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Abstract

In this contribution, we present a novel polygonal finite element
method applied to hyperelastic analysis. For generating polygonal
meshes in a bounded period of time we use the adaptive Delaunay
tessellation (ADT) proposed by Constantinu et al [12]. ADT is an un-
structured hybrid tessellation of a scattered point set that minimally
covers the proximal space around each point. In this work, we have
extended the ADT to non-convex domains using concepts from con-
strained Delaunay triangulation (CDT). The proposed method is thus
based on a constrained adaptive Delaunay tessellation (CADT) for the
discretization of domains into polygonal regions. We involve the met-
ric coordinate (Malsch) method for obtaining the interpolation over
convex and non convex domains. For the numerical integration of the
Galerkin weak form we resort to classical Gaussian quadrature based
on triangles. Numerical examples of two dimensional hyperelasticity
are considered to demonstrate the advantages of the polygonal finite
element method.
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1 Introduction

A large strain analysis typically includes both geometric and material non-
linearities. For many materials, linear elastic models do not accurately de-
scribe the observed material behavior. The most common example of this
kind of material is rubber, whose stress-strain relationship can be defined as
non-linearly elastic, isotropic, incompressible and generally independent of
strain rate. Hyperelasticity provides a means of modeling the stress-strain
behavior of such materials. Filled elastomers and biological tissues are also of-
ten modeled via the hyperelastic idealization. A hyperelastic material derives
the stress-strain relationship from a strain energy density function. Classi-
cally the finite element method has been used as a tool for numerical hyper-
elastic analysis. Advancements in constructions of n—gons' and interpolants
has helped to move beyond the limits of using simple geometrical elements
for discretization. The use of n—gons provides greater flexibility in deal-
ing with arbitrary geometries. Polygonal finite element discretizations are
used in many areas, a few examples include: as interface elements for con-
necting dissimilar finite element meshes [18], nonlinear constitutive modeling
of polycrystalline ferroelectrics [49], two field methods for solving diffusion
equations [23], analysis of solid mechanics problems [38] including incom-
pressible materials [13], and for topology optimization [51]. There have been
other recent works on developing polygonal finite element interpolants based
on scaled boundary elements [10]| and virtual nodes [53], obtaining higher
order p adaptive and C* generalized approximations for polygonal clouds [3].
The recent focus has also been on generating conformal polygonal discretiza-
tions [25]. Some recent works are also concerned with developing numerical
integration schemes for polygonal finite element methods either based on
conformal mapping [34] [35] or generalizing Gaussian quadrature rules for
polygons [24], [33]. Sukumar et al [46] established the connections between
the virtual element method (VEM) and the hourglass control techniques and
showed quantitative comparisons of the consistency and stabilization matri-
ces in the VEM to those in the hourglass control method. Heng et al [9]
have given an approach towards the challenging task of modeling nonlinear
elastic materials with standard finite elements and have proposed an alterna-
tive approach to model finite elasticity problems in two dimensions by using
polygonal discretization. Gianmarco et al [32] worked on the new perspec-
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tives on polygonal and polyhedral finite element methods. Floater et al [31]
have discussed on gradient bounds for Wachspress coordinates on polytopes.
An approach regarding polygonal finite elements approximation for mixed
formulations was given by Cameron et al. [52| for incompressible fluid flow.
It has been demonstrated that a certain class of approximants can be devoid
of spurious modes and locking. Cameron et al. [50] proposed a polygonal fi-
nite element procedure for topology optimization. In another recent work [52]
integration errors in polygonal finite element methods and its relevance for
the patch test have been discussed. Arun et al. [2] proposed the Virtual Ele-
ment Method (VEM) for the numerical solution of boundary value problems
on arbitrary polyhedral meshes and also presented several numerical studies
in order to verify convergence of the VEM and evaluate its performance for
various types of meshes. Khoei et al. [4] presented a polygonal-FEM tech-
nique for modeling of arbitrary interfaces in large deformations and applied
it to capture discontinuous deformations in non-conformal elements, which
are cut by the interface in a uniform regular mesh. Biabanaki et al. [5] pre-
sented a polygonal finite element method for large deformation frictionless
dynamic contact-impact problems with non-conformal meshes. Sukumar et
al. [44] presented the development of quadratic serendipity shape functions on
planar convex and nonconvex polygons and maximized the objective func-
tional subject to the constraints for quadratic completeness. A numerical
algorithm based on group theory and numerical optimization was presented
by Mousavi et al. [33] to compute efficient quadrature rules for integration
of the bivariate polynomials over arbitrary polygons. The algorithm was
used for the construction of symmetric and non-symmetric quadrature rules
over convex and concave polygons. Nguyen et al. [37] provided an approach
towards free and forced vibration analysis using the n-sided polygonal cell-
based smoothed finite element method. They further extended the nCS-FEM
to the free and forced vibration analyses of two dimensional (2D) dynamic
problems. Hornmann et al [21] introduced a new generalization of barycen-
tric coordinates that stems from the maximum entropy principles. David
et al [14] presented a mixed-element mesh generator based on the modi-
fied octree approach that has been adapted to generate polyhedral Delaunay
meshes. Yijiang et al. [60] presented an explicit expression of two-dimensional
element compliance matrix on the complementary energy principle with con-
cave polygonal meshes. Dai et al [13] proposed a smoothed finite element
method (SFEM) using quadrilateral elements, whereby the method produces
very accurate stresses and desirable convergence rate comparable to the FEM.



