

(20)
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and is solved for iterative inrements of ϕl
The omponent matries of the

global tangent sti�ness matrix are given by

Kkl =
∂Rk

∂ϕl

=

∫

B0

[

∂FP · ∇Xφ
k
]

· ∇Xφ
ldV (21)

where the tangent operators for the spei� onstitutive law read as

∂FP = λF−T ⊗ F−T − [λ lnJ − µ]F−T⊗F−T + [µ] I⊗I (22)

Here Kkl is a tensor of seond order arranged in appropriate global loa-

tions to yield the global sti�ness matrix.

Numerial integration of the Galerkin weak form is required to be per-

formed over the polygonal domain for evaluating the integrals. Standard

Gaussian integration rule is used for �nite elements and for mesh free meth-

ods based on bak ground ells. Presently the state of the art inludes the

following methods for performing numerial integration over polygonal do-

mains:

• Integration on the physial polygonal element n−gon by subdividing it

in to n triangles and then using standard quadrature rule on triangles

[12℄, [48℄.

• Partitioning the anonial (regular) polygonal element n− gon into n
triangles and then performing numerial quadrature on triangles [48℄.

• Cubature rules for irregular n−gons [16℄ [17℄ based on triangles [54℄ [56℄

or onformal mapping [34℄, [35℄, [25℄.

• Generalized quadratures rules [27℄ on triangles or polygons based on

symmetry groups and numerial optimization [43℄, [33℄ [26℄and [58℄.

In the present work we apply for simpliity the �rst two approahes. In

performing the numerial integration by partitioning of the physial element,

the integration of a (salar) funtion ψ over Bi ( a n− gon) is written as

∫

Bi

ψdB =
n

∑

j=1

∫

B
△j
i

ψdB =
n

∑

j=1

∫ 1

0

∫ 1−ξ

0

ψ | Jj | dξdη (23)

A nsp quadrature rule on eah of the referene triangles is used to ompute

the last integral. In the above ase for a given quadrature point we determine
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X via : X =
∑3

i=1
φa

X
a
. Where φa

are the �nite element shape funtions for

a three node triangle. To ompute the Malsh shape funtions we need the

ξ oordinates in the anonial element. The position in physial oordinates

are obtained by inverse mapping [47℄.
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Any N-gonal domain may be deomposed into N pairwise disjoint trian-

gular subdomains Ω̄ and then any integration of a funtion ψ on a physial

domain Ω an be written as

∫

Ω

ψ dΩ =
∑

N

∫

Ω̄

ψ dΩ̄ (24)

=
∑

N

∫

Ω̄0

ψ |J | dΩ̄0 (25)

=
∑

N

∫

Ω⊳

ψ |J ||J⊳| dη̄ dξ̄ (26)

and thereby be pulled bak for integration either on a triangle in the anonial

domain Ω0 or a generi triangular domain Ω⊳. (24)-(26) may individually

be integrated with any adequate quadrature sheme. We selet lassial

2D Gaussian quadrature de�ned on a generi triangular domain with nG⊳
quadrature points on eah of the N subdomain triangles. For the appliation

of (24) and (25) the Gauss points pG⊳ and the assoiated weights wG an also

be mapped into the appropriate domains Ω or Ω0, respetively.

6 Numerial examples

6.1 Square plate with a entral hole

In a square speimen of side length L = 2 in, an inhomogeneity is introdued

by means of a entered irular hole of radius r = 1 in, as shown in Figure

7. The nodes at the bottom edge of the disretized geometry are �xed in

vertial diretion, a onstant displaement boundary ondition in the same

diretion is applied on the top nodes step wise, until the �nal length of 1.5L
is reahed. Lamé onstants of λ = 73.5 GPa, µ = 36.5 GPa , resulting in a

Poisson ratio of ν = 0.25 are onsidered.

The square speimen with entral hole is �rst disretized with randomly

generated Delaunay triangles. The proposed CADT algorithm and ode is

then used to generate the CADT polygonal mesh as shown in Figure 8().

The small amount of asymmetry in the polygonal disretization may be at-

tributed to the randomness in the Delaunay tessellation that is initially on-

sidered for CADT. For a omparative study the square speimen with hole
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Figure 7: Square plate with a irular hole.

is also disretized using three noded triangular elements as shown in Figure

8(a). A hyperelasti analysis is performed and the �nal deformed meshes are

shown in Figure 8(b) and 8(d) . A quadrati onvergene is ahieved in both

ases. Polygonal elements with n sides o�er more �exibility than regular

three noded triangular elements espeially for large deformations. Further

more the advantage of a ADT mesh at large deformations is that a trian-

gular element present in an ADT mesh that tends to be too elongated an

be merged with other triangles to form a n sided polygon in a CADT mesh.