Kraus and Steinmann [22]| presented finite element formulations for 3D con-
vex polyhedra in nonlinear continuum mechanics. An n- sided polygonal
edge - based smoothed finite element method (nES-FEM) for solid mechan-
ics problems is discussed in [37]. Somnath et al [20] developed a Voronoi cell
finite element method to solve small deformation elastic-plastic problems for
arbitrary heterogeneous materials and conducted studies to understand the
effect of size, shape and distribution of second phases on the averaged and
true local responses of representative material elements. Zhang et al. [62]
developed a parametric variational principle based polygonal finite element
method (PFEM) and Voronoi cell finite element method (VCFEM) for the
numerical simulation of the elastic—plastic mechanical behavior of heteroge-
neous materials under small deformation and also gave the shape functions
for the polygonal element. Sundararajan et al. [36] studied the convergence
and accuracy of displacement based finite element formulations over arbi-
trary polygons. Laplace interpolants, strain smoothing and scaled boundary
polygon formulations were considered for the analysis. Andrew et al. [1]
studied error estimates for generalized barycentric interpolation. An efficient
numerical scheme for the biharmonic equation by weak Galerkin finite ele-
ment methods on polygonal or polyhedral meshes has been proposed in [11].
Higher order BEM-based FEM on polygonal meshes have been studied re-
cently (see [39] and [40]).

In this work we present a Galerkin method based on adaptive Delaunay
tessellation (ADT) over non-convex geometries for solving two-dimensional
geometrically nonlinear hyperelasticity problems. Various polygonal inter-
polants available in the literature amongst others include Laplace, Wach-
press [55], Warren [57|, and Floaters mean value interpolants [19]. In the
present work, we make use of the metric coordinate method or rather Malsch
interpolant [30] for the interpolation over non-convex polygonal domains.
Thereby we use a mapping of a star shaped polygonal physical element to a
canonical element.

In section 2 we present the governing equations and weak form of hyper-
elastic analysis. An overview of the novel ADT hybrid polygonal meshing
technique for scattered point distribution as proposed in Constantiniu et
al. [12] is presented in section 3. In section 4 the methodology for computing
Malsch interpolants [30] are discussed. In the last section we present numer-
ical examples in two dimensions to test the polygonal finite element method
for hyperelastic materials.
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Figure 1: Elastostatic boundary value problem.

2 Governing equations and weak form

To state the variational principle in a geometrically nonlinear setting we refer
all quantities arising in the continuum mechanical description to the material
configuration By C R with boundary 0B, and outward units normal vector
N. In defining the motion of By a typical continuum particle occupies a
succession of points which for a fixed material point X forms the spatial
path for this continuum particle (see Figure 1). The position vectors of
particles in By are given by X, and the nonlinear deformation map

P BO — Bt (]'a)

X—epX)== (1b)

is such that it maps particles X of the material configuration to particles
x in the spatial configuration B;. As usual ¢ is assumed to be sufficiently
smooth (C' continuous) so that we define the deformation gradient.

i
F = VX(Pa Fig = %7 (2)

where we use small and capital indices which refer either to the spatial or
the material configuration, respectively. It is observed that F' is a second

order two point tensor that does not exhibit any symmetries. The Jacobian
determinant is denoted by J := detF' = dv/dV > 0, with dV and dv being
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the infinitesimal volume elements in the material and spatial configuration,
respectively.

2.1 Energy minimization and balance relations

We consider a hyperelastic continuum for which the potential energy II is
a functional of the deformation, ¢, whereas the stored energy density W)
depends on F' and X, so that the functional is written as

I (p) = / Wo (F., X) dV + T (i). (3)
Bo

If we assume the material to be hyperelastic, stresses can be defined as the
derivatives of W, with respect to their energetically conjugate deformation
variables. The Piola- type macro-stress P,

P =0, W,. (4)
For arbitrary variations d¢, the energy minimization takes the form
ST = 0TI™ + STI™* = 0, (5)
where
ST = —/bo - 0pdV — /5go - thdA. (6)
By 9Bo

In the above equation, by is the body force density acting on the material
domain By and ¢} is the nominal surface traction which acts on the Neu-
mann surface in the material configuration 0Bf. By application of the Gauss
theorem, we derive the equilibrium equations and Neumann- type bound-
ary conditions. Integrating by parts, variation of the internal energy term
becomes

SIT™ = —/(5cp~DideV+ / dp-P-NdA
BO 88&
Thus the variation of the total potential energy is given by

oIl = —/5¢-DideV+/5go-P-NdA
Bo B
—/bo-égodV—/égo-tgdA:(),
B} B
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Figure 2: Delaunay and constrained Delaunay tessellation: the edges ey, e
and ez of the initial DT(N) are not strongly Delaunay, as with the enabled
constraining edges ¢ (dotted lines) an edge flipping is triggered. The triangle
f is then also constraint Delaunay although point p is inside the circumcircle
c(f) but not Delaunay visible.

Following the common steps we can write the equilibrium equations as

DivP = —bo in BQ (7)
with

P.-N =t} on 0B} (8)
FIGURE 3 FIGURE 4

2.2 Constitutive assumption for stored energy density

A hyperelastic constitutive theory is chosen. Using this constitutive assump-
tion, the stress measures are derived. For the stored energy density Wy, we
assume the following hyperelastic Neo- Hookean constitutive function

1 1 .
WO(F):5/\ln2J+§,u[F:F—ndlm—2an] (9)

Herein, the material parameters A and p are the Lamé constants from clas-
sical elasticity, n¥™ denotes the number of dimension in space. With this
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Figure 3: CDT and associated CADT meshes on non-convex L-shaped do-
main (a) CDT with 1537 triangular elements, (b) CADT with 863 polygonal

elements
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Figure 4: Geometric measures used for polygonal interpolation : signed tri-
angle areas A, section angles «;, internal polygonal angles ~; and d; for node

L.

constitutive assumption the Piola stress takes the form

P=0yWy=[AnJ—p|F ' +uF.

(10)



Figure 5: Numerical integration based on partition of the canonical domain
)y or the physical domain 2 and mapping of quadrature points from a generic
triangular domain €2,.