The stresses are omputed for hyper- elasti analysis. Stress smoothing by

nodal averaging is performed at the nodes of the polygonal elements. Figure

9(a), (b) and () indiate the stress plots σxx, σyy and σxy for the polygonal

disretization. It is observed from Figure 10 that at large deformations for

the same amount of applied displaement, the reation fore measured is less

in the polygonal �nite element method than in the lassial FEM approah

thus learly indiating that it is a more �exible disretization.
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(a) (b)

() (d)

Figure 8: Hyperelasti analysis of a unit square domain with a entral hole

with restraint at the bottom edge and a presribed displaement on the top

edge a) Initial on�guration using a FEM disretization based on a three

noded triangular elements b)Final on�guration using a FEM disretization

based on three noded triangular elements ) Initial on�guration using a

CADT polygonal disretization d) Final on�guration using a CADT polyg-

onal disretization
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(a) (b) ()

Figure 9: Stress distribution for unit square domain with a entral hole

orresponding to the CADT mesh (shown in Figure 8d) a) Stress σxx b)

Stress σyy ) Stress σxy.
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Figure 10: Reation fore versus displaement plot for plate with a hole

example.
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6.2 L shaped domain
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Figure 11: L- shaped domain
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(a) (b)

() (d)

Figure 12: Hyperelasti analysis on a L shaped domain with restraint at

the renentrant orner and presribed displaements in axial diretion along

the two legs. a) Initial on�guration using a FEM disretization based on

three noded triangular elements b) Final on�guration using a FEM dis-

retization based on three noded triangular elements ) Initial on�guration

using a CADT polygonal disretization d) Final on�guration using a CADT

polygonal disretization
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(a) (b)

()

Figure 13: Stress distribution for an L shaped domain. The results obtained

are for CADT mesh shown in Figure 12d. a)Stress σxx b) Stress σyy ) Stress
σxy
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Figure 14: Reation fore versus diplaement plot for L-shaped example.

A L-shaped speimen of the dimensions as shown in Figure 11 is onsidered.

The speimen is subjeted to a presribed displaement in the X and Y
diretion along the two legs. To prevent rigid body motion all the defor-

mation degrees of freedom at the re-entrant orner A are additionally �xed.

The Lamé onstants are taken as λ = 73.5 GPa, µ = 36.5 GPa resulting in a

Poisson's ratio ν = 0.25. The proposed CADT algorithm is then used to gen-

erate the CADT polygonal mesh as shown in Figure 12(). For a omparative

study the L- shaped speimen is also disretized using three noded triangular

elements as shown in Figure 12(a). A hyper-elasti analysis is performed and

the �nal deformed meshes are shown in Figure 12(b) and 12(d). A quadrati

onvergene is ahieved in both ases. Stress smoothing by nodal averaging

is performed at the nodes of the polygonal element . Figure 13(a),(b) and ()

indiate the stress plots σxx, σyy and σxy for the polygonal disretization. It

is observed from Figure 14 that at large deformations for the same amount

of applied displaement, the reation fore measured is less in polygonal �-

nite element method than the lassial FEM approah thus learly indiating

that it is a more �exible disretization. This may be attributed the inreased

number of degrees of freedom per element for polygonal FEM disretization

and to the �exible interpolation shemes used in the polygonal FEM.
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Figure 15: Square blok under ompression.

6.3 Square blok under ompression

A square blok of dimensions as shown in Figure 15 is subjeted to a non

uniform ompression. Displaements are applied along DE so as to indue

non uniform ompression. Symmetri boundary onditions are applied along

AD and AB. Beause of the symmetry, only one-half of the blok is on-

sidered for onveniene. The proposed CADT algorithm is then used to

generate the CADT polygonal mesh as shown in Figure 16(). For a om-

parative study the square blok under ompression is also disretized using

three noded triangular elements as shown in Figure 16(a). A hyper-elasti

analysis is performed and the �nal deformed meshes are shown in Figure

16(b) and 16(d). A quadrati onvergene is ahieved in both ases. Stress

smoothing by nodal averaging is performed at the nodes of the polygonal

elements. Figure 17(a),(b) and () indiate the stress plots σxx, σyy and

σxy for the polygonal disretization. It is observed from Figure 18 that at

large deformations for the same amount of applied displaement, the rea-

tion fore measured is less in the polygonal �nite element method than in

the lassial FEM approah, thus learly indiating that it is a more �exible

disretization.
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(a) (b)

() (d)

Figure 16: Hyperelasti analysis on a unit square domain subjeted to om-

pression with restraint at the bottom edge and a presribed displaement

on the top edge. a) Initial on�guration using a FEM disretization based

on three noded triangular elements b)Final on�guration using a FEM dis-

retization based on three noded triangular elements ) Initial on�guration

using a CADT polygonal disretization d) Final on�guration using a CADT

polygonal disretization
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(a) (b)

()

Figure 17: Stress plots for the unit square domain subjeted to ompression.

The results are obtained for CADT meshes (shown in Figure16d). a) Stress

σxx b) Stress σyy ) Stress σxy
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Figure 18: Reation fore versus diplaement plot for blok example.

7 Summary and Conlusions

In this work, we present a proedure for hyperelasti analysis using a novel

polygonal �nite element method based on Constrained Adaptive Delaunay

Tessellation (CADT). For generating polygonal meshes we use the Adaptive

Delaunay Tessellation (ADT). ADT is an unstrutured hybrid tessellation of

a sattered point set that minimally overs the proximal spae around eah

point. In this work, we have extended the ADT for non-onvex domains

using onepts from Constrained Delaunay Triangulation. We have used the

Malsh interpolant for approximation over polygonal regions. For numer-

ial integration of the Galerkin weak form we resort to lassial Gaussian

quadrature rules based on triangles. In the numerial examples, we have

implemented a plate with square hole, a L-shaped domain and a blok un-

der ompression. Polygonal elements with n sides o�er more �exibility than

regular three nodded triangular elements espeially for large deformations.

Also the advantage of an ADT mesh at large deformations is that a trian-

gular element present in a ADT mesh that tends to be too elongated an be

merged with other triangles to form n− sided polygons in a CADT mesh.

The present method ompares well with the results obtained from lassial

FEM, as observed in the deformation patterns that are obtained.
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