3 Constrained adaptive Delaunay tessellation

We consider a set of nodes N' = {pi1,ps,...py} with p; € R% The first
order Voronoi diagram V(N) of the set N is a subdivision of the Euclidian
space R? into convex regions

Vipr)={peR*:|lp—pil|<|lp—ps||VJ#I}

called Voronoi cells, where V(N') = UV (p;) [49,51,53-56]. The above defi-
nition states that any point p in the Voronoi cell V (p;) is closer to node p;
than to any other node p;. We can define the Delaunay tessellation DT(N)
such that no other point of N is inside the circumcircle of the considered
triangle in DT(A). In general, the Delaunay tessellation in a k-dimensional
Euclidian space consists of k-simplices (in 2D: triangles) constructed as the
convex hull of £+ 1 affinely independent points. The Delaunay tessellation is
dual to the Voronoi diagram, maximizes the minimum angle of all the angles
of the triangles in the tessellation and tends to avoid skinny triangles.

Factors such as non-uniqueness and geometric qualities of the Delaunay tes-
sellation are of interest. The non-uniqueness is of concern especially in the



case of degenerated subsets of the point set N. Problems arise when three
points of a potential triangle are collinear or four or more points are co-
circular. This typically happens in the case when a set of planar points is a
subset of a rectangular array of points. In such cases the length of a Voronoi
edge is zero, hence the corresponding Delaunay edges are missing in the dual
graph and non-simplicial polygons are formed. These can be arbitrarily tri-
angulated because their topology remains undefined by merely stating an
empty circumcircle (Delaunay) criterion. The geometric qualities of such el-
ements strongly influence the condition number of the stiffness matrix and
the numerical accuracy of the approximation scheme [41]. A simple solution
for the non-uniqueness is by merging some of these co-circular points like
in the extended Delaunay tessellation (EDT) [7]. Recently Constantiniu et
al. [12] have proposed the adaptive Delaunay tessellation (ADT) of degen-
erated point sets. The method is an unstructured hybrid tessellation of a
scattered point set that minimally covers the proximal space around each
point. The mesh is automatically obtained in a bounded period of time
by using geometric properties of an initial Delaunay tessellation. Rigorous
proofs for the geometric properties of the ADT have been given by Bobach
et al. [6], which include the uniqueness of the ADT, the connectedness of the
ADT, and the coverage of the Voronoi tiles by adjacent ADT tiles. These
properties indicate that the method is robust for application to solve elastic-
ity problems. In the present work, the ADT proposed in [12] is extended to
include also non-convex domains.

For the considered set AN/ we denote its convex hull as CH(N), its border
as OCH(N) and its associated Delaunay tessellation DT(N) := (Epr, Fpor)
composed by the active edges-to-node tuple e C Enr € N? and assembled
triangles f C Fpr € N3. Any triangle f having an interior angle greater than
or equal to 7 is obtuse. The longest edge of an obtuse triangle f~ opposite to
the obtuse angle is denoted as ej?. For a triangle f € Fpr we denote its cir-
cumcenter of the circumcircle ¢(f) by p.(f). One can state that a triangle f
is deemed to be obtuse if it does not contain p.(f) in its interior and p.(f) lies
on the opposite side of ej?, respectively (compare with Thales circle). With
the set £~ = {e7 | f € FprAe; ¢ OCH(N)} of all obtuse edges, the tessella-
tion of the domain CH(N') represented by (Fapt, Ept \ £7), where Fapr is
then the set of polygons generated by merging triangles with common edge
in £~ is the adaptive Delaunay tessellation ADT(N'). The ADT(N) of a
point set is therefore the result of removing the longest edge on each ob-
tuse triangle from the original Delaunay tessellation DT(N), if this is not a
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boundary edge. Since no new edges are generated in ADT(N), each triangle
f € Fpr is part of some polygon g € Fapr. For detailed studies on quality
measures and the application of the adaptive Delaunay tessellation we refer
to Constantiniu et al. [12].

A constrained adaptive Delaunay tessellation (CADT) of the point set

N is an extension of the ADT(N) that also confirms to constraints C. In
2d, C is a given planar straight line graph which consists of a subset of N
with its connecting edges, called constraining edges €, that can intersect
other edges e only at their end points. The method is based on the concepts
from constrained Delaunay tessellation (CDT) that includes ¢ which meet
the Delaunay criterion as good as possible [42]. Hence, constrained edges
are not necessarily Delaunay edges, the triangles f also do not necessarily
fulfill the empty circumcircle property but they fulfill a weaker empty con-
strained circumcircle property. To state this property, it is convenient to
think of constrained edges as blocking the view. Then, a tessellation is con-
strained Delaunay if any circumcircle ¢(f) includes in its interior no other
Delaunay visible vertices than its own, see Figure 2 [59]. Various algorithms
are available for constructing an CDT, these include divide and conquer al-
gorithms [8], sweep line algorithms [42] and incremental algorithms [61].
A tessellation is sought that contains the vertices in A and respects the
constraining edges e© [15]. A triangle f(N) is constrained Delaunay, if f
respects all constraints C, which are fulfilled if f C Fpr, no ey does inter-
sect any constraining edge €€ or is a constraining edge itself, and there is a
circumcircle ¢(f) such that no other vertex of A/ is Delaunay visible, com-
pare [59, Lemma 1|. If this is fulfilled for all f and with £, the tessellation
of the domain CH(N) represented by the sets (Fcapt, Ecpr \ €7) is called
the constrained adaptive Delaunay tessellation CADT(N), where Foapr is
the set of polygons generated by merging triangles with common edge in £~.
Thus, the CADT(N) is the result of removing from each obtuse triangle
7 € Fepr(N) the longest edge, if this is not a boundary or constrained edge.
Since no new edges are generated in CADT(N), each triangle f € Fepr is
also part of some polygon g € Feapr. Figure 3 compares the initial CDT
with the final CADT meshes for a non-convex domain.
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4 Conforming interpolants on polygons

Here we reiterate the procedure for obtaining shape functions on cannonical
polygonal domains. These are then combined with an affine map to evaluate
the functions on convex and non-convex polygonal physical domains. We
consider a polygonal domain €y C %? defined by the set of n nodes defining
the vertices of the polygon. px denote the K** node, with coordinates px =
(g, yx). Any point with coordinate p = (z,y) € €y has a set of associated
shape functions ¢k (p). An interpolation scheme for a scalar-valued function
u(p) : By — R? can be written as:

u'(p) = dx(p)ux (11)

where uyx are the unknowns at the n nodes of the polygon. The function
uh(p) satisfies properties such as partition of unity, interpolation and linear
completeness inside the polygon and on the boundaries. We use various
geometric measures like edge length, signed area, and sine or cosine of the
angles at each vertex of the polygon to construct the interpolants as discussed
below.

4.1 Malsch Interpolant

Malsch and Dasugupta ( [29] , [28], [30], [45]) have presented a rational
procedure for constructing smooth and bounded interpolants on both convex
and concave polygons. The interpolant is expressed as:

M kisi(p)

ol p) = s s (12)
Where s;(p) are defined as the helper functions that accounts for adjacency
and k; is any arbitrarily chosen constant. Appropriate choices of the helper
function and constants are made so as to ensure the interpolation require-
ments along boundaries and any interior points present within the polygonal
domain. With reference to Figure 4 , one can define s; as product of func-
tions that are zero along all the boundary segments from node 7 + 1 to node
I — 1, that are adjacent to node I. This can be written as:

sip =[] e (13)

TAI-1&I£I+1
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(c)

Figure 6: a) Malsch interpolant on a canonical hexagon b) Malsch interpolant
on a physical polygon c¢) Malsch interpolant on a concave polygon

For convex polygons the function r;417-1(p) = A(p, pr, pr+1) and k; =

A(pr, Pr+1, pr—1). For concave polygons rr17-1(p) = l141(p) + Li-1(p) —
lr+1.7-1 and k; = 1. Here the length measure is defined as l; = ((z — z)* +

(y —y)*)*° and I ro1 = (27 — 2141)* + (Y1 — yr41)?)">>.

The Malsch interpolation over a canonical and physical polygon are shown
in Figure 6a and Figure 6b. The interpolation over an concave polygon is
shown in Figure 6c.

5 Discretized weak form and numerical inte-
gration

Herein we use the polygonal interpolant both for the deformation map and
for the space of admissible variations.
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=> d*(p)p" (14)
= ¢*(p)og” (15)

where ¢*(p) and are the shape functions for the node k that are associated
with nodal deformations ¥, Herein, the nodal indices k account for the dis-
crete values of the unknown ¢”. These shape functions have the interpolating
property. The first order deformation gradients are defined as

F'=> o' ®Vxe* (16)
k=1

In order to obtain the discretized spatial equilibrium equations, recall the
principle of virtual work. Introducing the interpolation for d¢ we have

oTI(p"; 6%) = /P(soh
By

The above equation can be rearranged for all §¢* as

(17)

> ot @ Vgt
k=1

+OT1 (5")

STI("; 6% Z&p / ©") - Vxot] dv (18)

Bo
+5Hemt(5¢h) —

The discrete residual can thus be written as

Ry = [ P@") Vot (p)aV — Fi =0 (19)

This represents a set of nonlinear equilibrium equations with the current
nodal deformation as unknowns. The solution of these equations is achieved

using a Newton Raphson iterative procedure. The linearized problem is given
by

n

> K [de'] = [Fit — Fp (20)

=1
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and is solved for iterative increments of ¢! The component matrices of the
global tangent stiffness matrix are given by
OR
Ky=—2>= / [0rP - Vx¢*] - Vx¢'dV (21)

o1
Bo

where the tangent operators for the specific constitutive law read as

OpP = F T F 1T - A\nJ—p FToF T +[uIxI (22)

Here Ky, is a tensor of second order arranged in appropriate global loca-
tions to yield the global stiffness matrix.

Numerical integration of the Galerkin weak form is required to be per-
formed over the polygonal domain for evaluating the integrals. Standard
Gaussian integration rule is used for finite elements and for mesh free meth-
ods based on back ground cells. Presently the state of the art includes the
following methods for performing numerical integration over polygonal do-
mains:

e Integration on the physical polygonal element n— gon by subdividing it
in to n triangles and then using standard quadrature rule on triangles
[12], [48].

e Partitioning the canonical (regular) polygonal element n — gon into n
triangles and then performing numerical quadrature on triangles [48|.

e Cubature rules for irregular n—gons [16] [17] based on triangles [54] [56]
or conformal mapping [34], [35], [25].

e Generalized quadratures rules [27] on triangles or polygons based on
symmetry groups and numerical optimization [43], [33] [26]and [58].

In the present work we apply for simplicity the first two approaches. In
performing the numerical integration by partitioning of the physical element,
the integration of a (scalar) function ¢ over B; ( a n — gon) is written as

/lgide:il/ijde:i/ol/ol£¢\Jj|d§d77 23)

A nsp quadrature rule on each of the reference triangles is used to compute
the last integral. In the above case for a given quadrature point we determine

15
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Xvia: X = 2?21 @*X% Where ¢” are the finite element shape functions for
a three node triangle. To compute the Malsch shape functions we need the
¢ coordinates in the canonical element. The position in physical coordinates
are obtained by inverse mapping [47].
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Any N-gonal domain may be decomposed into N pairwise disjoint trian-
gular subdomains €2 and then any integration of a function ¢ on a physical
domain €2 can be written as

/wdQ:Z/wdQ (24)
:Z/w |J| dS (25)

-y / b ||| di dE (26)

NQQ

and thereby be pulled back for integration either on a triangle in the canonical
domain Qg or a generic triangular domain Q. (24)-(26) may individually
be integrated with any adequate quadrature scheme. We select classical
2D Gaussian quadrature defined on a generic triangular domain with n$
quadrature points on each of the N subdomain triangles. For the application
of (24) and (25) the Gauss points p5 and the associated weights w® can also
be mapped into the appropriate domains €2 or €2y, respectively.

6 Numerical examples

6.1 Square plate with a central hole

In a square specimen of side length L. = 24n, an inhomogeneity is introduced
by means of a centered circular hole of radius » = 1in, as shown in Figure
7. The nodes at the bottom edge of the discretized geometry are fixed in
vertical direction, a constant displacement boundary condition in the same
direction is applied on the top nodes step wise, until the final length of 1.5L
is reached. Lamé constants of A = 73.5 GPa, u = 36.5 GPa , resulting in a
Poisson ratio of v = 0.25 are considered.

The square specimen with central hole is first discretized with randomly
generated Delaunay triangles. The proposed CADT algorithm and code is
then used to generate the CADT polygonal mesh as shown in Figure 8(c).
The small amount of asymmetry in the polygonal discretization may be at-
tributed to the randomness in the Delaunay tessellation that is initially con-
sidered for CADT. For a comparative study the square specimen with hole

17
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Figure 7: Square plate with a circular hole.

is also discretized using three noded triangular elements as shown in Figure
8(a). A hyperelastic analysis is performed and the final deformed meshes are
shown in Figure 8(b) and 8(d) . A quadratic convergence is achieved in both
cases. Polygonal elements with n sides offer more flexibility than regular
three noded triangular elements especially for large deformations. Further
more the advantage of a ADT mesh at large deformations is that a trian-
gular element present in an ADT mesh that tends to be too elongated can
be merged with other triangles to form a n sided polygon in a CADT mesh.
The stresses are computed for hyper- elastic analysis. Stress smoothing by
nodal averaging is performed at the nodes of the polygonal elements. Figure
9(a), (b) and (c) indicate the stress plots 0., 0y, and o, for the polygonal
discretization. It is observed from Figure 10 that at large deformations for
the same amount of applied displacement, the reaction force measured is less
in the polygonal finite element method than in the classical FEM approach
thus clearly indicating that it is a more flexible discretization.
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Figure 8: Hyperelastic analysis of a unit square domain with a central hole
with restraint at the bottom edge and a prescribed displacement on the top
edge a) Initial configuration using a FEM discretization based on a three
noded triangular elements b)Final/ohfiurnéing s ag 8 EEM disdietisation
based on three noded triangular elements c) Initial configuration using a
CADT polygonal discretization d) Final configuration using a CADT polyg-
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Figure 9: Stress distribution for unit square domain with a central hole

corresponding to the CADT mesh (shown in Figure 8d) a) Stress o,, b)
Stress gy, ¢) Stress o,.
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Figure 10: Reaction force versus displacement plot for plate with a hole
example.
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6.2 L shaped domain
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Figure 11: L- shaped domain
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Figure 12: Hyperelastic analysis on a L shaped domain with restraint at
the renentrant corner and prescribed displacements in axial direction along
the two legs. a) Initial configuration using a FEM discretization based on
three noded triangular elements b) Final configuration using a FEM dis-
cretization based on three noded triangular elements ¢) Initial configuration
using a CADT polygonal discretization d) Final configuration using a CADT
polygonal discretization
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Figure 14: Reaction force versus diplacement plot for L-shaped example.

A L-shaped specimen of the dimensions as shown in Figure 11 is considered.
The specimen is subjected to a prescribed displacement in the X and Y
direction along the two legs. To prevent rigid body motion all the defor-
mation degrees of freedom at the re-entrant corner A are additionally fixed.
The Lamé constants are taken as A = 73.5 GPa, y = 36.5 GPa resulting in a
Poisson’s ratio v = 0.25. The proposed CADT algorithm is then used to gen-
erate the CADT polygonal mesh as shown in Figure 12(c). For a comparative
study the L- shaped specimen is also discretized using three noded triangular
elements as shown in Figure 12(a). A hyper-elastic analysis is performed and
the final deformed meshes are shown in Figure 12(b) and 12(d). A quadratic
convergence is achieved in both cases. Stress smoothing by nodal averaging
is performed at the nodes of the polygonal element . Figure 13(a),(b) and (c)
indicate the stress plots o, 0, and o, for the polygonal discretization. It
is observed from Figure 14 that at large deformations for the same amount
of applied displacement, the reaction force measured is less in polygonal fi-
nite element method than the classical FEM approach thus clearly indicating
that it is a more flexible discretization. This may be attributed the increased
number of degrees of freedom per element for polygonal FEM discretization
and to the flexible interpolation schemes used in the polygonal FEM.
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Figure 15: Square block under compression.

6.3 Square block under compression

A square block of dimensions as shown in Figure 15 is subjected to a non
uniform compression. Displacements are applied along DE so as to induce
non uniform compression. Symmetric boundary conditions are applied along
AD and AB. Because of the symmetry, only one-half of the block is con-
sidered for convenience. The proposed CADT algorithm is then used to
generate the CADT polygonal mesh as shown in Figure 16(c). For a com-
parative study the square block under compression is also discretized using
three noded triangular elements as shown in Figure 16(a). A hyper-elastic
analysis is performed and the final deformed meshes are shown in Figure
16(b) and 16(d). A quadratic convergence is achieved in both cases. Stress
smoothing by nodal averaging is performed at the nodes of the polygonal
elements. Figure 17(a),(b) and (c) indicate the stress plots o,,, 0, and
04y for the polygonal discretization. It is observed from Figure 18 that at
large deformations for the same amount of applied displacement, the reac-
tion force measured is less in the polygonal finite element method than in
the classical FEM approach, thus clearly indicating that it is a more flexible
discretization.
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pression with restraint at the bottom edge and a prescribed displacement
27

on the top edge. a) Initial configuration using a FEM discretization based
on three noded triangular elements b)Final configuration using a FEM dis-
cretization based on three noded triangular elements ¢) Initial configuration
using a CADT polygonal discretization d) Final configuration using a CADT

Figure 16: Hyperelastic analysis on a unit square domain subjected to com-
polygonal discretization
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7 Summary and Conclusions

In this work, we present a procedure for hyperelastic analysis using a novel
polygonal finite element method based on Constrained Adaptive Delaunay
Tessellation (CADT). For generating polygonal meshes we use the Adaptive
Delaunay Tessellation (ADT). ADT is an unstructured hybrid tessellation of
a scattered point set that minimally covers the proximal space around each
point. In this work, we have extended the ADT for non-convex domains
using concepts from Constrained Delaunay Triangulation. We have used the
Malsch interpolant for approximation over polygonal regions. For numer-
ical integration of the Galerkin weak form we resort to classical Gaussian
quadrature rules based on triangles. In the numerical examples, we have
implemented a plate with square hole, a L.-shaped domain and a block un-
der compression. Polygonal elements with n sides offer more flexibility than
regular three nodded triangular elements especially for large deformations.
Also the advantage of an ADT mesh at large deformations is that a trian-
gular element present in a ADT mesh that tends to be too elongated can be
merged with other triangles to form n— sided polygons in a CADT mesh.
The present method compares well with the results obtained from classical
FEM, as observed in the deformation patterns that are obtained.
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